Material balances for Example 3.19: Ethylene Oxide Flowsheet

The example demonstrates the formulation and solution of material balances for a simple process flowsheet with recycle. The solution is computed using CVX, a convex optimization package distributed by cvxr.com. The following example solves Example 3.19 of the Murphy textbook.

JCK 9/28/2012

Contents

- Functions Used
- Process Flowsheet
- Component Numbering
- Stoichometric Coefficients
- Reactor Conversion
- Separator Efficiencies
- Solution of the Steady State Equations
- Display Results

Functions Used

- CVX
- displaytable.m

Process Flowsheet

The process flowsheet consists of three units, five streams, and three components: ethylene (E), oxygen (O), and ethylene oxide (EO). The feedstream consists of 196 kgmol/hr E and 84.5 kgmol/hr. The reaction stoichiometry is given by

Component Numbering

To minimize the potential for coding errors, we use component indices chosen as mnemonics of the species contained in the process flowsheet.

```
O = 1; % oxygen
E = 2; % ethylene
EO = 3; % ethylene oxide
```

Stoichometric Coefficients

Stoichiometric coefficients are stored in a vector. The index corresponds to the species involved in the reactions.

```
v(0) = -1;

v(E) = -2;

v(E0) = 2;
```

Reactor Conversion

The reactor performance is stated in terms of the fraction of the feed E converted to EO. This fraction is fce3.

```
fce3 = 0.06;
```

Separator Efficiencies

The separator efficiency is specified in terms of the fraction of each incoming component that goes to the preferred outlet stream.

```
fo5 = 0.995;
fe5 = 0.98;
fe04 = 0.97;
```

Solution of the Steady State Equations

The stream variables are represented by a matrix n(3,5) of variables, and the extent of reaction is a single variable x. Once these are declared, we simply write out all of the material balance equations and process specifications.

```
cvx begin quiet
    % Declare the problem variables
    variables n(3,5); % A table of molar flowrates
    variables x;
                         % Extent of reaction
    % Mixer Balance
    0 == n(0,1) + n(0,5) - n(0,2);
    0 == n(E,1) + n(E,5) - n(E,2);
    0 == n(EO,1) + n(EO,5) - n(EO,2);
    % Reactor Balance
    0 == n(0,2) - n(0,3) + v(0)*x;
    0 == n(E,2) - n(E,3) + v(E)*x;
    0 == n(EO, 2) - n(EO, 3) + v(EO) *x;
    % Seperator Balance
    0 == n(0,3) - n(0,4) - n(0,5);
    0 == n(E,3) - n(E,4) - n(E,5);
    0 == n(EO,3) - n(EO,4) - n(EO,5);
    % Feed Stream Specifications
    n(0,1) == 84.5;
    n(E,1) == 196;
    n(EO,1) == 0;
    % Reactor Conversion
```

```
2*x == fce3*n(E,2);

% Seperator Effciencies
n(0,5) == fo5*n(0,3);
n(E,5) == fe5*n(E,3);
n(EO,4) == feo4*n(EO,3);

cvx_end
```

Display Results

```
disp('Stream Table [kgmol/hr]');
displaytable([n;sum(n)],{'O','E','EO','TOTAL'},'Stream','%5.1f');
fprintf('\nEO purity = %5.3f mol%%\n',100*n(3,4)/sum(n(:,4)));
```

```
Stream Table [kgmol/hr]
       Stream(1) Stream(2) Stream(3) Stream(4)
                                                  Stream(5)
0
           84.5
                     2050.8
                                1976.1
                                              9.9
                                                      1966.3
E
          196.0
                     2487.3
                                2338.1
                                             46.8
                                                      2291.3
             0.0
                        4.6
                                153.9
                                           149.2
                                                         4.6
ΕO
           280.5
                     4542.7
                                4468.1
                                            205.9
                                                      4262.2
TOTAL
EO purity
             = 72.488 mol%
```

Published with MATLAB® R2014a