{ "cells": [ { "cell_type": "markdown", "metadata": { "nbpages": { "level": 0, "link": "[](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html)", "section": "" } }, "source": [ "\n", "*This notebook contains material from [CBE30338](https://jckantor.github.io/CBE30338);\n", "content is available [on Github](https://github.com/jckantor/CBE30338.git).*\n" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 0, "link": "[](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html)", "section": "" } }, "source": [ "\n", "< [1.3 Python Conditionals and Libraries](https://jckantor.github.io/CBE30338/01.03-Python-Conditionals-and-Libraries.html) | [Contents](toc.html) | [Tag Index](tag_index.html) | [2.0 Process Modeling](https://jckantor.github.io/CBE30338/02.00-Process-Modeling.html) >

\"Open

\"Download\"" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 1, "link": "[1.4 Python Numeric Integration Revisited](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4-Python-Numeric-Integration-Revisited)", "section": "1.4 Python Numeric Integration Revisited" } }, "source": [ "# 1.4 Python Numeric Integration Revisited" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 2, "link": "[1.4.1 Sidenotes](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.1-Sidenotes)", "section": "1.4.1 Sidenotes" } }, "source": [ "## 1.4.1 Sidenotes" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[1.4.1.1 Code Academy Sidenote](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.1.1-Code-Academy-Sidenote)", "section": "1.4.1.1 Code Academy Sidenote" } }, "source": [ "### 1.4.1.1 Code Academy Sidenote\n", "\n", "* https://www.codecademy.com/learn/learn-python" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[1.4.1.2 Markdown/Latex Sidenote](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.1.2-Markdown/Latex-Sidenote)", "section": "1.4.1.2 Markdown/Latex Sidenote" } }, "source": [ "### 1.4.1.2 Markdown/Latex Sidenote" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[1.4.1.2 Markdown/Latex Sidenote](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.1.2-Markdown/Latex-Sidenote)", "section": "1.4.1.2 Markdown/Latex Sidenote" } }, "source": [ "Jupyter-notebooks are very convenient because they include these markdown blocks to include discussion of the material.\n", "\n", "Programs like Microsoft Word are examples of a \"What you see is what you get\" editor. In Markdown, you use characters and symbols to format your text, and then actually compile them.\n", "\n", "For instance, I've been making liberal use of the header feature using the '#' pound/hashtag symbol. **Double click on this cell to see how I'm creating the text below.**" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 1, "link": "[1.4 First Header](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4-First-Header)", "section": "1.4 First Header" } }, "source": [ "# 1.4 First Header" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 2, "link": "[1.4.1 Second Header](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.1-Second-Header)", "section": "1.4.1 Second Header" } }, "source": [ "## 1.4.1 Second Header" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[1.4.1.1 Tertiary Header](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.1.1-Tertiary-Header)", "section": "1.4.1.1 Tertiary Header" } }, "source": [ "### 1.4.1.1 Tertiary Header" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 4, "link": "[1.4.1.1.1 Etc](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.1.1.1-Etc)", "section": "1.4.1.1.1 Etc" } }, "source": [ "#### 1.4.1.1.1 Etc\n", "\n", "* Bullet Point\n", "* Bullet Point 2\n", "* Etc.\n", "\n", "**Bolded Text**\n", "\n", "_Italicized Text_\n", "\n", "Those are a couple examples of some basic formatting. You can see more examples throughout this tutorial. The sidenote above has an example of a link, while there are examples of a chart, and a photo below. Take a look and see if you can reproduce it on your own!\n", "\n", "For further reference: [Github's Markdown Guide](https://guides.github.com/features/mastering-markdown/)" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[1.4.1.2 Latex Side Note](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.1.2-Latex-Side-Note)", "section": "1.4.1.2 Latex Side Note" } }, "source": [ "### 1.4.1.2 Latex Side Note" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[1.4.1.2 Latex Side Note](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.1.2-Latex-Side-Note)", "section": "1.4.1.2 Latex Side Note" } }, "source": [ "A big included feature in Jupyter-notebook markdown blocks is that you have the ability to include LaTeX formatted text as well. \n", "\n", "LaTeX (pronounced \"La-tech\") is similar to a markdown language in and of itself (it is not What-You-See-Is-What-You-Get). It is considerably more feature-full than markdown, but also has a bigger learning curve. I recommend that you use it just for math, as Markdown can't provide Math formatting.\n", "\n", "* Start latex formatting with '\\$\\$' and end it with another '\\$\\$'\n", "$$ math goes here $$\n", "\n", "* All alphabetic characters are included in a LateX math statement is intended to be a variable, and is italicized. Basic math is very intuitive due to this.\n", "\n", "$$ y = mx + b $$\n", "\n", "* As soon as you get to fractions, you have to learn some LaTeX commands. Here we'll use the '\\frac{}{}' command\n", "\n", "$$ \\frac{3}{5} $$\n", "\n", "* I prefer creating equations in LaTeX to word in large part due to symbols. Most greek letters can be added with the '\\letter' command. For instance '\\lambda'\n", "\n", "$$ \\lambda \\leq \\pi + \\Pi $$\n", "\n", "* Most common functions are included as operators in LaTeX:\n", "\n", "$$ \\log_b(a) = \\frac{\\log(a)}{\\log(a)} $$\n", "\n", "Just that should be enough to cover most of the math you'll need in this course. Don't feel like you _have_ to use LaTeX. It is also acceptable to do your work out (neatly) on paper and include a photo." ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 2, "link": "[1.4.2 Hare and Lynx Example](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.2-Hare-and-Lynx-Example)", "section": "1.4.2 Hare and Lynx Example" } }, "source": [ "## 1.4.2 Hare and Lynx Example" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[1.4.2.1 Adapted from [Dr. Kantor's Notes](https://github.com/jckantor/CBE30338/blob/master/notebooks/HareLynx/Hare%20and%20Lynx%20Population%20Dynamics.ipynb) ](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.2.1-Adapted-from-[Dr.-Kantor's-Notes](https://github.com/jckantor/CBE30338/blob/master/notebooks/HareLynx/Hare%20and%20Lynx%20Population%20Dynamics.ipynb))", "section": "1.4.2.1 Adapted from [Dr. Kantor's Notes](https://github.com/jckantor/CBE30338/blob/master/notebooks/HareLynx/Hare%20and%20Lynx%20Population%20Dynamics.ipynb) " } }, "source": [ "### 1.4.2.1 Adapted from [Dr. Kantor's Notes](https://github.com/jckantor/CBE30338/blob/master/notebooks/HareLynx/Hare%20and%20Lynx%20Population%20Dynamics.ipynb) " ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[1.4.2.2 Introduction](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.2.2-Introduction)", "section": "1.4.2.2 Introduction" } }, "source": [ "### 1.4.2.2 Introduction\n", "We'd like to model the number of Hares and Lynx in a certain population of animals. \n", "![](http://boredomtherapy.com/wp-content/uploads/2015/12/14-canadian-lynx-paws-cute.jpg)\n", "![](http://www.cbc.ca/kidscbc2/content/contests/cute_snowshoe1.jpg)\n", "\n", "As cute as that Lynx is, it will prey on the Hare to the exclusion of all other animals if possible. This means the population levels of the Lynx and Hare are intrinsically related, see the pelt trading data for the Hudson's Bay Company:\n", "\n", "![](MainLynx.jpg)" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[1.4.2.3 Modeling](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.2.3-Modeling)", "section": "1.4.2.3 Modeling" } }, "source": [ "### 1.4.2.3 Modeling\n", "\n", "We can start with the basic equation of: change = in - out\n", "\n", "$$\n", "\\frac{dH}{dt} = (Hare Birth Rate) - (Hare Death Rate) \\\\\n", "\\frac{dL}{dt} = (Lynx Birth Rate) - (Lynx Death Rate)\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 4, "link": "[1.4.2.3.1 Relevant Parameters](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.2.3.1-Relevant-Parameters)", "section": "1.4.2.3.1 Relevant Parameters" } }, "source": [ "#### 1.4.2.3.1 Relevant Parameters\n", "\n", "| Parameter | Symbol | Value |\n", "| - | :----: | :---: |\n", "| Lynx/Hare Predation Rate | $a$ | 3.2 |\n", "| Lynx/Hare Conversion | $b$ | 0.6 |\n", "| Lynx/Hare Michaelis Constant| $c$ | 50 |\n", "| Lynx Death Rate | $d$ | 0.56 |\n", "| Hare Carrying Capacity| $k$ | 125 |\n", "| Hare Reproduction Rate | $r$ | 1.6 |" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 4, "link": "[1.4.2.3.2 Model Equations](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.2.3.2-Model-Equations)", "section": "1.4.2.3.2 Model Equations" } }, "source": [ "#### 1.4.2.3.2 Model Equations\n", "These parameters can be used to form a model:\n", "\n", "$$\n", "\\frac{dH}{dt} = rH(1 - \\frac{H}{k}) - \\frac{aHL}{c + H} \\\\\n", "\\frac{dL}{dt} = a \\frac{bHL}{c + H} - d*L\n", "$$\n", "\n", "The focus of this tutorial is not on the development of these model equations, but do review the equations and try to make sense of them. It can help you in debugging steps later should you have an error." ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[1.4.2.4 Programming and Plotting](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.2.4-Programming-and-Plotting)", "section": "1.4.2.4 Programming and Plotting" } }, "source": [ "### 1.4.2.4 Programming and Plotting" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 4, "link": "[1.4.2.4.1 Step 1: Initialization](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.2.4.1-Step-1:-Initialization)", "section": "1.4.2.4.1 Step 1: Initialization" } }, "source": [ "#### 1.4.2.4.1 Step 1: Initialization" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "nbpages": { "level": 4, "link": "[1.4.2.4.1 Step 1: Initialization](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.2.4.1-Step-1:-Initialization)", "section": "1.4.2.4.1 Step 1: Initialization" } }, "outputs": [], "source": [ "%matplotlib inline\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from scipy.integrate import solve_ivp" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 4, "link": "[1.4.2.4.2 Step 2: Default Parameter Values](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.2.4.2-Step-2:-Default-Parameter-Values)", "section": "1.4.2.4.2 Step 2: Default Parameter Values" } }, "source": [ "#### 1.4.2.4.2 Step 2: Default Parameter Values" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "nbpages": { "level": 4, "link": "[1.4.2.4.2 Step 2: Default Parameter Values](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.2.4.2-Step-2:-Default-Parameter-Values)", "section": "1.4.2.4.2 Step 2: Default Parameter Values" } }, "outputs": [], "source": [ "a = 3.2\n", "b = 0.6\n", "c = 50\n", "d = 0.56\n", "k = 125\n", "r = 1.6" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 4, "link": "[1.4.2.4.3 Step 3: Define the differential equations](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.2.4.3-Step-3:-Define-the-differential-equations)", "section": "1.4.2.4.3 Step 3: Define the differential equations" } }, "source": [ "#### 1.4.2.4.3 Step 3: Define the differential equations" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "nbpages": { "level": 4, "link": "[1.4.2.4.3 Step 3: Define the differential equations](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.2.4.3-Step-3:-Define-the-differential-equations)", "section": "1.4.2.4.3 Step 3: Define the differential equations" } }, "outputs": [], "source": [ "def deriv(t, y):\n", " H, L = y\n", " dHdt = r*H*(1-H/k) - a*H*L/(c+H)\n", " dLdt = b*a*H*L/(c+H) - d*L\n", " return [dHdt, dLdt]" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 4, "link": "[1.4.2.4.4 Step 4: Integrate Differential Equations](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.2.4.4-Step-4:-Integrate-Differential-Equations)", "section": "1.4.2.4.4 Step 4: Integrate Differential Equations" } }, "source": [ "#### 1.4.2.4.4 Step 4: Integrate Differential Equations" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "nbpages": { "level": 4, "link": "[1.4.2.4.4 Step 4: Integrate Differential Equations](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.2.4.4-Step-4:-Integrate-Differential-Equations)", "section": "1.4.2.4.4 Step 4: Integrate Differential Equations" } }, "outputs": [], "source": [ "t = np.linspace(0, 70, 500) # time grid\n", "IC = [20, 20] # initial conditions for H and L\n", "soln = solve_ivp(deriv, (t[0], t[-1]), IC, t_eval=t) # compute solution\n", "H, L = soln.y # unpack solution " ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 4, "link": "[1.4.2.4.5 Step 5: Plot ](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.2.4.5-Step-5:-Plot)", "section": "1.4.2.4.5 Step 5: Plot " } }, "source": [ "#### 1.4.2.4.5 Step 5: Plot " ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "nbpages": { "level": 4, "link": "[1.4.2.4.5 Step 5: Plot ](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.2.4.5-Step-5:-Plot)", "section": "1.4.2.4.5 Step 5: Plot " } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEWCAYAAAB2X2wCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi40LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcv7US4rQAAIABJREFUeJzsvXmUY1d97/vZmqeaq7q7uqsnzxM2g4EQMziEwMtkE4YbSMLghEdesuCScFcCyV031yQ3hOQyhJAbAhiwk7wXQrghCWGeDDZcPOHZbXe3u9vd1V2jqjTP0n5/7HMkVUlHZx+VpFJ1n+9ataqkcyT9SlX6nu/+7t8gpJS4cOHChYudD892B+DChQsXLnoDl9BduHDh4jyBS+guXLhwcZ7AJXQXLly4OE/gEroLFy5cnCdwCd2FCxcuzhO4hO7igocQwieEkEKIQ10+/i1CiK/2NqqdBSGEVwiREUIc2O5YLmS4hD5EEEKcEkK8YtN9bxVC3N3n1/1JIcQPjZ+lEOKSfr6eTSz/IIQoGeSwJoT4hhDisu2KZzOEEJcIITYUb0gp75BS/mwfXusVQoia8V5khBDzQoh/EkI8r9evtVVIKatSypiU8vR2x3IhwyX08xhCCJ/mqT8HfKWfsTjE+6WUMWA/sAZ8Zpvj2U6cNt6LEeBFwHHgB0KIG7c1KhdDCZfQdxiEEO8VQjwthEgLIZ4QQvxS07G3CiF+IIT4iBBiDbjVuP/XhRBHhBDrQoivCyEObnrajoQuhAgJIRJCiCub7psVQuSEEFOGkjwlhPh9IcSKEOKcEOLNxnlBIcSjQojfMm77hBD3CCH+0O53lVJmgX8ErmmK46+EEAtCiLNCiA8LIQLGMTOGPxJCxIUQJ4UQb2iK924hxFubbr9NCHGnxe97kxDiIeM9Pi2E+G9Nh79vnGOq5udvfi4hxIuFEPcLIZJCiHuFEC/cFMf7hBA/NJ7/a0KISY33Qkopz0gp/ytwO/AB4/k+IYT4803xf1UI8Q7j53khxLuNv0FSCPGPQoigcWxKCPEV42+2LoT4khBi36ZY/1gI8SMhRFYI8a/GY/5RCJEy/o4HjHM32FZCiIjxf3jaeN3vG/8LESHE/2f8jRLG+zNt9/u70INL6DsPTwMvAcaA9wH/IISYbTr+QuAEsAv4UyHEq4E/BF4DzAB3oUgSUMQM7AYetHpBKWUB+Dzwa013/wrwdSll3Lg9B4SBvcD/A3xcCDEqpSwaj3u/YZ38V6ACbCChdhBCjBivY8b2R8D1wLXAc4AbgD9oesgcSsnuBX4D+Izozj7KGDGPAb8IvEsI8QvGsZcCGPZCTEp536aYp4EvAx8CpoC/Ar4ihJhoOu1XgLeg3vco8G6H8f0L8HwhRAi4A/gVIYTHeP3dwMuAzzWd/5+AnwEuAp4HvMm43wN8CjgAHATKwEc3vdYbjHjngCuAHwKfBCZR/4v/jfb4COrv9ELj3D8EasAtQMR4vingt4GCw9/fhRWklO7XkHwBp1Bkkmj6ygF3d3jMQ8DNxs9vRS3Rm49/FfiNptse4zkPGrd/A/h003EJXNLmdW4ATgKi6XVfY/z8CiNub9P5a8D1TbffAxwx7r+ow+/zD6gPeAJYAP4VOGwcewZ4ZdO5Pw8cb4qhBESajv8L8AfGz3cDb2069jbgTuNnn/F7H7KI6a+B/2n8fIn62Gw43vxctwA/3HT8PuDXmuJ4b9Ox/wz8h8XrvgI41eb+a4x4dxu3jwI/Zfz8O8C/N507D7yh6faHgb+2eL3rgZWm23cD72m6/VHgS023fwm4f/N7CHiBInB1m9d4u/G8z9ruz9v5+OUq9OHDq6WU4+YXSsHUIYR4s2EHJIQQCdSHu3nJembT8x0EPtp0/hogAHNpreWfSyl/gFLWLxZCXINSdV9uOmVVSlltup0DYk23bwcuRhHCCZuX+4Dx+89KKV8tpTxp3D+LInUTzzT9HgBxKWVu0/G9Nq/VAiHEi4QQdxpWRBJF2Lq2wN5NMbaLc7Hp583vkw72odRu0rj9dzRWT78G/P2m89u+nhAiKoS4zbBFUsB3aP09l5p+zre53S723UAApeA343bgW8DnDdvsA0J/r8eFDVxC30EQyvv+FPAOYMog/MdQBG1ic/vMM8BvNl8kpJRhKeUPhRB+1PL8m5ohmMTxJuDzUtkpuvg4Sm3/ghDiJxw8rhkLqAuUiQPA2abbU0KI8Kbj54yfs6ilvok9HV7nc8D/BvZLKceA22i8x3btSc9tirFdnFvFLwH3SWWFgSLw1wghnoNx0dR8nt8HDgMvkFKOAi/vUXxLqNXSxZsPSClLUspbpZRXAi9G/S6/2qPXveDhEvrOQhRFKCsAQohbMDYMO+BvgT8QQlxtPGZMCPF649hLgEeklKlNjwkYG5Dml9e4/++B16E81b/TDbopzluA3wX+XggR1X18E/4R+CMhxLQQYgbl3/5D03EPcKsQIiBUFsjPAl8wjj0EvFYIETa8/F/v8DojwJqUsmBcfN7QdGwZkEKIiywe+x/A1UKIXzY2Cn8FZdNsKYtIKMwJId6Hstbqm8pSymdQv98dwD83Eb0dRlCKfV0IMYXao9gyjJXa7cBfCiH2CJWjfoMQwi+EeLkQ4hrD80+hfPtqp+dzoQ+X0HcQpJRPoDbb/g9KBT0L+IHNY76I2oD8nLGsfgxFdGBttzyOWk6bX7cYz3UKeBQoSSl/qBOzkfXwIeDNUsqslPLvgIeBD+o8fhPeZzz2UeAR4B7gz5qOz6OU+AKK3N4mpTxmHPsg6mK4jEqDbL4QbMZvAX8mhEijiPPz5gEpZdp4zXsMG+v65gdKKVeAm1B7BnHUBewXpJRrXfy+AAeEEBnUHsU9wFXAS6WU39l03h2o/4fNdksnfBi18RtHbXb2sjjqd1F7Jg+gbL73o1Y5e1F7GynU/9m3aNqkd7E1mBtcLi5ACCGeAF5nXCh0H/N3wAkp5a19C6wLCFWQdZuU8tB2x7IdEEK8HPg0asPZ/VBfoHA3Iy5QCJW//XcOyfwi4GaUEnQxJDD+lu8CPuWS+YUN13K5QGFsTn1A93whxJ+h7I73S7e8e2gghHgWsI7K9f6rbQ7HxTbDtVxcuHDh4jyBq9BduHDh4jzBQD306elpeejQoUG+pAsXLlzseDzwwAOrUsoZu/MGSuiHDh3i/vvvH+RLunDhwsWOhxBic/VxW7iWiwsXLlycJ3AJ3YULFy7OE7iE7sKFCxfnCba9sKhcLjM/P0+hcP63RA6FQszNzeH3+7c7FBcuXJyH2HZCn5+fZ2RkhEOHDiGEsH/ADoWUkng8zvz8PIcPH97ucFy4cHEeYtstl0KhwNTU1HlN5gBCCKampi6IlYgLFy62B9tO6MB5T+YmLpTf04ULF9uDoSB0Fy5cuBgUcqUKt911ggee6baj8fDCJXQgFts4Rev222/nHe94xzZF48KFi37ig18/yv/48hF+6x9+TKF8fs3WcAm9B6hUKtsdggsXA0cyV97uEByjVKnxz/efYTziZzld5BtPLNk/aAfBJXQbfOlLX+KFL3whz3nOc3jFK17B0pL6B7j11lt5+9vfzitf+Ure/OY3U61W+b3f+z2e//znc+211/KJT3ximyN34aJ/+NvvPc2z/+QbfPruk/YnDxGeXEyRLlZ4301XEwv6uOdEfLtD6im2PW2xGe/70uM8cW7zeMut4aq9o/z3X7y64zn5fJ5nP/vZ9dtra2vcdNNNALz4xS/mRz/6EUIIbrvtNv7iL/6CD33oQwA88MAD3H333YTDYT75yU8yNjbGfffdR7FY5IYbbuCVr3ylm6Lo4rxDrlThw988ipTw0W8d5dd+4gBBn9f+gUOAHz+zDsDzD01y/aEJ7jl5fvnoQ0Xo24VwOMxDDz1Uv3377bfXm4jNz8/zy7/8yywsLFAqlTYQ9E033UQ4rIbMf+Mb3+CRRx7hC19QM4mTySTHjh1zCd2FJcrVGt8/usL1BycZi+ycYrN7TqxRqtT4v19ymE/ddZK7jq7yiqt2b3dYWnjkbJKZkSCzYyGevX+c7x1doVCuEvLvjAuSHYaK0O2U9Hbgne98J+9+97u56aabuPPOO7n11lvrx6LRxuB6KSUf+9jHeNWrXrUNUbrYifjk90/wP7/+FFfvHeU/3vniHZPW+oPjqwR9Ht7x8kv57A9O8ePT6zuG0E+sZLl0VwwhBJfuGkFKeHolw9V7x7Y7tJ7A9dBtkEwm2bdvHwB33HGH5XmvetWr+PjHP065rDaKjh49SjabHUiMLnYeajXJZwz/+fFzKe43rICdgCOLKa7YM8JY2M/le0Z49Gxyu0PSxql4lsPTSohdultltx1fzmxnSD2FS+g2uPXWW3n961/PS17yEqanpy3Pe9vb3sZVV13Fc5/7XK655hp+8zd/081+cWGJ4ysZ4tkSf3zz1Xg9gu8fXdnukLTx1GKGy3aPAHDt3BiPzCfZCaMs17MlErlyndAPTUXxegTHls4fQteyXIQQvwu8DZDAo8AtwCzwOdRw2h8Db5JSlvoUZ1+RyWz8g771rW/lrW99KwA333wzN998c8tjmq0XAI/Hw/vf/37e//739ytMF+cR7julNuNedtkMl+8e4cHTiW2OSA9r2RKrmWKd0C/ZNUIyf4a1bImpWHCbo+uMU3G1Yj40pQg94PMwOxZifj23nWH1FLYKXQixD/jPwPVSymsAL/AG4M+Bj0gpL0VNHf+NfgbqwsX5hMfOJpmI+DkwGeE5B8Z5+ExiR6jcEytK/FyyS9kVh6cjQIMshxnnEqqP0r6JcP2+uYkw8+v57Qqp59C1XHxAWAjhAyLAAvBy4AvG8TuAV/c+PBcuzk88vZLl4hm1OXfF7CjpYoXF1PA3bjubUOS3f1KRoql2T64Ov8pdSKrYZ8dC9fv2jUfqv9P5AFtCl1KeBT4InEYReRJ4AEhIKU2TeB7Y1+7xQoi3CyHuF0Lcv7Kyc3xCFy76iRMrWS6aUWR4keHpnlwZfpVrqtm944rQ5yYieAScWh3+2BeTBcJ+L2PhRorovokwi6kCpUptGyPrHXQslwngZuAwsBeIAj/b5tS260Up5SellNdLKa+fmbEdWu3CxXmPVKHMaqbIRTOmbaEI/cQOIMWziTyT0QCRgNp+Uz50eEeo3IVUgdmx0Ib00LmJMFI21PtOh47l8grgpJRyRUpZBv4F+Elg3LBgAOaAc32K0YWL8wrPGPbEoSnlP+8ZDRH2ezmxQxT6vvHwhvtmx0I7ghAXkwX2NNktoN57gKVUcTtC6jl0CP008BNCiIhQl7afBp4Avgu8zjjnLcC/9SdEFy7OL5wzyG/fuCJ0j0cYm3PD70MvJvMbPGiA2fEwC8nh9/8XkwV2j26MfdeoysxZTg9//DrQ8dDvQW1+/hiVsugBPgm8B3i3EOI4MAV8uo9x9hWb2+e62FlYz5b40y8/wbGl9HaHooUFw56YHW+Qy04hxdVMiZmRjemJe8dCLCQLQ52lI6VkNVNkOhbYcP/uEfU3WD5PFLpWHrqU8r8D/33T3SeAF/Q8IhcuHOI9//sRvvHEEt8+ssw33/0yvJ7hLqE/lywQ8HmYijbIZe9YiCfODXfFZaVaYz3Xmm++ZyxEqVIb6lz0TLFCsVJjelN84xE/Aa+HpQtFoV+ISKfTHD58uF7Gn0qlOHToEOVymRtvvJH3vOc9vOAFL+Cyyy7jrrvuAuDDH/4wv/7rvw7Ao48+yjXXXEMuN/xL6J2OVKHMd59aZioa4MRqlkfmh79A51wiz95Nm3N7x8OsZkoUK8M7cGEtV0JKmNmkck0LZphXGKsZVfO4mdCFEMyMBFm5kBT6wPDV98Lio719zj3Pgp/9gKOHjIyMcOONN/LlL3+ZV7/61Xzuc5/jta99LX6/SneqVCrce++9fOUrX+F973sf3/rWt/id3/kdbrzxRr74xS/yp3/6p3ziE58gEon09ndx0YIfHl+lXJV84LXX8va/v587n1rhOQcmtjusjmi3OWeS4mKywMGpaLuHbTviBiluVuGmBbOaGV5SNGObHmldQewaDboK/XzH2972Nj772c8C8NnPfpZbbrmlfuw1r3kNAM973vM4deoUoEr/b7/9dt70pjfxspe9jBtuuGHgMV+IePxcCq9H8JJLp7lyzygPnhl+hb6aKTIzspnQVebI4lCrXIMUNxG6edtUwcOI1bQZe6Dl2FQ0WL9Y7XQMl0J3qKT7iRtuuIFTp07xve99j2q1yjXXXFM/Fgyqf2Cv17uhAdexY8eIxWKcO+dmcA4KT5xLcfFMlJDfyxWzI/zg+Op2h2SLeLa0wT8HmDKIZi07vMTSUOgbY28Q+vAr9Jk2Hv9ExM9jZ3feOL12cBV6B7z5zW/mjW984wZ1boVkMsm73vUuvv/97xOPx+uDLlz0F0cWUlw1OwrA5btHWEoVSeSGlxSLlSrpQqVFKZoEvzrEhG6l0KNBH5GAl5X08BL6WlYR9kS0VaFPRgPG/sDwZunowiV0IJfLMTc3V//68Ic/DMCv/uqvsr6+zhvf+Ebb5/jd3/1dfvu3f5vLLruMT3/607z3ve9leXm536Ff0CiUq5xLFuoVl5ftUR0Ajw5xO1RTgU9GN5KiSTRrQ7z0X82UCHg9jIZaF/bTseBQK/REvsRI0Iff20p5E9EApUqNfHl4N6R1MVyWyzahVmvfx+Huu+/mda97HePj4/X77rzzzvrP09PTdQ/9M5/5TP3+/fv3c/z48b7E6qIBsxDnoFFxaTaKOrOW4wWHJ7ctrk6wsi38Xg9jYT/x7PCS4mqmyFQs0Hay0nQsMNyEnitbjvmbMO5fy5bqLQ12KnZ29H3EO9/5Tr761a/yla98ZbtDcWGB02uK0PdPKkLfOx5CCIa6HWo8a6bPtdmciwWGenPOJPR2mIoFObM2vGm6iVyJiUj72M3717Nl5oY7QcoWLqFb4GMf+9h2h+DCBs/EFYEcMAg96POyeyTEmSEuoY8bKnYq2ro5Nx0NDrVCj2dKLf65iWHfWEzky4xbKPRJw+5aH+K9F10MhYd+PmxG6OBC+T0HhbPreUL+jRWXw94TxVTgk22U7mR0Byj0NhcigPFIgERuiAk9V97QNrcZ4xGX0HuGUChEPB4/78lOSkk8HicUCtmf7EILK5kiu0c3VlzumxjuVq7xrNpYHAm2Lo6nYoG6JTNskFIqhT7S3rYYC/vJl6sUhnRjsZPlUlfoQ/reO8G2Wy5zc3PMz89zIQy/CIVCzM3NbXcY5w2WU8WWvOI9oyGWUkWklG0377Yb8Q4bi1PRAOu5EtWaHLp+NJlihVK1xqQFKZp2RjJfJuT3DjI0W9RqkmQHy2Us7EcIWBviFYYutp3Q/X4/hw8f3u4wXOxALKcLXG6kKpqYGQlSqtRI5SuWWQ3biXi21HFjUUq19LfyqrcLybwiOytSHA+r3ymRK7e0qN1upAsVahJLy8XrEYyF/eeFQt92y8WFi26xki6ya2Rzf2ujHeqQ9uaIZ0stOegmhrla1CR0K1I0U/+GsagrkVcxWVkuAJORgOuhu3CxXSiUq6QKlZbe3LuM28M6gSaeKTLdploRGl7uMOZzJ3MmoVt46Aahrw+hbWFu1lqtLsxjLqG7cLFNMMvMrQh9aBV6xtpyMW2WYcx0sVPoZqZIMj98sZtE3YnQJ6MB1rPDdzFyCpfQXexILBuEvmszodctl+FTuYVylXy5Wie/zTAV+lBbLpYeumm5DB8pNvx/a8tlwrVcXLjYPqwYCnyzQo8GvAR8nqHc4ErZqFzzfpOAhgl1UrSIPRLw4vcKEkMYe91ysYgdVD+XYbyQOoVL6C52JBoKfeOmqBCCiSH1Q+1sC7/XQyTgHUpCT+TL+DyCSKB9SqIQYmiLi8z/Bav3HWA05KNYqQ31xCgduITuYkdiJV3E6xF1m6IZE5FAvV3qMMGO0M1jqSEk9GS+bORrW+fHj4f9w5nlkiszEvLha9Np0cRISP1N0oWK5Tk7AS6hu9iRWE4VmYoG2hbgTEQCQ0ksOoQ+GvIPpUI3Cb0TxiP+oVTonYqKTIwYLYFdQnfhYhuwkimya9SiUVR0Z1ou5rFUYQhJsUP7WRNj4cBQeujJfJnRkB2hmwp9+OJ3ApfQXbTgtrtOcMtn72U5NZypf6AyQTq1Qx3GfGgthR72kcoPn0rUVejJIbyQpgvlugK3gqvQXZyXOLqU5n98+QjffWqFD33j6HaHY4lUwZpgTMulVhuuhm8moY+ep5aL2owevtjThUpdgVuhQejDF78TuITuYgO+/tgiQsBLL5vhK48tDO2ufypfsSTG8Yifmhw+tZXMlxkJ+jo23hodUsslkSvZErrZcXHY/mcUoXdW6KYlkxqy/xmncAndxQZ896llrp0b51decIB0ocJjZ1PbHVJbpArWvuiwDixI5ssd1TkoQk8XKlSHaHVRq0nSxUrHPG6AmNESOFscNkLX8dBdy8XFeYZKtcbj51I8/+AE1+0fA+Cxs8ltjqoVhXKVUqXGaLi96jK99bUhI/SUhm1hHs8MEbGkCxWk7GwVAcRCwxe7lJJMsVK/2FjBPO5aLi7OG5xczVKs1Lhq7yh7RkNMx4I8PJ/Y7rBaYFdxOT6knf+UQrdb+vvq5w4LzG6FdhejOikWhyf2XKlKTWJrufiMoi5Xobs4b/DEgrJXrto7ihCCK2dHOLaU2eaoWmF6zLaWy5AVF+lsLJoqeJh8dJ1eKNAgzWFS6CZB222KqnN8rkJ3cf7g+HIGj4CLpmMAHJqKciqeHbrxgHbZIsM6I1KH0Iexn4uZRjlqo3JNhZ4pDhOhq/fRTqGrc/yuQndx/uBUPMfcRISAT/1bHJqOki5Uhq5pkUkwVuQ4GlKZJDuR0OvZFkNE6JmiSYp2HvrwEbqZtRLTInTfRkKvlOC2n4H/9RNQHL6Vaju4hO6ijtPxLAenIvXbh6fVz6fiue0KqS0alkv7D2mjQdfwkGKxUqVQrtkr9Egby6VWg+9/EM4+0M8QLZGq2xY2xTnBNpki+QR8/i3w1Nf6Fl8nmBcXu9UFmAq96X0/+X2YvxdWjsDxb/YrxJ7CJXQXdZyK5zYQ+oHJKACn17LbFVJb6BTojEcCQ9VCV6dKFCw2Re/7FHznT+D2X1SqccDIaBJ6W4X+rVvhiX+Ff34LlAYvDBqWi72HPrpZoT/1ZfBHIDgKT321XyH2FC6huwAUgSTzZQ5MNgh977hqTbuQHK4WAKYd0Sm3eDTkG6qNxZTGRQggGvDhEWws/z/yJfW9nIX5+/oVoiVMkovapP6F/V48ArImoUsJx76pSLFSUGp3wDBjt0tbBEX6G/5nFh6Guevh4A2w8Ei/QuwpXEJ3AcC5RB6AvePh+n2RgI+xsJ+FxJAReqFC2O+te/3tYBbobEBuDR75Z6gNvvAlaW4s2hC6xyMYDTeV/1fLMH8/POv16vY2kGKmWCbk9+Dv0H4WlNUVCzap3LUTkJqHG98LCDj9o/4HuwlONkWVCDBir9Vg+UnYdTXMXA7x4+pvMeRwCd0FAAvJVkIHmB0LDZ1CT+bs87lbMhakhE/9FPzL2+Dhf+xzhK1oeLk6S/8mQl9+Aip5uPxnYfIiRe4DRqZo3wvFxEjI37BcFg1Ve9FPwe6r4cw2XIwKFYRQKx87jIR8lMwhF4ln1Ipo15Xqq1aG+NMDiHhrcAndBQDnDBW+d6yV0BdT+e0IyRKdyv5NtOQUrzwJ66fUz/d+sn/BWcCJUowFfQ3bYvWY+j59Oex5Fiwf6VeIlkgVKvUNTzvEgr5GHvrKUUDA9KUwcwXEj/UvSAukCqpK1NOhf46JDUMuzPd95nL1BbA6vM3qTLiE7gJQCt3nES0zOveMhYfQcrFP/xsJbWpDe/zb6vt1b4TFxwa+QZdx4OXGQr6Gyl07ob5PXgSTFyvlWB1sWmBGo7mViQ2xrz4F4wfAH4apSyBxBiqDHd6ddnAx2tDPJXla3Tl+UH0BJM/0I8SewiV0FwAsJArsHg21dALcNRJkLVeiUq1tU2St6NRp0cRoyE+pWqNQNvzyhYdgdA6uuhlkVd0eINKamSJgqFyTFONPw8heCERg6mKoNZHNgJAulLXyuEHFnq4T+lGYvkz9PHUJIGHtZH+CtIDqha5vF5mPIXEavAGI7YbwBARi6oI05NAidCHEuBDiC0KIJ4UQR4QQLxJCTAohvimEOGZ8n+h3sC76h+V0+wlAU7EAUjJUOd1qAo3DgQUrT8KuK2Dvc9XthYf7GWIL0kV9L3eD5bJ2QhE5KIUOED/RpyjbI1OsMBLUI8VYyEfGtLoSZ2DikPp56iL1PX689wF2gPL/9S5GUWMAdrZYVbGPzYHHA0LA2P7zSqF/FPialPIK4DrgCPBe4NtSykuBbxu3XexQrGaKTMfaEHpU3TdM1aI6lstos9qqVZUnOnMFxHZBYKRhZQwI6UKZWEDPy402K/TUOUUsABPG0j9xqj9BWiBTqGgr9BEz9mIaColG7GP71ffUuT5F2R46vdBNmGmZuVJFKfTxA42D4weU3TXksCV0IcQo8FLg0wBSypKUMgHcDNxhnHYH8Op+Bemi/1jNFFv8c2g0uopnBut9WkFKSUqjr/hGP/SMyoOevkypramLBp6x4IgUTR+6VoPMEozsUQeiu0B4IL3Yx0hbkS7Yt581Ud8UTZ5Vd5iEHpkGjw/SC32Ksj2UXaS3uogGlULPFCuQOqssOhNjc43faYiho9AvAlaAzwohHhRC3CaEiAK7pZQLAMb3Xe0eLIR4uxDifiHE/SsrKz0L3EXvUKnWiGdLbRX6dMwg9HYKfcCbc6A+bDVpn/43EmoqoU/OqztNhTt58TYodCdLfx+Fco1KZlWly8UMQvf6lKebGhwp1mqSTKmiVToPynLJlqpUTb/ZVOYej/o9Bk7ozhV6vliCzHLjQgrq5/zatlTqOoEOofuA5wIfl1I+B8jiwF6RUn5SSnm9lPL6mZmZLsN00U+s5UpICTOx1vaolgr9rg/BX1wEz/xwECHWYRZ+6GS5gKnQDWU1uk99n7xILakHeEHSGbJgwlTy+TUj7g3EMgvpwdkW2ZIabuFkUxSgtGbYE2P7GgdHZ4eAndBKAAAgAElEQVSa0CPG/kY1vaI2zpvf99hu9T2z1OsQewodQp8H5qWU9xi3v4Ai+CUhxCyA8X25PyG66DdW0oqs21ku45EAHrFJoWdW4Nt/DMUkfPtPBhUm0FxCr7spWlbLZ1BkCGr5LKsD/XA6ybaIGUv/4rqxsjDjBhjdO1CFbnr5+pki6n0vJwxbyCRCUAQ5wNiLlSqlak2rmAsam6LC/L/YrNBh5xO6lHIROCOEMLLr+WngCeDfgbcY970F+Le+ROii71jNKLJuZ7l4PYKJSGAjoZ+4U32/+KfhzD2QXx9AlApJjT4usKlIJHUOQmMQVH3eGd2rvg9wgy5d1PfQY0ZGSSVhkN82KnQn+fPqPBV7NbOi3nNv099pZO9A/X8nfVxATS0K+jx4cwZpx85PhQ7wTuD/FUI8AjwbeD/wAeBnhBDHgJ8xbrvYgeik0EGlLm6wXE7cqXJzX/JflNIdoO2i2+RqJOhDCMOiSZ1r2C3QIPQBEqOTAhdzc66aakPoo7NQSA6sMEq3da4J86Ils3G1EdqM0Vm1qisNpnunk9x/E7Ggj0DOMBtGmlYXJqEPeEPaKbR+UynlQ8D1bQ79dG/DcbEdWDXIup1CB5W6uCFtceFh2Pc8mL0OELD0OFzx8wOIVN9D93gEsYBPXQBSZxskDkopwkAVupNqS/M8kV6E8CT4mv4upv2SXmjkp/cRDcvFWS63yMUhMrXxoBl7agGmL+lZjFZw0jrXRCToJVhcVTea7aLoDCDOG4Xu4jzGSrpIJOC1bI86GQsQN2wZqmVV0r37amVhTB6GxUcHFquu5QJNE2hS5zYSemQSvMGBEXqlWiNfrtbtCDuYfwdPdmmjfw4bCX0AMEnRaezewhpENyn0Acfu1C4ClWEUKK6pHujNF1KvT5H6kCt0l9BdWBYVmZiOBuoqXrURLam2oqCIfenxAUSpYFoueiPF/OTyOcgub7RchFDL/wERulOVaxKQP7e00W6BJv9/sKToJOUSwF9cUxfOZgyY0J3aRaAuSOFyojV2UIo9M9y5Hy6hu7AsKjIxGQ2SKlQoVWqNjnNmB7rJi1UK4IB6jKcKZUaMmaF2GAn58GWNJXKzQgdjg25QKld/riU0CD1UWO6g0Ad7MdKNPRL0ApJAcb29hw4DX13oZrkARAJeIpVkq10EylPPuArdxZBjJV2sFxC1w5RxbD1XajQoMot0Jg6q4pdBqa58RfsDOhLyESkYcW0m9NG9jXTGPsMkdN3inGjQh6BGuBjfuDEHEBpVjaIGpNDrQ5Y1etCAuhjFyOOV5VbLJTgy0Ni73RSNVi0IPbYH0q6H7mLIsZYtMdXBcjGLi9ayJaXGAyMQGlcHzX4X64Ppc5HUKPs3MRr2EykYS+RmywUMy2VBDb7oM+oqV9OH9ns97Pbl8FBV5f6bEdutbKQBIOOgnzhA0OdhWqTVjbakuGtwsTtcXYAqLhqtJVtXF9CIvTY8nUc3wyX0CxxSShK5MhMRa7IxM0qS+bLqizJ+QPnQAOOH1PfEYFq6qsZc+moxWl4zbmxSuqP7oFpUY+n6DCfDLUzsCxpDRaxIcUBebtqwuHQhhGBvwEipbEeK0cHFnilWtEbnNSMW9DJGqr2HPrJHtS/OxXsYZW/hEvoFjnSxQqUmmYhYWy4bCL2lC91+QAysE10qbz+tyIRaPidAeBsrChMD9KK7UYp7/Rn1Q9SK0Aez9HfSssDErN/IM9/2i1FFe1VkYtRXIUwJaRU7DGyF0Q1cQr/Akcgq9TiuQeipOqHvbxz0BRU5Dshy0em0aCIa9DFeS6oPp2fTv3q9uKj/xNhNtsVuXwdSHLDKdXIhAtjls7kYDdBycfKeA0x7lF1UCbVR6Kb9NcSZLi6hX+BYz6n88k6Wi0mg+dQaFFMbFToMtFd0qqC/KRoN+pgSKWpWfigMJGuhnvrnQC3OeA1SbBv7btVrfADj3FIF/QHRJmY8ZuwWF6P8+kC6FmYKZceriwlSABT9beb11BX68HaNdQn9AodJ6J0UullGL8zRZ2P7N54wcXAgHnqlWiNTrNhWiZqIBb1MiRTlYCe11X+Fni6U8XoEIb/+x22m48ai0bV0AMSSKZS1WxaYmPakKeFXGS2bMUBS7MYuGpPqfc/6xloPRo333VXoLgD+4mtPcsMHvsP3jg7PFT5hjJbrpNA9HsFI0Ic3ZXT/a1HoB1UKYLW/Y+rq6X+am6LRoI9JUpRCbUgxEFHVgAP4cJpLfyH0MkUAJkSaHCHwh1oPDrBRlJP2syYmSZH0jDU2zpsxQB867WCoiInRmlLoWd9468HQmJoz6nroLh54Zo2/ufNpziby/OG/PGo9dHn5yYG2GG1YLtYKHWAs4iecM/K2Wwh9P8ha3/O6Uw4LRUzLpRCwGHcb2z0wUnSqFMdlinVG2x+sry6GVeWmSDDS/mD9YjSgC6nD2GO1BAApTxuFLoSxfzE8gmwzXEIfEL744FnCfi8ffP11nE3k+fHpROtJT/w7/M0L4WPPG9iE8fVcWVXC29gYY2E/ofyi6oHS0nTJ3GDsrx+dyus15jIx4qsyKvLkfB0IfQCboukufOjRWpI1aUWKg7GLqjVJrlR1HPuYTBGXVhejwdkW3WzoRisJqlKQJtL+hNiMq9AvdEgp+cbjS/zUFTO86urd+DyCbz+5tPkkNTTCF4JKHu7+yEBiS+RKjIX9tqX0oyE/kZJRubh5KW32G+lztWhSs3WuiZFqErDwQ2Fg6X/pLnzoWDXJSm2EWq1N4ZNJin0mlozDlgUmYtUE8Vob/xwGdjGSUtaLopwgVE6wzgjZksUKeoAZRt3AJfQB4PRajuV0kRsumWYk5OfauTF+/MymoRBLj0P8GPxffwZX/iI8+eWBVKSt58q2dgsoVRwrx1sLdKApBbDPCr2gN63IxIixfE562vihMLBmS92kz0UqilgKlTY9cvwh5ef2OfZ00SiIckiKkUqS5WoM2a4K1x9Wexd93hQtVmpUatKyg6gVgqUE63KEbNGiN1F0xs1yudDxgEHezzuolv7P2jfG4+dSG9XX8W+q71f8Alz+cyqdbqn/bWkTuRLjHTZETYyF/YxX19oTenhCbRb1uXuh2WlR13KJVgxCFxYKfWQ3lNJ9H7jQzeZcuJwgLkfrRUktGIBS7KYXCpUSoWqGNTlCvtyBFPscu9MOlyb8xXXWGCFbsnjfYwahD2n5v0voA8Aj80kiAS+X7lKe6DX7xsiVqpxYbSKS0/fA1CVqSXrgReq++fv6Htt6rqSl0EfDfiZloj2hC6Fsl0EpdE1PN1xSF9I1q83FAWWLOFbopRy+WoF1OULOSikOYHXRTYUredVKYY1Ra5U7iNi76IUO4CvEWZMj5EpWF6Ndqvy/0GYPbAjgEvoAcHw5wyW7YnWf+spZRTBHl4xcYynVbM79P6Fujx9QBSXzD/Q9tvVsWUuhTwRVKl05MtP+hAG0o03mVT53xJiKYwd/QfXciFsS+mAq/zJOS9BzamJO3FYpDoYUHW2KZo3Y5Si57Yy92B2hi/wa64yQs1oZDXlxkUvoA4BJ6CYOT0cBOGkq9PSCUjZ7n61uCwH7ngsLD/U9toSmQt/lVfm5+WCbnG4wFHp/CV21ztXP5xa5Vcp4WatYZSz0X6EXymryvCOFbjR/WpOj1kpxACo3VZ9W5CR2RejrcsTaLhpAuqjTHvQA1GqI3BppzxhZS4U+3MVFLqH3GelCmcVUYQOhR4M+9oyGeHrFKJFeeVJ9N4dGmD/Hj/d1cESpUiNbqnYsKjIxjcoYyfgsCH20/xPdVadFZ2oxwSiZTqQIff1wduXlZk1CHyFr6aHPqDYM5fxWQ7SEGbtuH3egfjGKY2NbFJJ9bV1Qf9+drIyKSZBVMt7xDhfS4W7Q5RJ6n3F8WZH2JTMb07gOT0c5sWIo9JWn1PeZKxsnTF+uRr2tn+pbbAmNsn8TkzX1QU1625TRg1LopQwUUj2LbzOc9EIHILtKyjNmTYqRKdWJsY8XonQ3Xq6p0DuR4gAuRl2pXONitN7pYjSA1gWZov6owjqM2PP+MWu7aIBFXd3AJfQ+o07ouzYS+qHpCPPrRt/o5SNqunvzhBdTrZsj3/qA9XrZv0baYlVtMK4LK0I329H2jxydtM4FILdK2jtuvfT3eI2Mi/4t/7vyoQ3bYq2jbdF/LzdTqOD1CMJ+vT0LAHJxJIIEsc6bojCQ972bC2nBP2Ede3hCiQBXoV+YOL6SIeD1cGByo487OxZmNVOiWKkqhT5zxcaCnenL1HdTvfcBOp0WTcTK6p991aoCcAADgFMF/cZcAGRXyPnGrZUi9L0/d7orHzqOFF5SRO035/pJikbZv5MeNORWqYXGqeK13tAdgMpNd2N1GYReDoxbK3SPZyBpl93CJfQ+4+nlDIeno/g2TU2ZHVNNlxYTeVg5Aruu2PjA8LhSMqvH+habE8slXIqzLmMkyhYf7gEQurJcnC2hc/5Ja9sC+r5B1xWxZFeN9gqiw+Zc/zN0Ul20nyUXr7eG2NaLUaGCzyMI+hxQnEHoxaDd/8zwFhe5hN5nnF7LcXCqNcti73gYgJWFM2qDaOaKlnOYvgxW+6nQDcslaq96A4UVVuRY3VdtwQDK/x1ZLuUClNKUgpPWtgUYk9z7SOjdFOfk4hCdxucRHbzc/mdbZLrotEh2FWFYh7aZIn20Lcw+Lk5XFwC10KT1+w5DXf7vEnofIaVkfj3P3EQroZsKPbdwRN0xfWnrE0xfBitH+zbIWLfTIoA3s8wqE/VUthYEY6qku0+dIgvlKsVKTX9T1PhwlkJTNpaLkf7Xp8q/TH2eqBMPPY6ITBEJeK29XF9A+bl9JMVuWueSi+OJTuP3Cuv33R+C4FhfLZdu+riQi4MvhC8UtX7fwZi65Cr0Cw6JXJlcqcq+iXDLsdkxdV85fkrdMXGo9QmmL1WpVH0aZJzIlQn6PIR0Nr0ySyS8E9YKHfqai97o46JJjMYHrhqasvlw7gZZrVc49hrm+xUNOttYJDJFNOjrrBT7bBepCldnnRbN2CMBn41t0d/GaOku2v6SWzPed7+NQjc89D4Jra3AJfQ+Yn5d5QjPtSH0cMDLRMSPZ/0UCE/rFCBQgyOgb6mL61m9oiKkhMwyad+UDaHP9i3LxWydq50TbaSgycgUpWqNUsVCgffZz80UKwR8HoI+B4SeXYXodGeFDgax9HFj0amHLmXjYhTwdra6+qxyu7KL6hcjr/3FqFpUdQBDBpfQ+wgzLXHfeCuhg1Lpoew8jM6Bt40SMlX7+sm+xLee0yv7p5iGSp6sf7KetdEWI7NDp9DNVFDrnGjT++/ThahQcVaYU6uqmZuRKWJBn3WmCPR/Q9cpKRaSqs9JdFpjddFfhZ4tdaHQjc3oSMCnujVaDaGp718Mn+3iEnofcTahFPr+Nh46wN7xEGOFs2omZzuY9/dpALNu2b+5AZQPzXRW6KOGQu+DH+2006LpoXsNBW7dE6W/2SKOJ/7k1wEJkWllW2yjl5t2OiDCyBIhMk0k6LNZXfR38k+mUCHWpV1k2mO5Tt0iYShz0S8sQq8U4b7b4IE7oNqBmHqE+fU8saDPMtVudizMTHXRmtADUfXP0y/LJVfSynAho9RrKThjr9Br5cYHu4eoD7fQ/ZBmV8DjJxBVvdC3q8glXSh31dyKyCTRYIdcblCEXsr0pf1vsVKlVKk5LOQyCV1ZLp0V+ozaHyoXthaoBbbioUcC6nHWnS4H09StGzj8jXc4/v2d8Mg/qZ9XnlTDJPoIleEStkyd2j8imSFBaWQ/ljp54lDfCD2RK2vloJtkV43MkF6z8dAB0uca5d09QsrhgGiycYjOEDUUpqWfG4yBP9q3D2cqX+6quEV56DYbi8256JOHuw+yDbqqtDQvRtEpIoFqfYXaFuaFNLvcOqO2B3DsoVfL6gJj7F0A9uX/Q5jpcuEo9DP3KjJ/yX+B590C9/wtxJ/u60vOr+cs/XOAg16jP0pwn/WT9InQpZQk8mWtKlGT7GRst/2mKPTFj051o9CjU3VC6pi6OLK7vgrpNRz70DlToaulv23KJfTlYtR1/jwY/r+NQu9jtWilWiNfrnZV9k9ksonQLS6mRtGXS+jbiR/9jcrbffG74cY/AI8P7v1UX1/y7Hq+bcqiidmaUr7xwKz1k0wcguRZpSB6iFShQrUmNT30JfD48UVVkU613ZxLUB469GVyUSrvIMUSFDFGZ+ojyLRy0fuAdKHSpW2hodBj/fNyu+onXr8YaXjofcwuMl/X0fi5ZrvI7n/G61OkPoSWy4VB6IUUPPVVeNbr1RJ7ZDdc+kp4/It9a0+bKVZIFyv1fPN2mC6rjJBzYo/1E40fVHnSyfmexuek7J/MMsR2M2JsSHbsc43oS6ZLquC00+IKRKbrhGSbQjc0HvpGYsmWKu1nc0Jf/f9UNwVR2VXwhSEQIRqwW130rw1tV7NQmwjdVqHD0BYXXRiE/vS3oVKAq3+pcd9Vr1bL7HMP9uUlF5Nqs2fPWNDynLHiOXIyyLmyxYR0aEpdPNW74GjutKjxgU0vQmxXXWlabox6/WoTtx+EnnfamEt56Hofzv6k/1Vrkmyp6txyCY6BL0A04EVKrGdzRqYB0RfbItOV5bJWTxONBn3ky1Xr1VwfWxd0NTpv08oIbP5nhrRB14VB6Ce+B4ERmHt+476LblTfT36/Ly+5lFKEvns0ZHlOODvPvJxmNVuyfqK+EXoXCt34gNimLvah/D+ZL+vnc5dyUM5CtLF87qzQd6sc6h4Pi+iKFA3vHyBSX/pbEEt96d/7i1F3HvpqvTFX1CBFy4uRLwih8f4Q+lY2dJsUum2GkZu2uE04+T04dMPG4p3YDOy6qm+Ebir0TpaLJ/EMC549xDMdCH10L3j8Pc9FTzhonUtmCWK76svvzhuj/Zkt6shyMb3c6AxBnwefp0NfEejb5qLTodaAUSWq1GvULtsC+rb0785Db3RajBi53La2S18sl24UutH6ITJZFwGW3SKh73n03UKb0IUQXiHEg0KI/zBuHxZC3COEOCaE+CchhIbU2wYkzsDaCTj8stZjh18Kp3/Ul1FYi4ZC32Ol0KWE9WdYC8yymunw+h4vjO/vvULPag63qFUVQW5Q6J1y0fvTz8VRp8VsY3NOCKG86G0g9K4zRSLKtjCX/rabi31R6N1M/FmtWy5a2UV92oyur4ycbugGx8Drb1LoNhvS5WxfagC2AicK/V3Akabbfw58REp5KbAO/EYvA+sZTAV+0Y2txw69BCp5mL+/5y+7lCowGvIRtppQn1+HUpp0aG9nQoe+pC4mciWE0Cilz66CrMGIruWyV5FSjy+SybyDeaLZhkIHRS6Zbci4SHe1sdiwXOoVi7atXPtjuTjuQWMU5gDb6kN35aFnV+pZQ0GfB4+AvG4NwBBBi9CFEHPAzwO3GbcF8HLgC8YpdwCv7keAW8b8fRAag11Xth47+JPq+5l7ev6yi8kCe8as/XPTQsnH9rPayXIBlemy3lvLZT2nCNLrsekXbeZnx3Y3WS421aLQU5UupVQ9UXSLinKNAhfAPp/b7OXe41z0tNNiqHpzq40K3T5DZ6Xnnf/SRYc9aCpFKKWbPHR1IbDduxgmD91434UQRAN2fXSGs7hIV6H/JfD7gNmkYwpISCnN33geaFsdI4R4uxDifiHE/Ssr/f3lv/zIAjf99d185JtHG6leCw/D7HUbx7uZiEwq9Xvuxz2PZSlV6LghSuI0AHJ0P6tpDYWeX+vpAOZ1h31cmi2X1ICLi3IllS2hbbmYMZtetF2Tq3q2SH88dG2FXkgYza0aKwvQSJ+r5FUDtR4i7bSfeNOmIjRywG3L/0tptYndQ5geurkxq4UmuwjUHkDHPjoDGDDSDWwJXQjxC8CylPKB5rvbnNpWIkgpPymlvF5Kef3MTG/LwZtxfDnNuz73IEeX0nz028f44oNGMc7S44rQrbD3uXC296mLi6mCtX8OdUL3TB4kXaxQsMoGgL406dK2MMzlfGwXIb+XgNdjn+UCPS0uSjptzJVdMfKhVTpozM5D9/rUh7nnlotDD71uFZkKXWdj0Syh761YyjjOnzde31Cu0fqmqIZt0eON0azRx8Vjt/psRm4joesr9B1G6MANwE1CiFPA51BWy18C40II8z91Duh9eaAD/NW3jxP2e7n7PS/nytlR/td3jyOXj6i+xbPPtn7gvudCar6nV9pKtcZKumhjuZyG4Bij4+qfKD7g1EWl0J0QuiKOkZBv4JaL49a5mWWl/oxVmW1fcejL8r/hoTsk9BaVux3+f5cK3VCujQ1dnc3oXl+MHMZeqxlj/xqCMxzwdvbQDXtm2DJdbAldSvkHUso5KeUh4A3Ad6SUvwp8F3idcdpbgH/rW5Q2SORKfO2xRV77vDmmY0Fu+clDPL2S5eyRH6kTOhH63ueq7z0sMFrNlKjJzjnoJE7D+AGmYqrwqKPtUh900TuFvp4t61ku6SU1Ws6v0i8VoXf4kIYnwBvsLaHXh1voKvTlhvpDw3IBRS497kHjeGMxZ6HQtXqi9PZipKYVOdxUhA2FRaCRKQI9V7nmPFFt5NfVxn/EgUL3BVQe/Q5U6FZ4D/BuIcRxlKf+6d6E5BzfO7pCqVrj5mfvBeAVV+3GI2Dl6L2qoGjyIusHz16nJgad7Z2PbqYsztop9PEDTMcUqXbMdAlPqJSqHir0RK6kWVS02Ng0RPnBHRW6ED0vLnLcCz2z0lCuGB/OTkoR+qLQHQ+3qJNiI9vC6xE2PdH7l3LpLEtk475FvUJXS6H3eHXhtHXuposRGB56p4sRGBvSw0XojtrnSinvBO40fj4BvKD3ITnHXcdWGY/4uXZO9b6ejAa4bv84kfijsPda8HS4bgVjMHUpLDzUs3jMoiJLhS6lIvTDL2MqqhR6R8tFCJg40DMPvVSpkS1V9cv+NxC6jUKHno+iq/dC126duwxz19dvRu0aRUEjn1vK9hvoXWArfVxAZVtE7Ea5RSaVIOmxUkwXHOT9Q8u+hd/rIeDzdFbofZr8o/z/LpqKbfLQz6zZbNZGh6+fy46vFJVSctexFW64ZHpDCt4LD41yoHSCyu5r7Z9k9lpYeKRnMS0mVQm5pYeeX1eDCcYPMGko9PVOhA49zUWvN+aK6lguCw1fHEXoqU4KHQxC792WiqOKy1pV+aFNCj0W9HaeKwpKLdbKxsSg3qCr1rnBUVUWb4ZlN8rN4zXyuXuncqWUzictmRWuTRdD2wZdXr9affZYoTuPfePKCDQ8dOjrUPRuseMJ/amlNEupIi+7dGMGzY0TCcKixDPBy+yfZM+1ioDMjZ0tYjFVxO8VTFpZGqbSHj9ANOAl4POwZkfo4weVqu/BeLeEoXjH7SwMKdsodL+9Qh/dqyyXHuVGmx66Fjnm4soPbfLQG0UuNj3Roafk0pXKbVKJYGzo2hFLj8vQs6UqNdlND5qNsWvvXfTaQ9/ihi4YFyO7973H/+e9wI4n9HtOqB4MP3nJ1Ib7r5AnAHi0esj+SWYNFb/wcE9iWkoV2DUSsk6bMlIWGT+AEIKpaKCz5QJKoVcKPSEcczVguymaX4dqqUWh21sue1RudCG51VABZbnEgj58Xo1/13refOPDGdPaoOsHoTvdWFzdsDEHihQ7+tDQ8/L/emGOY0LfKKqidjNRwVhd9Na2SBcrznqhm4QenqzfFbFbGQGM7lNZdGYfmCHAjif0J86lmIj4WyYDjSUeJ0eQe9MT9k+yxyD0xd7YLrZVousNhQ7K87dV6GbqYg98dLN17ridh55uVImaGAn5Ow+5gJ6nLqYKDjot1jfnmhS6VqOo3m8uphx7ufHuFHqP2/921bIg00roEbuZqGDYFr2z52o1ZRc56p2fW1Vk7m38raIBL+Wq7GzT1WsuznYZbe+x4wn9ycUUV86OtsztFAsPczpwCY8valShRSZhbH/PfPQlnaKi4BiEG5u4WgodeuKj1zst2nnoJiE3KXSTWDtu1I2qbKNeFRcl8w46LWY2FrgAmi10jfN7uJmrFLrToRwbV5rRgIZSHNun/lY9GnxuVlpqX4yk3NALxYRtQRcolZta6ImVCCp2KXGeXbTpQho22/92upiOGsXxfZjQ1S12NKFXa5KnltJcOTu68UCtCouPkBy/mqcWU53VpIk91/ZEoUspWdQp+28ajKsUuk35/9h+9b0Huejawy1MctuU5QKa/Vx6Reg5J425NqbPQaMEvOPyPziqhkX3aFVRqdbIORluYfZxaVG5GrbF6D61b9CjXjRpp90KC0m1obw59oBG6t/YnHpsrjf7V/XZs10MQ2lGVKcGwBQuPVxhbBU7mtBPrmYplGuthB4/DuUczF5HoVzjmbhGi8vZa9XQ6GJmSzGlixVypapWDrqJyWiANbsGXf6Q6jXeI4Ue8HkI283nrCv0jZuiYNdxcR8gejY2L5kv29tDJjLL4A2ohmwGzDL0jgpdCKV0exRzpq5ynfZx2agUY0GbtEVoKMVkb5b+jcEc3XW3NBEN+DRiN0ixR+97dz3oW1dGEa1eNLtBeF2F3iscWVDNqq7YM7LxwDmVUz55yQuM8zQaF81eB0hYemxLMS2ZOehWhG7moDcR+lQ0QLZU7dzPBVRPlx546IlcmfGwv8WmakFmSVXD+Rv7E1otdH0BdRFIntlyrOC0de6K8s+bfjet3tyg1GKPiKXrPi6RzR66zaBoUBciUC0segDHvdDbFOaAsaFrmylixt6bi1G9qli3ZgHqA8WbUVfonVZHHq8idZfQe4MjCyl8HsGluzfN5Fx4GHxh9l92HULAsWUNQjc3Rrfoo9sOtsitqcb4GxS6yjs2x8JZoke56NqdFjfloAN6LXRBWURmNs8WkciXHFSJLrd4uVppi9BTQnesFLOtxS1gps91GBQNPfdyM0499DY2Fxiborqri28AAPkAACAASURBVB7F7vh9r1Y2zEI1EdaZRQtG6qK7KdoTHFlIcfFMrLVXxsJDsOcaQsEge8fCnFrVsFxG96pl1+LWUhfrw6GtCD2xMcMFlOUCdB5FByoXPXVuy8MjEjlNCyO92MjPNqCl0EH9fj0g9GKlSqFc02tTAC19XKCh0DsOuQB1Ecou92Q4R70XumNS3KTQgz6khEK5w6ZhaExVaPbIcjHbI2u3n60r9I3vezTgo1ipUal2iD06rXr/9OpC6rRNRH4NkG3tItAQAaN7XYXeKxxZSHPl7Ca7pVZTKttoyHV4OspJHUIXQqn0LSp0czj0rtFg+xNMkjNb4gJTRrWoXuqiVGP1tgB9hb7YRqFrbIqCGpuXOqs2qLeApNNNruxqi0IP+dUEGq28YuiJ4ko79aHr+fN7NtyttTknhJEt0jtSHAn67IefmNjUJdKEVoMuIXpKiqn6hXSLK6Ogxhg6aBQXDQl2LKGvZ0sspgqtG6JrJ1TTfKMHuknoHZesJmavheUjULEh1g5YSBaYjAYIWW04mgrdzFqhUeBjT+hmX/RTXccHKstlIuq8ShQaH5SOQy5A/X61ypbTAJM5B4qrVmt46E0wJ9DYbtCNzRkvunVidNw6N72oerK05KFrZOiAsaHbG4XuKE0U1Hu+KY8bNIdcg3Ex6pWH3qX/32bvAmyai4Ei9FK6p8NntoIdS+hHFtUb2ELoZpOtvUqhH5qOkipU7MkSlEKvlWHlya7jWkza5KCvnVT9K4wcdFCbomDToAuactG73xiVUup1Wsytqfdik0IP+jz4vULPcoEtb4w6Gm5hZorEdrUcsh0UDT0mdIc+dGZJLfs9G4WAVoYO9JQUHWUVgVpdbLIsoJEpYv++9+5ilCo4XF20acwFTd0itTd1h8N22bmEbmSutCV0bxBmrgDgoukoAKe0UheNyUZbyEdfTNlUia49DZMXb7jLnO1p26Artkf9blvYGM2WqlRq0r6PS5uURVBq17aFLjRWIFu0h5K6fWegZfRcM1TVouaHswfkYipFfctlaUNFrgmtUW6gLkaZ5S2tLk04yiqCRmOuTYjpTC0CpXLT53pSXJTKO6wSTW8c4GJCeyO9XkQ3HBujO5jQU0zHgsyMbPKqzz0Eu69WndxQCh3g5KpGxejkxaq4ZAs+um3Z/9pJmNpI6B6PYCLit1foHo+x2di9Qtfu41Iv+9/Tckirn8u4QejJrW2MJpxYLk3j8jZDq2rRH1LE1IN0y2S+TMRovKaFzFLLxROaJv9oXYxkT4pcnBN6a5UoNMeusbqoVXrSpMtxu4XMohJJ4Y0tQgLGStT2fe/DhK6tYEcTeuuGaFVNHtr3vPpdcxNhvB7ByVWNgiGPB/Zc07VCL1aqxLMlZq0sl3JBLefbDNzQqhYF5aNvQaGb1tOkbdm/QQxtSMZ2DB1AIKp81R4pdC2Cqa8q9rYciti1cjXRo9TFRL6st6owkV6ysIo0BkVAU4HO1pViwkllLhiZRa2EHq2PoRtcLnrKqf+fNlZGbWoyIgGNxmg9roreKnYkoZerNY4tZVrtltWjqs94E6H7vR4OTEY4paPQwWgB8GhXy7/llCJky6Ki9ZOAbLFcQLNBF8DEYaXyu2zZGTcuGmZmjSWSZwHRIIomjAQ1WuiCUuk98tC1PqTmh2p0tuVQTGfIBShC7wGxJHJlxnRTLWtVQ+W2Xjyjugrd9P+3SCxSSlL5MmO6HnrZ6KrZbnUR1NwUHeuh1VWoOKsSzbSm5prQal3gD6kN1R6lXW4VO5LQT65mKVVrrQr97APqe9O0GoADkxFO200fMTF7rboorJ90HNdC0mb03Jpq6dtOoU9Fg/aWC8D0pVBMdd0V0Mx1NyclWSI5rz6k3tYPh5blAkZx0dYJfSSkucmVXlBNzwLRlkNavbkBRg2FvsUe18l8SV+h5+Igq2099IiTTBHYcupioVyjVK3pK/R6v5/2F1HQUei9uRiBqdAdWC7p9nsXoEno0BPh0ivsSEI3S/5bFPr8/eoDvUkBH5iM6PVzgaaKUecFRgvmpCIryyX+tPo+1UroE1G/nkKfusR4rmOO44NGJo29Qj/TUH2boLUpCsrvT57ZEjk68nNT59qqc1DLZ22FXsqojJktQLt4CxrefxulqNUpEtQoxdDYllWuI4sL2jZwM6F9MYpMgi/Ukzz6lNOhIpnW1FwT2iJg/EBPB7hvBTuS0J9YSBHwerh4ZlPJ/9kHYN9zWmaIHpyKkCpU6jnNHbHrSvD4uvLRzaIiy03RtRNGymJrj/bJaJBErty5qg6UQgdlL3WBtWyJkN9T/7BZInW2A6FrKvTxA6pJWi7eRaQKjlLo2rQqMBHTKUOHnqUuJhzFbW7mthKL1qBoE2P7txy3c0I391pa33dzU9T2YmQWF20xdse90CtFNcSlzfsOhkLXed/HDyrh0qMWwFvBjiT0IwtpLtkVw988waach6XHYd/1Lefvn4wA8Myahkr3BWHmyq4yXRaSBaIBr3WqWpuURRNmLro5Hs4So3NqGO/qccfxAaxmikxFg50bc0mpPlwWhD4a8pEpVajZtSWupy52r16cKfSFtp4/KHLJl6v2rZTNmLdALlJKo+Wvpodutr1tsylqDorWU4pbb95WnzerG3sHhe71CMJ+Xdvi4JZVruNe6B1WRmBsipY1hUu11LP2xVvBDiX0VJv884eVD9m0IWri4JQidEc++uIjjq2CblIWTZhZJ7a2i8ejbJduLZdMyd5uycXVuLumatZmjIT8SAkZO5Ix9wrWnO9HmEjkNBtz1apG6p+VQtfMKzYLoraQSZQvVylVa84tFwsvV2uUGzSat23R4gInCn1B2SWh8baHo7orox40nnPcC73DyggcKPT6NLHeNKPbCnYcoa9miqyki9Ybom0Iff+EodDjDjJdsiuOy9YXUwVmx8LtD3ZIWYSmalG7Bl0A05fAaneEvpYt1V/LEuYGTwfLBTQadJn/6Fsg9PVcWa/vTGZZXdAtPPSo7gZddFo1utrSRchBMRQo7z80BoFI28Nao9xAvd/lXKOcvQt05aGP7Gmb9gfm3oVm7Pm1LZXQO47dVNQWCj0a0PXQjZYcQ+Cj7zhCt9wQPf0jpa4sNpamY0FO6xJ6l0OjF5MdJhV1SFkEmNRt0AUwdalaWnfRFTCeKdbb9VrCtBs6bIqCRoOuQETlhK897TRMQE2kSuQ0LkDQ5OW2t1y0S+iFUKmhXWQ5mUjozmw1kTrXyPRog6hOT3ToyZjC7gi9/UUUzI1FJyp3C0VzOc2iORMdiudAXUj1PPStW4u9wo4j9CfblfzXavDMD+DQSywfd2AyrG+57L5GfXewMVqtSZbTReuURTPDxUKhNywXDZKevlSNHDPTIDUhpSSeLTFtm+FiErqV5aKp0EH9vg7jNJHKl6lJjdmn0Oh4Z6XQdUu5ASYPbU2h5xWxaHvoyflGLnYbaBdF9YjQhXDSVGzBMksEVIMurfe8B7Frj1Y0kVlq2xDNRCTgJVeu2jf284eVXeYSunMcWUixezS4sdJx5Unl+x68wfJxB6ei+oQeGlVE5EChr2aKVGvSuqho5Yj6PnNZ28OmqtDORQfHtku2VKVYqdlXiSbnwR9pm40DDlrogkrR7JLQ47pVrdCxShQaRS62Ch2UQk8803Xr36RjhX7WcjMXHKbPwZYuRsm8Svvz6Da3slHokaDPvg89NDqJboHQ6xu6ugo9taCI2NM+4ysS8FGtSYoVjeyVHmzq9gI7jtCfaLcheupu9f3Qiy0ft38ywrlknpLOHwccD41esBtssfwkjB2A4Ejbw36vh9GQr6+56PGMWSVqY7msn1Lq3MIX1ZoramLyIuXpduGNmktoLUJPngGPv20JOjgocgGYPKyyFrosdDEzlbQIvZxXYqST5aIzKBp6MnfWUVZRMa1y9jso9FjQa18+D0o8hMZ60tZC+0KaPNMoyGqDqG7HRTBacriE7gilSo2nV9qU/D9ztyLLpqERm3FwMoKUML+u66Nfp3atc2tap59dV0VF+8YtNkWXj6gc9w6YigX1CD04olSRw9RF7aKitZOK1CxgpoXZ9kSHhsXUhSe9pttIDFRF6thcSw2CCe2uhaAUOnTtozc2RXWsIuOi0cFyieqmLcKWs0Ucp4lCZ4Wu6/+DEXv3pJjIqariDenMndCh1gKamovpXJAmL1YXiHJB77X7hB1F6MeXM5SrciOhV8tw4k646KUdH3vAaerifjVgmjP3ap1+NqGed99EG0KvVpSa3nVFx+fQ7ucCMH0ZLD+hd66BRtl/B6KRUhHChDWha2+KQoPQ4843RtedWC6bBm9vRlS3yAUaF7MurYtEvkTA5yHk1/h4mX1jOlguEd20RTBIcQtZRdmSM4ULlnstoC5GWu85bD123UlcYFtrAQ2bLm83vB2MVbPcUvy9wI4idDPD5armlMUz96jmQJe+quNjD0w6JPR9z1NL+NM/1Dr97HqekaCvvbpZO6GW8DOdFbojQt/zLKX6q5ofFpTPDzaWS2ZZDbHuoNBDfg8+j8aQC2gidOeFUI489OSZRrZBGzS6Fmp8OEfn1N++S+8/aXQr7Fi8VT/ZJPROlovGoGgTUxer/YSiRnfRNojrpLWasElvBcMu0l1dTF6sxERVQyi0gUpx1e2fs2bUWnTOLgJNhT7VvXDpJXYUoT+5mCLg83Boqqn50tGvqQ/fxT/V8bG7RoIEfR791EV/GPY+B575P1qnn03k26tzaChpO8slGtDbFAWViVMtOiJKsxvkTCdCNxVGB4WuhlxotNAF1Shr7ACsPKUdZz2UbIlIwGs9zs9EuaAyFsatLTftMnRQo9QmD3d1EQKjj4u2bWFkFNko9JpEb3PO3DDvMvb1bMk+rdVE4gwIr23aYrkq9faupi9VfdG7tF20JnGZqL/vnbOLQNNDN9ORu0zR7RV2FKEfWUhz+e4RfM0e2dGvq81Qi81GE0II1aRLV6EDHHyR6q9eztueOr+e7+yfI5RN0gGT0QDr2ZKeEttjpFYuPWZ/rhlGWs077Th0wbQZOih0UNV4WgodYOZyWHVO6Gu6S2ibNEtolKFrqS1Qf6tui7dyJb1US1AeenjCsqgIHOTQg6pRgK4IvVCuki1V7fdYTJibil7rFEeTFPVU7tYaz61lS3qrObCttQCHHnp4XLXR7fJC2ivsGEKXUhoZLk3EvfS4alJ1+c9pPcfBqQhnnBD6gRepuZpmFWoHnF3PM2el0BceVgTR4UMLitArNUkqr/EPNH25WpksPmp/roHldJFdmyc8bcb6SUB09KPBQYMuMAj9mOM0wHXdD6iZ/2sTcyykMSjaxPSlhlXmfPkfzxQ7r4KakTzb0W6Bphx6rQydiwDRVfM27eEnJpLzHW0uaO7n7oDQu7yQOupwaVpdvfLQwWjJ0Z1N1yvsGEJfSBZYy5Z41r6xxp2PfF4t+a55jdZz7Df6omspYID9L1TfT3e2XZL5MulixdpyOfegsm9sMFkfFq1RXOQLKKJ0otBTBXZ1GmANSqGPzakmZR2ghlxokt30ZcqvdNjrQltxmV6uDaGPOrkITV+uLuZdLP/jWY1+OSYSz3TMzoKGQtciRX9IvQ9dkKJjQjczizqgkV2kQYqRSYhMdaXQS5UamWJFf1M0eUaNnou0LyoCBxOXTExd7Cp0XTx2NgnA1Sah12rw6D/DJa+wrPTajIOTEXKlKqs6/VJA/YPtusrWR2+kLLZR4KkF1TPCAaGb+de22H0NLDqxXDQVulm11wHOFLqR3eNQNa7ldBX6aVsvF5RNlHJyEQLHVlG5WiORK9sPEIGmjKJDHU/THlhsYvqyrkjR0SZ0tWKk/XVW6JGgA8sFlGXURSdRszpXe1PULOaySHOFbmK/WH3Wi2m98/uAnUPo51J4BFy5x0hZfPo76o9y7X/Sfo5G6qLmsAtQtsuZezpOUz+bMAi9nUI/96D6rkHoJgloNegC5aNnFtXUdRvUapIVO0KXUik7c+nbAWrIhS6hG+S48qTe+QbWs5qNuRJnVB53By8XVMwpu/bEJqbN5b/Di5Burj+ojdxKwZbQ6wpdVylOX6qyLRz25zbbTmgRemZRNUPTtVy0Y++uk2ijf46Tdgt6Vpe+TXe5+r7S3ayCXmDHEPrjZ5NcsitG2BzM8IO/VFVxV96k/RwHJlV2jHbqIsDFL1fVcPPW+ehnjWKltpui5x5U/SL2PMv2pRw16IKmnjP2Pvp6rkSlJjsTemZZTeqZ6ZwvD0qha6vd8IQqsXaQ6VKsVMkUK3rEuHaiY4aLCUeWS2jMKN5yRi5maqhtvxxo2Dm9VuhTl6iuiw5no2rVKZhI2KcsgkO7CJRCz66owRMO4KgIDYyVUef/Ga9HEA149f9nzCw2h/UhvcSOIfTHziW5Zq9ht8w/AKfughf9tvKSNTE3EUYIB210AQ6/VE0wOv5ty1OeWcsRCXjbf4jP/VgRpM2GKDS10HWSiw5aPvqSOcC6k4duKuiZy22fb9TYYLQdcmFi99WO/P7V/7+98w6Pqzrz/+dMkUa9y5Zc5Ip774ViegkQQkIJCfDbsElYkpDfJpvApuxCdpeQZLOk7JJ4CaQTIIaEECBgY6rBvSHJRZJlS1bvozKSRnP2jzN3NJan3HtHGkn2/TyPnpHuXGlej+9873ve8xYj4tJSrntVofsmBMrTNbiqCIiink1RraIzmoce8BR1ern589VjQ6m+8/20dPVhtwl9I9wCOeiR9y0MNUWDIFE09r5rfVyyUnTY3tupVkdhGuUFo7K5dF4zWdNUb3iD18xwMi4EvcHtob6jV8XPfQPwyj+pzYwVdxv6Oy6nnYnpLmMeuisdJq+Gsq1hT6ls6qIoJ+XsQpIBL5zaCVPX6rYvOcGu30NPyVVpYzUHop7a4FYlyfnpEYRGCy/o8tDVkAvdnteEhf5CKH0fjoYOHfaCKhDpadUl6OlJDn3tCjQ0mw1k52gb2rpuRK2VgIgahw4URRkVRQM3UBistNTVmKu5HD3ZUINN0YzejIr1ne+npUvrtKj3fSdirYWGoZWoza6cobHsoQshpgghtgshSoUQxUKI+/3Hs4UQrwshjvsfQ7fmGwaKa1SF6MLCdNjxE5VGeM2jUXPPQzElO1l/cZHGrEtVoy5twskQTjZ3Mz03hAdeewD63BGbhg3FULUowOSVUL076mkNbiU0+WlRPPTEjIjNljQMtdAF1exsoE93TFqXvRA0eDt0n/lg0l1O+rw+PHrT0CYsUKELAy0ANA89N9rmMyhhSS9UmSkR0D2cQyMpU6VCmmgNobtKtKVcxc+j2B6YFKU3Dp0xWV2D9cZsb3RroS4d77tWARyl1gLUNaP7GgdVDW5wdTGc6PHQvcBXpJTzgLXAfUKI+cADwDYp5Wxgm//nEaGkuoVkPCw99UvY+q8qbr7wZlN/q8ifumgILc/9yEtnPeUd8FHV2k1RcPWqxom31WOEPu1DMVQtCjB5lUp962yIeJp2wedFEprGo2oDU0fJuqGOizAYHtKZNz8o6FE+oFplnh4PPdBUTKfHNcF48VZTZx8JdhtpiTr6ievIcAE1KNomDGRbgD/EZUwUDRXmNIefjxtMktOOTRjYWBRCrTAM3owaOz1kJTsjF81p6KiG1jDkoYPq1+SugZ42/b8zjET910spa6WU+/zfu4FSYBJwI/Ar/2m/Aj46UkZevPeLlLj+jsQ3H4a518FNP9clOqGYmp1Mg7uXHr0d4EAtA7NnQumLZz1V2+6hf0AyLSeEh175rgpfhBj+G44sf7WobrSh2NV7Ip5W3+Eh3eWIXEbfeERX/BwM9kQHJbgOl25Bb+zwYBM6YtHNZWrTWc+maJLBm1DeXJUOaUDQmzt7yUlN0NfHRaegCyFITTRQFAUwYb5KuYyQnTUU3YIupX/fIrqgqzYRBrKLQNleX2JoNmqjuzeysxJMSwUkZauVTBQMZXOB6f2L4cJQDF0IMQ1YBuwEJkgpa0GJPhBStYQQnxVC7BFC7GlsNDfrsG/BrRyacz/c9RLc+ltdG4zh0FIXq/S20QV185h/I5x456x2upXNKgVy2lAPvb9HFSQZ8M7BRMilYInatD0dWdBr2nooDNeaAFTqY1ejrvg5mAi52B3K89LZY76+o5ec1ETs0eK5zeVKzHVsjmubfbrFxelSG6MGcv2b/IIeld5O5cnpWPYDZCQ7A+PhdJG/QPVFMZAC2KxX0LtbVEM8HR46qHF2xmyfD73thrJ0VI1FlPCcRssJXRuioPZdDAm6gcyzkUC3oAshUoEtwJellLqnFUgpN0spV0opV+blhR4+EI3l193D4tsfhukXmvbMNbSui4YyXUAJuhyA4hfOOFzZ5Bf03CGCXv6Gir/OucbQy6iQi4FZoQnJ6iKK0ua3OlJrAhjcWC1YoutltZCLoeVowRKoOagrP7rB7YkebgHloevwFMHETQjUe2vEQ+/q01dUpO0l5OpbEWUkOQOZHLqYsEA96rwZ9XoHaO/p1+fltujftwAlioYEPRDq0r8xasxDj9zvPxhtdaG7ujy9UCVsGJxHPFzoEnQhhBMl5r+TUj7vP1wvhCjwP18ARA7ijhG0WLfhOHrBEuX17Pv1GYcrm7txOW1ni0/Ji+DKVGmPBshOScTT79Of0QBq9F7VrojN9aN66LX+Aiidgp5uRhwnrVSel47yaF1VrT6f8tB1xM9hMORi6CY0cZFK0etq1nV6c6fOsv9ARpE+Qc9MSjAmirkXgCNpsLAtClonzrATt4IJzMcdIQ994kJA6MreAtXnSbeg93tUp0W9HrrLidcn8fTrLNISAgqXqoSIUUBPlosAfgGUSil/GPTUi8Bd/u/vAv48/OYNP1nJTlITHZxqNlAtCuo/asVd6j8q6O57oqmLaUNTFr19cOwVtZlq11mK7CeQi663WhTUymWgN2y2i9vTT4fHG74bJKgPT/ZMVVCjA8OboqA2cEF3Vk7UJXRbperdrnmjUdA8dF3NzzQmrVCPNfuinqpV4+oSlsajKlSmU1gMi6Ld4V8RRbcb1B4L6EgTBeWhC3vUwhwNw7Ynpqkbkk7b3b1eer0+/Ss66Yva+VTD8F4RqPe9oXRUphfp8dA3AJ8GLhVCHPB/XQt8F7hCCHEcuML/85hHa6Nr2EMH1WbA4YKdmwOHjta5mTNxSPrk0ZdVjHGB8X1iLYZpKI5etF5tDFa+E/JprTVBRA+95oDyLHQyOOTCoNeYmB413j/gkzR39kYXF21JrlPQ041MWtIoXAoIXR03m7v66BvwUZgR4X3WaDqmxFznDT89yUm7kRsRwKTlUHtI1xCUOr+gRyw802g8ojZzddqeYdb2mv26NkYDff513Uj9KYVRZhNopBnNjAIl6HLAUMhouNCT5fKulFJIKRdLKZf6v16WUjZLKS+TUs72P+obvjkGMNwXXSMpSxUzHfoDtJzA7enndFsPF0wYIugfPK4u+FmXG34Jw+X/oLzqgqWDaZJDqInUawbUhmhHtfobOhkccmHgg2qzqQ9qFA+9ubMXn9SRslhfAoiok6A0khPs2G3C2IczMU1tFEfJIgKo0waFZ+gRxaO6vUTQRFFnr3yNwmXg7dFVuVhvJORSX6IyUXRiqCmaRuFyVc2pY1B3ICVXTw56Q6laXRgO0xm4zrXPUa2+cNdwMi4qRYebopxkqlt69JetB7Phy+qCeOtRjjeoMV9nCPrpvVD1Aaz5vKocM0h2sglBBxWrr94DnrP3q7VukJPDeeia96mjgVgwhkvpQYVd6osjjkhrCOTMRxGX+g+Vl6sz68nUTQhg8gr1HkUR09p2/0oomofu7VOpczrj56AEvX9A6u/NDUoUQVfooqHDQ4LDFr2feF+3sj1f36oIlO2GCrpg8FrUsQfQ2GnQQ8+eEbU9tEagdsFIyChzqtoYrY6+qhtuzktBn5KdTN+AL7DMNER6geohc/Bp3IdeBmCOJug+H7z2LeXJL73DlG2mPHSA2Veq/t3lb5z1VHVbDwl2W/gqusp3wZ4wGC/WSZbRFEtQbRCkT930wqB5uhP0hFx0hls00o3mRIN6X3paog4A1q6nqB56S7lakuvMcAECs2oNxaKzZ6jVm449i7oODxPSE6PnzzceAaQhD92U7RMX6UrHhUEPXVfaYuORqMPag0k3s1ckhJqlEOEaHynOS0EvyjGZuqhx8QOQP58VB77JXGfDYDrg29+Dk+/B5Q+pHjAmSEt04LQLY9WioC4gV6aasTqEmjYPBZmu8D06Kt9RGSgG8/vzUhP095bXmLpOfVBPhI73A1T7awQmZ0WwR/MUjQq60X4uMDjoJEpf/Jo2D067iF4+X+vPxS9YrNsEzXM2JIo2G0xZq2subn2Hhwl6BDEwH1f/+66JoiHbnS4VujgVXRQb3b0k2G2kJ0Wpzu33+FdG+kJ0YHLzH2DqGvVaUSq4h5vzUtC1XHRD4+iCcbrg408hfV7+6PgGtte+AU9/Et58BJbcDsvvNG2bEIL8NFegOZVu7A7lpR9/7axmUqdbu8OHATztKmvHQL8ZjdzUxEC7WN0kpKibR5gNXICq1h5cTlvkFrR1hwCpqy1xMGmJJjz0vHmqsvDkexFPq2vvYUJ6hBunRu1BlVKozf/UQcDL7TZoe9F6VVwURVjqO3qZoCf2X1+ibNeZxw0mPXRQtp/eGzVbpL7DQ76e1UXzcbU6NBDqMrUpCupGCmqWQhw5LwW9MDMJu01wwmjqYhAybw538AhVKYtg12a1vNr0DbjhpzEXP03KTApkphhizjXQ3Qwnd5xxuLK5m2mhmoeB8oCkz7Sgt3T1Gd+LmH6hio162kM+XdXSzeSs5MgfUK2QavJqQy+dabTiEpSnO21DxJsQqDYQujJcag+oXOsoAzmC0USxzbAoblCPQ66JYKSUBjz0YiWIBvaHYroZDfRFzTCqt/ZJUwAAH8ZJREFUbu2OXDSnoaUbT9S/MtI20g1lRoHKjrIn6lphDCfnpaA77TZm5qVwtM78qKjq1h4OdWexZ+Nm+GYDfK0CLv6aoQ9pOAozXdS0mxD0C66ChFQ49EzgUFt3Hy1dfczITQ39O2VbVSrmFGPCCGoqz4BP6h+ZpzH9InUTqQzt8Va39jAl2ge0epfKJEo1Vn2clZJg3F5QLRzaTkWci1rb7okeP/f5VMhFZwGXhmkvt2AJOJMjCrq710t330D0PQspVXqrwVWRadunrgVERNtBq4LWES48vU+lzerMcIHBjXRDtQugNl0nrVD7U3HkvBR0gPkF6ZTW6u5gcBb7q1Q3tWVTMiPOJTRDYWYStW0eBox6vgkpqkVB8Z9ULxmgvFGtQmbkhegG6fNB6V9UeqVTh4czBG2T1Xi8fy0kpIWM94PqszMlO8IHVEqo2m3YOweVRdTa3W98VaGtYMJ8QKWU1LV7KIgm6K0nVEtlAymiEJQ+Z1QUHQkqsyhMSitAvd50y+ZyNdHK4M3ftKAnZak9kpPhRbHPq5IbdHnoNfv8vY+MfV5VC12DtgPMuEStCrrjl9F9/gp6YTq17R5jnQ2DOFjVRqLDdnZR0TBQmJmE1191aJgltynBKFWtfisaVXrg9KG9ZkBlP7hr1U3ABJqgNxm105EAsy5Tgj6kr0t7dz9ujzfyB7S9Ws20NLGqyEpRqwrDm1x589QYveOvh3y6xV9UFFXQtTQ8AxuioDbLbcKEKIJ6rxtL1fsWgqrAJnS0VZE/W0ar+NWJqZYLGjMuUR56X+jwaG17D1JG2UAH8PaqvjYGU3PBRC8ajZmXAhIq3jT+uyY5bwV9XoHKQjHrpR+oamPRpAyc9uF/C7USfVNx9KKNakn5/k9BSiqaunDYRGiPt+RPKl3xgqtM2altWjYa3RgFFe/vrD+r+EITlymRPqDaRpNBYQHI9o8oM9QADZRXN/sKNYowxNSlqlYd1bigOnAmpBrKElEvL0hPcgaGIRti1hXqMczULS3bS5u5G5bq3SpkYSDdEtRszrREk6I46zIVRw+zMqrWaiyi3Yzqi1Va76Tlhk3ISk6gxcz7XrhMDesIkUo8Upz3gl5iQtD7B3x8eLqdJVOi91M2gyYKNWYE3WaDdV9QG2+V73CisYupOcln33j6uuDA75WY6+zfMpRAyMVo6iKojBxhC6wkNLSUxYghl7KtKuvEYCwXBkeUmYqjz75KNRcLkbmgdd0MGdo648R3VWzYxF6L4Z4oGvnz1KjCMKuLk80RZuIGU71bCaKJEGO6Wdunrld7AGFsr9a7uggUzxkX9JyUBFqMOgCg/o9nXATl2w31do+F81bQc1MTmZCeaErQD1W30+v1sXzqyEzdK8xUy3ZTgg4qdTIlD7Y/QkWjO/SG6IHfq3joui+YtjMjyYnDJoynLgIkZ8OMTXD4uTPCLlUt6t8c1kP3+dSHe9Zl5ipxA71yzCyhN4HNCUdfOeupiqYubCLKjaizURW2aJknBjEt6EKo1UXFWyr0MIRTLd1MzY6SVdTrVl6uNlDFIOlJJtJFQaUIT7sQyl4PKYrVrT3YbSJ6y4KT70FaYdQZqKHITkmkxYzTAnDB1aqtRpy6L563gg6wsDCDA1XGR0W9V9aEELB+Zs4IWKWKGdJcDvOC7nTBpd+EUztY1Po6M4d6jd5eNZt18qrBohkT2GyC7JQEc4IO6sbTXgWnBrMYKpo6yUp2hi8SqT0A3U2DYQSDZAVaK5iwOTFNxXRLXjwr9l/Z1EVhZhKJjgg3GS2P3USKKCjbTa0sAOZ+RO2thFj+n2zuChTbheXEO6q6dcbFpl4+O8VpfPNcY87VarpTiL701a09FGS4cEQKffp8alN4xsWmUopzUhPo6hsw1rpAY861qlVI6V+M/64JzmtBXz09m4rGLsObj++WNbGwMIMsvfMXTaBy0WNov7nsTnryl/JN2y9ZkTqkl/fb31dzSC95IOac+dzURHMhF1DjBBNS4cDTgUNH69xcMCEtvLd4/DVAKA/dBFq/D8MVrhqLPgHtp1TaZBCVzV2hN57POOkdFT4wsTEH/kIuMxvloG5ESVnw4fNnHPb5JFWtPaFn4gZTvg2cKYMFMwaJ6TqZd4MSxSG2g84c9IZiVZ9hcDaBRpbZ/kqgVqLTNionIA5hl/Ne0AF2V+pPK+rq9bL/VCsbZuWOlFmAigmarmQFsNl4c+EjDGBj05571Ugsnw92/S+8/QNY8klT3SCHkptmolpUIyFZDfv+8I/Q1YSUkuP1neEzh6RUOfZF6yHF3PvvctpJczmMV+JqzL1WVUoefi7ILBnoix8Wnw+OvKwyHwz2yNfIS0uksbPXWMdFDbsT5l2vWjv3D6786t0e+ry+QPV0WMq2qYIwHaP+QmGqqlgjJVeJcfELZ4liRWMXRdE2c7WUTZOCbqqldTDzrldVqo1Hzf2+Ac5rQV84KYMkp51dJ/QL+s4TzfQPSDaOsKDPzE/lRFMX3gGdk1JCsLMtg3+QX8cx0AM/2wiPTIaXv6qE/CM/jP4HdJCXmmguvVJj3X3g9cCeJ6lt9+Du9TJ7aDtijVMfqP4Yyz5l/vVQbXkbzNqcmKZE/cMtAWFs7urD7fFG9tBr9qkZovOuN/e6KEHvH5Dm4ugACz8OfZ1nbERrGS4RQy4tFSp/fqa5VREoQe/uGzA2iSuYhR9TNgRVjTZ39tLc1cfsCWGK5jTKtqnhLRmTTb20NoHKdMho/o1w8y9Mv74RzmtBd9ptrCjK4oMKfePFAP56qI40l4NV00dmQ1Tjgvw0+gZ8VJptIAYcPt2OLFyOuG8XXPlvsPzT8PGn4JPPmiokCkVhpot6d6/5G0/eHJXxsvPnlFWr3tdzwgn6/t+oEI3JvHmN/DSXeUEHWPl30NMa8NK1DJeIgl76ompKZjJFFAbTRE17utMuhKzpsOcXgUMn/e0vInq52hzdGGzXRLHJbVYUP6pCPnufChzS2leHdQBAFfWceCu2G6k/m8u045KaD4s+DolRbjzDwHkt6ADrZuZwpM6tawPS0z/Aa8V1XL1gYuTNr2FA67F+vN5cewLvgI+Smg4WTspQcbz1X4RrHlWezjBWtk7KTGLAJ821Ita45AHobiJt108AuCCUx9VaCYeehcW3qorYGJiQnkiDOwZ7izaoPPKdPwcpKY9UvAWqWdqHL8D0i1Uc2yRa/N/0zchmUzejU+8HhkeX1rpJTrCHj0NLCQefUV0ydY6cC4Umik1mNqNBdS9d/Ak4vAV6VCKD9tkIeb1oHHkJfF5YcJO512VwilN9LNd4nDjvBf26RQUAvHy4Nuq5bx1rxN3r5folhSNtFrPyUxECjtWHHwQRifLGLnr6B1g0yVyOuV60nHltiIYpJq2AJbezqOq3rE2tJzM5RJx2+yMqTfGifzL/On7y0100dJiMRYPaSF57r8q6OPYqxTUdpCTYw8ehj72qNlJX3BX6eZ1oE5xiCnEt+5TaA9ihbp4ltR3MK0gP3yGy7hA0HVXjF2MgN1YvF9TNyNsTGNR+rL6TtERH5JTF4j+pnj8Ge+cEk5RgJ93lsAR9PDAtN4WFk9L5y8Hoo67+sOsUuakJI5auGExSgp0pWckcazDnoWthpBVFIxsa0sbamWomFszlD9FOKo/xg4AHFqBsqxr7t+bzasBIjExMd9Hr9dFqpvpPY8ltKi677WFKqltYUJgRXhR3/gzSJ8Oc68y/HjAxQys4i0FYkrNh9T1w+Flk41FKazqYXxChd//uX6iugfONz8cNRusTE5MoFixR2To7fgx9XRxvcDNrQmr4jKiWCpWmuegTMWdzTcxwWYI+XvjI4kIOVrcH+p6E4midm+1HG7lz3bTIOa/DyAUTUk2HXN453sTU7OTo6WgxorUpqG6JTdDbHdnc2/tF8gbq4MmroOGIWu4f+xs8ezfkz4eLvz4MFg9WFWpVhqawO1Wuf0MJS+q3sGBSGFGsfFdlWay+J+ZOnKmJDjKSnObrEzQ2fBkcSfS88m3cvd5A1fRZtJ9WBWjLP61uBDGQk5JAgsMW20oO1HCZrkbY9b8cr+/kgvwI8fMPHlf7Fqvuie01UWEXbe7qWMYSdOBjyyeR6LDx+JvlYc/52VvlJDntfHqt+TiiUWZPSONEU5fhgob+AR8fVDSzcfbIZuKASgMszHBxosl8b3lQvXF2+eZSeulTqsfL/6yB706F398CmVPgjj8anqgUDq2RU3Ws4rLgJrqmbuKfxO9Yn9509vMD/fDXr6rqxNWfi+21/JjulR9MSi5c9FWSK17latsu5heGEfR3fgBI2HB/bK+HKkIrzHDFbnvROph9Jb63vkdCV234FNfOBtj/W+Wdp02M7TVRgq6NRhzLWIKOynr45JqpPL//NKdCZJXsKG/ihf2nuWv9tBEtJhrK8qlZ9A9IDhqsZj1Q1UZnr5eL4iDoANPzUiiPUdD3nmzFJmDa6uvgvt1wxXdUWOOGn8Lfb4eMScNkLUzOHgYPHUAI3pr3L3Th4pLd96qNWw0p4dUHVJfDqx8dtptRYWZS7B46wPovUZ8yl/9wPsFcR/3Zz1e8CXueVN6tiXL5UAyb7df+AJ/PxyPOJ1g+JczN6NUH1Wbohf8Y++uhbqT1bg+9XhPVonHEEnQ/n794Jgl2G//8wuEzUvBauvp4YMthinKSuf8y/SPDhoPV07IRAnYayJMH2FbagN0mWDcjPoI+IzeVisZO85uMwL6TrcyZmE5qokMNrdjwJbj2+2q579QxSccA6S4nGUnOQN+YWNjdlMA9vn/G4e2Cn18E7/1IlXk/fRvsfkJlF829dhisVkzOSqK6tSem9xoAu4PvpX0dm82G65lPqD4tGg1H4PnPqhF5l/1LbK8TxLCsLgCyinht0he4xH6QRcXfP7sCs+TPqlht4z9C7vB8ZotykpFyGFZ1I4wl6H4mpLv41xvm825ZE/f9fh9lDZ3srGjmts3vU9fh4Ye3LCEpYWRTFYeSkexk7sR0dp7Qnyfv80lePHCai2bnkpFsriLRKDPzUnB7vKYzGHq9A+w/1cqKopHpXhmKaTnJVDSZyyAK5v3yZpKLliPu2aqGVrz+bXjmU2oa05X/rlYaw8i0nGQ6e73mWhYH0esd4KXqJJ6b80NVILV5kxLxFz4Pmy9RE6Vu/e2wrSxAzfKt7+g1X1wUxOaeTbySfAP2XY/Dc3erXu/9HnUT3XKP6lM0TN45DBZenYqlejsOxD4v7Rzi1lVTcXu8fPeVI/ytWC1Dc1MT+OXdq1hRFNumkFnWTM/mD7tP0ef1keCIfv/dVdlCTbuHr18zNw7WKbRNteKaDvKjdb0Lwc6KFrr6Btg0J3+4TQvLrPw03i1rjOlvNLg9HKlz8/Wr50LuTLjrRWg5oYqO8ubEnC8fipn5Kue6rKGTfD0zQMOw72QbvV4f0xZfBB/ZAdseUn1ypFQ525d9C9KHNz1Xs72isUvVR5jE0z9AcU07Bzc8yDXpK2Dbw6q3PwKQKhPm40+pMXDDhNZFM1RIdixhCfoQ7rlwBlcvnMiOsmZSEh1cPCdPhQFGibUzsvnljkr2n2plzYzo6ZJb9laTnGDnivkT4mCdYoH/w/nh6XY2zTUuyltL60ly2ke8P04ws/JT2bKvmg5PP+kucyuZHWVq5XRGG4js6cD0YbAwNLP8olje2MX6mebfr/fLm7AJWDMjG1xOuPGnw2ViWGbmabZ3xiToB6ra6B+QrJiWA/O/rCqHj/xVtfidslr1y4kxTXEoeamJpCY6AkVkYxVL0EMwOSuZW1YN31IzFjbOziPRYeOVD+uiCnptew9/OnCaW1dNITkhfv+1qYkOZuSmcOh0u+HflVKytaSeC2fn4nLGL6Q12y+Mx+vdpldf7xxvIivZyYJwWSIjwMR0FykJdtPprBrvljWxaHKm6ZuZGYpykrEJKG+ITRRfL6knwW5j7Qz//1v2dFhvvq+/HoQQzJmYxpEYBsvHAyuGPsZJTXRw6dx8/nKwJuoO++a3K/BJ+NxFM+Nk3SArirLYXdliePjyvlNt1LR7uDyOKwog4CEerDJ+EwI1nHj70QY2zs4LX1A0AgghWFCYwWETN0+NmrYe9p1q4zITq6lYcDntzMxLpbjG/HB2KSV/K65jw6wc0uJ4MwKYOzGN0tqO2DekRxBL0McBt6+eSnNXHy8dDN+e4Gidm999cIqPLZsUeWrOCLFuZg5t3f2U1hn7sP7m/UrSEh2BFgzxYmKGi4npLg5WGx9wArD9aAMtXX3ctGzk20AMZcmUDIprOujzmmuIplVF37g0/rYvnpzJweo206JYUttBdWsPVy2IPbfcKHML0nF7vGM608US9HHAxlm5zC9I57Ftx+jpO9tL9/QP8I/PHiDN5eCBOG6GBqPFkd8obdD9O43uXv56uJabV0wmZRT2KZZOyWRPZaspcdmyt5rc1EQump03ApZFZsmUTPq8PlPjEwH+fKCGpVMyR7yKOBRLp2TQ1NlnWhRfPFiDTRD3FR3ACv/ISSPzE+KNJejjAJtN8K2PzKe6tYevbTl0Rp58V6+Xv//1HkpqO/juzYvJSR2+nX0j5Ke7WFmUxV8P1+oWyMffLMfrk3x6Xfyqb4PZMDuX0209VBgsiqpq6eaNIw3ctKwwbm0gglk3Iwch4J1jxrN09p5spaS2g5uWDV+hlhHW+veB3jkeorI2Ct19Xv6wq4or508MNPuKJ3MmppHucrCzwhJ0ixhZNzOHr101l78crOGm/9nB5rfL+dHW41z6n2/yblkTj968OK6ZLaG4cdkkjtS52a+jsvV4vZtfvV/JbaumBrIf4s0lFyjvemtJiErJCPxo23FsNsHfbRy5bJZI5KQmsrAwg+1H9a+GNH687Tg5KQl8YuXID1sIxaz8VCZlJvHGEeO2b9lbTXtPP/dcODrvu90mWDczh7eONRreK4oXlqCPI+69ZCY/vn0Zbk8///HyEf5r6zEmZyWz5d713LJyymibx8eWTSLN5eCnb5RFPK+7z8v/f/YAKQl2vnrlBXGy7mymZCezfGomz+2t1r2qKK5p5/l91dy5toiCjOEZEmKGaxZNZN+ptsCACj3srGjmrWON3HPhjLhmQQUjhOCqBRN561iDoZFuHZ5+fvJGGcumZo54B9FIXLOwgLoOD/tOtRr6vZjGSRrAEvRxxg1LCtn+1Us4+O0rKXn4Krbcu57lU0fvAg8mJdHBfZtm8caRBv584HTIc3r6BvjS0/sprungsduWjlqISOOONUWUNXTyug4vvavXyxef3k9uaiL3bZoVB+vCc9OySdgE/G7nKV3nuz39fOW5g0zNTubOUQpxadyyajL9A5LffXBS9+98/9WjNHX28tANC8K3y40Dl8+fQGqig98YsP3pXae47D/fMtyTyQyWoI9DhBBkJDtHzcuKxGc2TmfVtCy++txBfvHuCfr98X4pJe+XN/Oxx3ew7UgDD92wgEvnjm6ICFSmx4y8FL7z1xI6e8OXpHf3efncb/ZyoqmLx25bGtcmbaEoyEjihiWF/PaDk1EbXvV61U20pq2H/7p1yahsQAczd2I6V8yfwOa3K2jV4aU/u7uK33xwkrvXT2fx5Pi1hwhFaqKD21dP4S8HayjRkX6592QL//LnYtbMyI6pmEovlqBbDCtOu40n7lrFxlm5fOelEpY//DrX/+Rd1vzHNm7/3w9o6erliTtXcue6aaNtKgAOu41Hb15MTZuHz/1mT8gBzIer27n58ffZUd7E925eHFOF5nDylSvnICV86en9YQdH17V7uPvJ3Ww/2si/fXTRqLWwGMrXrppDV5+X7/3taNhzpJT8akclD75wmAtn5/LgtaOTwTWU+zbNIis5gS/9YX/E+a6vFdfxqSd2UZDp4se3LcMeh3oFEc8k+ZUrV8o9e/bE7fUsRg8pJW8ebeS1kjpq2z1kJjlZPyuXG5YUxrUiVC9b9lbztS2HSEmwc93iQopyknF7+tl1ooXdla3kpiby6M2LuGze6K8qgnn5cC1ffHo/+WmJ/MMlM1kzI4ckp51TLd28XlLPs3uqkBL+7aMLuXnF6GyEhuORl0v5+dsV3LFmKv+waVZgWEqf18d75U387M1ydp5o4fJ5+Tx227JRbcExlB3lTfy/p3aTm5rIN6+bx6a5+bicdrr7vOypbOXX759ka2k9Cyel8+Tdq2LquwMghNgrpVwZ9TxL0C0sFMU17fz39jLeOd6E2+PFJlR44PolhXxy9dS4da80ysGqNh58/vBZeekOm+D6JYV86bLZ4QdYjyLeAR///nIpv37/JAM+SX5aIolOG3XtHvoHJLmpCdx/2WzuWFMU12pcvRysauMLT++jqqUHISAlwUFXnxcpISPJyWcvmsE9F04floHycRF0IcTVwI8AO/CElPK7kc63BN1iPCClpLtvgASHDeco5JmbQUrJsfpOjta78fQPMDHdxfKirDHl1YajqqWbVz+s41i9m/4BHwWZSayYmsWFF+QOixiOJN4BH++UNXGoqp22nj4ykpwsmpTBhlnD25toxAVdCGEHjgFXANXAbuB2KWVJuN+xBN3CwsLCOHoFPRb3YzVQJqWskFL2AX8Abozh71lYWFhYxEAsgj4JqAr6udp/7AyEEJ8VQuwRQuxpbIxtoICFhYWFRXhiEfRQuxRnxW+klJullCullCvz8uLfyMjCwsLifCEWQa8GguvNJwM1sZljYWFhYWGWWAR9NzBbCDFdCJEA3Aa8ODxmWVhYWFgYxXROk5TSK4T4AvA3VNrik1LK4mGzzMLCwsLCEDElqUopXwZeHiZbLCwsLCxiYHxUTVhYWFhYRCWupf9CiEZAf9/JM8kFjI85GT3Gk72WrSPHeLJ3PNkK48veWG0tklJGTROMq6DHghBij55KqbHCeLLXsnXkGE/2jidbYXzZGy9brZCLhYWFxTmCJegWFhYW5wjjSdA3j7YBBhlP9lq2jhzjyd7xZCuML3vjYuu4iaFbWFhYWERmPHnoFhYWFhYRsATdwsLC4hxhXAi6EOJqIcRRIUSZEOKB0bYnGCHEk0KIBiHEh0HHsoUQrwshjvsfs0bTRg0hxBQhxHYhRKkQolgIcb//+Fi11yWE2CWEOOi39yH/8elCiJ1+e5/x9xIaEwgh7EKI/UKIl/w/j2VbK4UQh4UQB4QQe/zHxuq1kCmE+KMQ4oj/+l03hm2d439Pta8OIcSX42HvmBd0/2Sk/wauAeYDtwsh5o+uVWfwS+DqIcceALZJKWcD2/w/jwW8wFeklPOAtcB9/vdyrNrbC1wqpVwCLAWuFkKsBR4F/stvbyvwmVG0cSj3A6VBP49lWwE2SSmXBuVIj9Vr4UfAq1LKucAS1Hs8Jm2VUh71v6dLgRVAN/AC8bBXSjmmv4B1wN+Cfn4QeHC07Rpi4zTgw6CfjwIF/u8LgKOjbWMYu/+MGiE45u0FkoF9wBpUxZ0j1PUxyjZO9n9QLwVeQs0MGJO2+u2pBHKHHBtz1wKQDpzAn8Qxlm0NYfuVwHvxsnfMe+jonIw0xpggpawF8D/mj7I9ZyGEmAYsA3Yyhu31hzAOAA3A60A50Cal9PpPGUvXw2PA1wCf/+ccxq6toAbSvCaE2CuE+Kz/2Fi8FmYAjcBT/nDWE0KIFMamrUO5DXja//2I2zseBF3XZCQL/QghUoEtwJellB2jbU8kpJQDUi1dJ6Pm2M4LdVp8rTobIcRHgAYp5d7gwyFOHXVbg9ggpVyOCmfeJ4S4aLQNCoMDWA48LqVcBnQxRsIrkfDvl9wAPBev1xwPgj4eJyPVCyEKAPyPDaNsTwAhhBMl5r+TUj7vPzxm7dWQUrYBb6Ji/5lCCK3181i5HjYANwghKlED0y9Feexj0VYApJQ1/scGVIx3NWPzWqgGqqWUO/0//xEl8GPR1mCuAfZJKev9P4+4veNB0MfjZKQXgbv839+FilWPOkIIAfwCKJVS/jDoqbFqb54QItP/fRJwOWozbDvwcf9pY8JeKeWDUsrJUsppqGv0DSnlHYxBWwGEEClCiDTte1Ss90PG4LUgpawDqoQQc/yHLgNKGIO2DuF2BsMtEA97R3vTQOfGwrXAMVT89Bujbc8Q254GaoF+lCfxGVTsdBtw3P+YPdp2+m3diFryHwIO+L+uHcP2Lgb2++39EPi2//gMYBdQhlrOJo62rUPsvgR4aSzb6rfroP+rWPtcjeFrYSmwx38t/AnIGqu2+u1NBpqBjKBjI26vVfpvYWFhcY4wHkIuFhYWFhY6sATdwsLC4hzBEnQLCwuLcwRL0C0sLCzOESxBt7CwsDhHsATd4pxFKN4VQlwTdOwWIcSro2mXhcVIYaUtWpzTCCEWovK/lwF2VO791VLK8hj+pkMO9mexsBgzWIJucc4jhPgeqv9HCuCWUn5HCHEXcB+QAOwAviCl9AkhNqPKypOAZ6SUD/v/RjXwc1Sr5MeklHHrz2FhoRdH9FMsLMY9D6Fa7/YBK/1e+03Aeiml1y/itwG/Bx6QUrb4+69sF0L8UUpZ4v87XVLKDaPxD7Cw0IMl6BbnPFLKLiHEM0CnlLJXCHE5sArYo9rbkMRgi+bbhRCfQX02ClFDVTRBfya+lltYGMMSdIvzBR+DfcoF8KSU8lvBJwghZqMmDq2WUrYJIX4LuIJO6YqLpRYWJrGyXCzOR7YCtwghcgGEEDlCiKmoyThuoMPf3vSqUbTRwsIwloducd4hpTzsHzi9VQhhQ3XK/Dyqm18JqrNjBfDe6FlpYWEcK8vFwsLC4hzBCrlYWFhYnCNYgm5hYWFxjmAJuoWFhcU5giXoFhYWFucIlqBbWFhYnCNYgm5hYWFxjmAJuoWFhcU5wv8Blety3rfYHhYAAAAASUVORK5CYII=\n", "text/plain": [ "

" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(t, H, t, L)\n", "plt.title('Hare/Lynx Population Dynamics')\n", "plt.xlabel('Year')\n", "plt.legend(['Hare', 'Lynx'])" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 4, "link": "[1.4.2.4.5 Step 5: Plot ](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.2.4.5-Step-5:-Plot)", "section": "1.4.2.4.5 Step 5: Plot " } }, "source": [ "If you have more than one thing to plot, we can make use of the subplot feature" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "nbpages": { "level": 4, "link": "[1.4.2.4.5 Step 5: Plot ](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.2.4.5-Step-5:-Plot)", "section": "1.4.2.4.5 Step 5: Plot " } }, "outputs": [ { "data": { "text/plain": [ "Text(0.5,0,'Hare')" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvoAAAEWCAYAAAAXcTOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi40LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcv7US4rQAAIABJREFUeJzsnXd4VFX6xz9n0iZl0ntCSCGhd6RIBxErNqz8UFQWde3urrqu7uKuba2r7q4K2HVtqCgCFnqR3ksgQBLSO5nUST2/P+6dSS9IQibhfJ5nnrn9vvdmcu/3vOd93yOklCgUCoVCoVAoFIqehaGrDVAoFAqFQqFQKBQdjxL6CoVCoVAoFApFD0QJfYVCoVAoFAqFogeihL5CoVAoFAqFQtEDUUJfoVAoFAqFQqHogSihr1AoFAqFQqFQ9ECU0FectwghHIUQUggR+Rv3v00IsapjrepeCCEchBAlQoiIrrZFoVAouhohxDNCiA+62o6WEEJ8IoRY2NV2KM4dSujbAUKIZCHERY2WzRNCbO7k814ohPhVn5ZCiD6deb42bPlECFGpi8YCIcTPQoi4rrKnMUKIPkKIBoNOSCk/lFJe2gnnukgIUavfixIhRJoQ4gshxMiOPtfZIqWskVJ6SClTutoWhULR+aj3Vbd4X20WQlh0+3KFEEuFEMFneIyzcoQp7Acl9HsgQgjHdm56GbCyM205Q56TUnoAvYAC4L0utqcrSdHvhQkYB5wAtgghpnSpVQqFQtGBqPdVp3G3bl8/IAB4uYvtUXQRSuh3E4QQjwshTgohioUQR4QQ19RbN08IsUUI8ZoQogBYqC+/QwgRL4Q4LYT4SQjRu9FhW31wCiGMQohCIUT/estChBBlQgg/3fOcLIR4VPcaZAghbtW3cxFCHBRC3KPPOwohtgshnmjrWqWUpcBnwKB6drwhhMgUQqQLIV4VQjjr66w2/FUIkS+ESBJC3FTP3s1CiHn15ucLIda3cL2zhBD79HucIoR4qt7qjfo2Vi/7BY2PJYSYIITYJYQwCyF2CCHGNLLjaSHEr/rxfxRC+LbjXkgpZaqU8i/AB8AL+vHeEUL8s5H9q4QQ9+nTaUKIR/S/gVkI8ZkQwkVf5yeEWKn/zU4LIZYLIcIa2fp3IcQ2IUSpEGKZvs9nQogi/e8YoW/bwOsjhHDTf4cp+nk36r8FNyHE//S/UaF+f/zbun6FQtH9OJ/fVzouQvP6FwshDgkhRtSz6UkhRKK+7rAQYla9dXH6M9MshMgTQvyv3roBQojVQutBOCqEuK4t23T78oFvGtlX/77dLYQ4oT+blwkhQvRVG/Xvw/o7r13nU9gfSuh3H04CEwEv4Gngk3r/kABjgEQgEHhWCHE18ARwLVprfhPawwjQHoBAELC3pRNKKS3Al8D/1Vt8C/CT/vAACAdcgVDgbuAtIYSnlLJC3+85oXVp/gWoBhqI0+YQQpj081ht+yswChgCDAfGA3+ut0s4muc7FLgTeE/8tm7dEt1mL+BK4EEhxBX6ukkAepiKh5RyZyOb/YEVwCuAH/AGsFII4VNvs1uA29DuuzvwyBna9w1wgRDCCHwI3CKEMOjnDwImA5/X2/4GYAYQDYwE5urLDcBiIALoDVQBrzc61026veFoHqFfgUWAL9pv8Sma5zW0v9MYfdsngFrgdsBNP54f8HvAcobXr1Aougfn8/sK4GrgY8AbWIX2PrCSgPYO8wKeBf6nP7/R51cAPrqt/6l3jl+Aj9Du2RxgkRCibzvsC0C7r03unRDiYuDvwGwgDMgAPtVXT9K/B+rvvK/bOpfCTpFSqk8Xf4BkNJFZWO9TBmxuZZ99wFX69Dy0UI/661cBd9abN+jH7K3P3wm8W2+9BPo0c57xQBIg6p33Wn36It1uh3rbFwCj6s0/BsTry6NbuZ5P0IRfIZAJLAOi9HWngIvrbXs5cKKeDZWAW7313wB/1qc3A/PqrZsPrNenHfXrjmzBpn8DL+nTfbR/lwbr6x/rduDXRut3Av9Xz47H6617APihhfNeBCQ3s3yQbm+QPp8ATNWnHwK+r7dtGnBTvflXgX+3cL5RQG69+c3AY/XmXweW15u/BtjV+B4CDkAF2ouh8TkW6Mcd3NX/b+qjPurz2z+o9xW0/r56Bvix3rZDgJJWjnUIuFyf/h/wFhDWaJs5wLpGy94F/tLCMTfr968QSEdrdPjVs32hPv0hWgiSdT9PoAatkdHq+1F9us9HefTth6ullN7WD5rH04YQ4lahhZUUCiEK0URf/dCH1EbH6w28Xm/7AkCgtdqhnfGOUsotaJ6NCUKIQWhe4BX1NsmTUtbUmy8DPOrNfwDEoAnFxDZO94J+/SFSyqullEn68hA0sW/lVL3rAMiXUpY1Wh/axrmaIIQYJ4RYr3frmtGEfHvDS0Ib2dicnVn1phvfp/YQhuYdN+vzH1Hnvfo/tId5fZo9nxDCXQixRA+vKQLW0vQ6s+tNlzcz35ztQYAzmjevMR8Aq4EvhRZ+9YJof2yuQqGwL9T7quX3FTR99rpbZ/TQpf31rrUfdffmD4ATsEsPJbpNX94bGG/dR9/vRrR3Y0v8XrcvTEo5V9b1atSnwXtLSlkEnKbhe0vRzVFCvxugxyouBu5Da5V7o3kBRL3NZKPdUoG76j+MpZSuUspfhRBOaGEev7TTBKugnAt8KbVuzvbyFpq34wohxNgz2K8+mWgPOisRaF4KK35CCNdG6zP06VK0kBErrVUe+Bz4GuglpfQCllB3jxvf38ZkNLKxOTvPlmuAnVLrogZN2F8rhBiO/nJq53EeBaKA0VJKT2BaB9mXjda7EtN4hZSyUkq5UErZH5iAdi1zOui8CoXCTlDvq5YRQkTr57iHuntzFP3eSCkzpZTzpZQhwL1o4TlRaPdnTaP74yGlvO8sTWrw3tJDhHzQ3lttvfMU3QQl9LsH7mj/dLkAQojbaSGxph5vA38WQgzU9/ESQlyvr5sIHNBb7/Vx1hOarB8HffnHaDF8t6A9RNtFPTtvBx4GPhZCuLe+V7N8BvxVCOGvxxs+hdb9aMUALBRCOAutKs2lwFJ93T7gOiGEqx57eUcr5zEBBVJKi/6Qv6neuhxA6g/q5vgBGCiEuFFP5LoFLdznrKpECI1wIcTTaF3etuQwKeUptOv7EPiqXgOgLUxoXqbTQgg/tByIs0b3lH0A/EsIESy0GvvjhRBOQohpQohBek5BEVpeQE1rx1MoFN2S8/191Roe1N0bIYSYj+bRt9pwg6grjFCob1sDfI/2frlFf546CSFGtydGvw0+A+4UQgwRWrGG54FNUso0/Xmej5bjpejGKKHfDZBSHkFL8tyK5jUdDGxpY59v0RKJPtfDMw6hCWBouRv0MFpYhvVzu36sZOAgUCml/LU9NgutCssrwK1SylIp5UfAfn5bia+n9X0PAgeA7WgPJCtpaJ77TDTRO19KeVxf9zLawzIHrfxZ/QZCY+4BnhdCFKMJ6i+tK6SUxfo5t+tdp6Pq7yilzAVmocV45qO9KK6QUhb8husFiBBClKDFlG4HBgCTpJRrG233IdrvoXHYTmu8ipYIlo+WZNuRg349jBbjuhut+/05NG9VKFruRBHa72w19ZLtFApFz0C9r1pGSnkALTF3B9r7qh/a893KGGCnEKIU7Xl5r5QyRUppBmai9VRkooUGPQ+4nKU9P6Il436rHzeChj2tf0NLFi4UQlx7NudSdB3WhBXFeYQQ4ggwW38gt3efj4BEKeXCTjPsNyC0gVuWSCkju9qWrkAIMQ0tKStaqn9mhULRw+hJ7yuFoitQyXDnGUKrP//RGT40o4Gr0DwzCjtB/1s+CCxWIl+hUPQ01PtKoTh7VOjOeYaeFPlCe7cXQjyP1oX5nJQypfMsU5wJQojBaNURfGlYo1mhUCh6BOp9pVCcPSp0R6FQKBQKhUKh6IEoj75CoVAoFAqFQtEDOacx+v7+/jIyMvJcnlKhUCi6Fbt3786TUgZ0tR1diXpXKBQKReu0911xToV+ZGQku3btOpenVCgUim6FEKLxCMvnHepdoVAoFK3T3neFCt1RKBQKhUKhUCh6IEroKxQKhUKhUCgUPRAl9BUKhUKhUCgUih5Ilw+YVVVVRVpaGhaLpatN6XSMRiPh4eE4OTl1tSkKhUKhUCgUih5Olwv9tLQ0TCYTkZGRCCG62pxOQ0pJfn4+aWlpREVFdbU5CoVCoVAoFIoeTpeH7lgsFvz8/Hq0yAcQQuDn53de9FwoFAqFQqFQKLqeLhf6QI8X+VbOl+tUKBQKhUKhUHQ9XR66o1AoFJ3JwTQzW07mceu43rg5q0eeomdQUlHNkYwiDqWbKSyrBCEQgBAgEPq3Pq87mZpdh8BgEAR7Gon0dyPK3139nygUPQj13wx4eHhQUlJim//ggw/YtWsX//73v7vQKoVCcbaUVVZz8+JtlFRUU1FVy4MXxXa1SQrFGWMuq+JwhpmD6WYOZRRxON1MUn4pUnbO+QJNLkT5uxPl706kvzuRftp0bz83jE4OnXNShULRKSih3wFUV1fj6KhupaJnYy6vwuTiiMHQfULQVh7MoqSiGndnBz7ZfooHpvdRIXQKuya/pIJDuqf+ULqZQxlmUgvKbevDvF0ZFObJNcPDGBTmRUyAB7VSkpxfysE0Mwf0/TLNreeDuTo5EOptJNTblUCTESGg2FJFXkkleSUVHEo3sz2poMl+oV5GTfz7uxPlp3/7u9HL1w0XR9UIUCjsDaVO22D58uU888wzVFZW4ufnx6effkpQUBALFy4kIyOD5ORk/P39+fjjj3n88cdZv349FRUV3Hvvvdx1111dbb5C0SEcSjdz7Vu/Mi7aj/fnXdBtxP6OpHy83Zx4dGY/nvj2IEl5pUQHeHS1WQpFAw6lm3lvcxJbE/MbCPTefm4MCvXC29WZ4znF1EpILywnvbCcnw5nn9U5y6tqOJlbysnc0jPaL8NsIcNs4deT+Q2WGwSEersSE+DB6Chfxkb7MSTcCycHu0gFVCjOW+xK6D+9/DBHMoo69JgDQj3525UDW92mvLycYcOG2eYLCgqYNWsWABMmTGDbtm0IIViyZAkvvvgir7zyCgC7d+9m8+bNuLq6smjRIry8vNi5cycVFRWMHz+eiy++WJXSVPQIXvn5GJXVtWxIyGVncgFjov262qR2sS+1kGG9vBkT7QvAjqQCJfQVdoGUks0n8nhnQyKbT+Th4eLItH6BDA7zItzHlY3H8/hsRwqn8svaPJaXqxODw7wYGObJ4DAv+gWbCPZyxcOl4Su+orqGYks15vIqzOVVFOnf2UUW0k+Xk15o0RoSp8soslSf0fXUSkg7XU7a6XI2JOQC4O7swKhIX8bF+DEu2o9BYV44dBMngULRU7Arod9VuLq6sm/fPtu8NUYftDr/N954I5mZmVRWVjYQ7rNmzcLV1RWAn3/+mQMHDrB06VIAzGYzx48fV0Jf0YCqmlo2JuQyqrcvXm7dY+C0iuoatiUWMHtkOCsOZLLyYGa3EPrllTUczynh0kEhRPu7Y3Jx5EhmxzoSFIozpbqmlhUHM3lnQyJHMosINLnw+KX9GBruzaKNJ3l2ZXyTfYZHeDPvwkjigkwEeRrxcXP6TSFoLo4OuHg44O/hcsb75hRZOJiu5QmsO5bL/tTCNvcpraxhQ0KuTfibXBwZHaUL/xg/+gd7dpveQYWiu2JXQr8tz3tXcP/99/PII48wa9Ys1q9fz8KFC23r3N3dbdNSSt58801mzpzZBVYquguLNyXy4o/HGBjqyQ/3T+gW8eL7U82UV9Vw8YAgMs3l7Elp+wVvD5wq0JIVYwI9EEIQE+jBiZyStndUKDqBsspqvtiZypJNSaQXlhPqZWRK3wAOpRfxwqqjTba/eXQvHp4RR6DJeMbnqq6pxVJdi6uTQ4d50AM9jUz3NDK9fxAPXRQHQE6xhUPpZg6mFbEv9TTrjuW2eoziimrWHM1hzdEcQPP4T4j1Z1y0H+Ni/IkL8ugWz0SFojthV0LfHjGbzYSFhQHw4YcftrjdzJkzeeutt5g2bRpOTk4kJCQQFhbWoDGgOL+RUvL+lmQADmcUsSflNCN7+3atUe0gXveCD+3lzaAUL97bnERFdY3dJ94l52mxx1F+2v9gn0APNia0LkQUio4mr6SCj35N5qNtpygsq7Itt8a61+epKwZww6hwTMbWe/uqamrJLLSQVlhmC5dJO11Guj6dVWShplYryePiaMDN2QE3Z0dcnR1wc3bA1Un7dnNxxE2fdnV21LfTtvVydSI2yIMof/cW4+wDTUam9TMyrV+QbVlucYUtkfhgupmtifkUtxAGVFpZw0+Hs235Bn7uzoyN9mOsHuoTE+CuhL9CcZYood8GCxcu5PrrrycsLIyxY8eSlJTU7Hbz588nOTmZESNGIKUkICCAZcuWnWNrFfZMYl4pucUVPHl5f55dGc/GhLxuIfQTsovxNDoSaHJhSJg3VTWS49klDArz6mrTWiUpT4ttjvR3AzShv3R3GubyKrxcu0fYlKL7Yi6r4qWfj/LVrjQqa2rpG2RqIPQBevm68pfLBjClb0CTspVSSg5nFHE4w9xEzGcVWaitV1pTCAj2NBLu48roKF/CvF0xGR0pr6qhvLKGssoaSiurbdPllTXkllRQVlDWYFllTW2T63B2MBAd4E6/YBN9gz3pG+xB32BPQr2MzYrwAJMLU/sFMrVfoG2ZtYrPoXQz+9PMrI7PbrY0aH5pJSsOZrLiYCaglfm8MMaPywaHMLlvgN07FxQKe6RdQl8I8TAwH5DAQeB2IAT4HPAF9gBzpZSVnWRnp1K/hj7AvHnzmDdvHgBXXXUVV111VZN96ofwABgMBp577jmee+65zjJT0c3Zfeo0AFP6BvDVrjT2tSPG1R44nl1CXJAJIQSxQVoia2Jeqd0L/VP5pfi5O9u8o719NcGfdroML1f7tl3RvTmWVcyCj3eRUVjOzIHBnMgp4WhWsW39orkjmdYvEMdmPOUncor5fl8Gyw9kkqT3ShkEhHi5EubjytgYP8J93Aj3diXcx5VwHzeCvYw4O559dZuqmlqb6M8vrSAhu5ijWcUkZBWzI6mAZfsybNuajI70DTLRN9hEv2ATcUEm+gV7Npt75O/hwpS+gUzpq4n/yupatiflsyY+h1+OZJNeWN5kH4Cc4gqW7ctg2b4MTEZHLhkYzJVDQ7kwxq/Ze6dQKJrSptAXQoQBDwADpJTlQogvgZuAy4DXpJSfCyHeBu4E3upUaxWKbsyhdDMeLo5E+3swrJc3Px3JQkpp913TiXklTNe75iN0sWwNi7FnMswWwnxcbfPW6fTT5QwMVUJf0Tn8eCiTR77cj5uzA1cMCeXbvem2dXdNiuZPM/s2EampBWUsP5DB8v2ZxGcWIQSMi/ZjwaRoJvTxJ9jLeE7KVDo5GPByNeDl6kSwl7HJ/4m5vMom/o9lFXEsq5jv92fw6fa60JxgT2MD8T8ozKtJ7L2zo4GJsQFMjA3gb1cO4Fh2MauPZLM6PqdFB0ixpZqvdqfx1e40jE4Grh/Zi1nDQhkZ4aMSehWKVmhv6I4j4CqEqALcgExgGnCLvv5DYCFK6CsULaLVcHfHYBD0DTbxxa5U8ksrf1MFjHOFpaqGvJJKwnWRbHRyIMTLSHK+/Qv9bLOF3n5utvkwb13ot+A9VCjOhtpayWurE3hz7QkAyiprbCI/wteNr+4eR5BnXWJtTrGFFQcyWb4/w5bgPjzCm79eMYArhoQQ6HnmSbidjZerExdE+nJBZF3IoZSSrCKLLv61z9GsYraezLeFAgV5ujA5LoDJcYFMiPVvEDonhKBfsCf9gj25b1osOcUW1h3NYXV8DpuO52KpahpOZKmq5eNtp/h42ykAfjcxillDwxgU5mn3jhOF4lzTptCXUqYLIV4GUoBy4GdgN1AopbQ249OAsOb2F0IsABYAREREdITNCkW3JDG3lAsifQCICtASRJPySu1a6Gfoori+Z7y3n1u38OhnmssZG10nSHzdnTE6GUg/rYS+omMpslTx8Of7bNVk6vPJnWOYEOsPQElFNSsOZPD9/gy2nsynVkK/YBN/mtmXWUND6eXr1mR/e0cIQYiXKyFerkztWxeXX1VTS3JeKXtSTrMhIZdVh7L4clcaDgbB8F7eTOmrCf+BoQ1LbAaajNx4QQQ3XhCBpaqGX0/m8cuRHNbEZ5NTXNGsDYs3JbF4UxImoyO3XxjJlUNDiQ0ydfq1KxTdgfaE7vgAVwFRQCHwFXBpM5s2k1oDUspFwCKAUaNGNbuNQtHTsVTVkGEuJ8q/F1BXCSYpr7SBd8zesHq/rd5wgF4+bmw6ntdVJrWL0opqiizVBHnVeUWFEIR5uyqPvqJDOZFTwoKPd5HYaITZ+6b24f7pfWwJpOuO5vDEtwfJ1Hua7p3ahyuHhhLXQwWpk4OB2CATsUEmbrwgguqaWvamFrLhWC7rE3J4+ecEXv45AX8PZybFBjC5rxbK4+vubDuG0cmBaf2CmNYviNraQRzKMLM6PofVR7KbHROj2FLNG2tP8MbaE8QEuHPtiHCuHBJKhF/3a0ApFB1Fe0J3LgKSpJS5AEKIb4ALAW8hhKPu1Q8HMlo5hkJxXpNaUIaUdRVgwn1ccTQIW7KdvWL1fofWE/ohXkZyii1U19TabUJcVpFWtjDEq2H4Q5CnsUWvoKJjEEJ4A0uAQWgOoDuAY8AXQCSQDNwgpTzdRSZ2GKuPZPPQF/soqaiLUR8U5slbc0bavPMFpZX8fflhlu3LIDbQg88XjGVMlO95F2Li6GCwhf38cWZfcosr2KgPprX2WA7f7E1HCBga7s3kuACm9A1gSLi3bRwAg0EwJNybIeHePDIjjvTCctbGZ/NLfA6bj+c2qEIEcDK3lJd+OsZLPx1jWC9vZg0N5fIhIQ3CpxSK84H2CP0UYKwQwg0tdGc6sAtYB8xGq7xzG/BdZxmpUHR3rPWyrYLZ0cFAqLer3YeRZOp2B9cTzMFertRKrSJG/QaAPZGt2x3UaLChQJMLu051e31p77wO/CilnC2EcEbL63oCWCOlfEEI8TjwOPBYVxp5NkgpeXPtCV79JaHB8pevH8rskeG2bX44kMnC7w9jLq/iwemx/H5qjCoRqRNgcuG6keFcNzKcmlrJgbRCNiTksv5YLm+sPc7ra47j4+bExNgAJscFMCkugABTXZhjmLcrc8dFMndcJNlFFpbuTuPLXamcyi9rcq59qYXsSy3k7z8cYVy0H9cMD2PWsNAmJU0Vip5Ie2L0twshlqKV0KwG9qKF4qwAPhdCPKMve7czDe1MPDw8mpTYVNg/+1MLWXkwk4cuisPV2b4f2FlmTdCHNBDMRrIaDZhjb+SXVuDj5tSg4of1GjLNFrsV+nmlWqVff1PD/IdA3aPfHaoddUeEEJ7AJGAegF5yuVIIcRUwRd/sQ2A93Vjov70hsYnIf+3GoVwzXBP52UUWnlx2iF+OZDMk3ItPfzeGfsGeXWFqt8DBIBge4cPwCB8euiiO06WVbDyuefs3JuTy/X4tYGBouJcu0sMahPgEeRq5d2of7pkcw/akAr7YmcKqQ1lUVDdN5N2amM/WxHwWLj/M3HG9+b8xvbtlboRC0V7aVXVHSvk34G+NFicCozvcIoWiHZRX1jD77V+pqtH6a/98Wf8utqh1MgotCEGDbuNQL6Pde5fzS5pWBbJ69+25kZKnh+c0tj3Q5EJldS1F5dXN1vtWnDXRQC7wvhBiKFrhhgeBICllJoCUMlMIEdh4x+5SuGHT8Vxe+ulog2WvXK+JfCklX+5K5ZkV8VRW1/LEZf24Y3yU3Ya42Ss+7s5cNSyMq4aFUVsrOZJZxPpjOaw8mMXC5Ud4dmU8F/UPYvbIcCbHBdjur8EgGBfjx7gYP54uq+K7/el8viO12Xj+ssoa3tmQyDsbEpkxIIh5F0ZyYYyfcgAoehzq6dMMxcXFREVFUVWljWJYVFREZGQkVVVVTJkyhccee4zRo0cTFxfHpk2bAHj11Ve54447ADh48CCDBg2irKxpF6KiY9iQkENVjcTk4si3e9ORzQ2zaEdkmssJ8HBp6Bn3diW7yEJt4+BSOyK/pBI/D+cGy4I9rR59+w07yi+twMEg8G40Aq616z+n2H4bKd0cR2AE8JaUcjhQiham0yZSykVSylFSylEBAQGdaeNvJrWgjAc+29sgHvzF2UO4bmQ4Kfll/N+723ns64P0D/Hkx4cmsWBSjBL5Z4nBIBgU5sV902JZ+eBEVj4wkbljI9meVMCdH+5i7PNreW5lPAnZxQ3283Jz4tZxkax8cCI/3D+BuWN7YzI279v85Ug2c5ZsZ+jTP/PJtlOU1su5UCi6O+2to39uWPU4ZB3s2GMGD4ZLXzijXUwmE1OmTGHFihVcffXVfP7551x33XU4OWmiobq6mh07drBy5UqefvppVq9ezUMPPcSUKVP49ttvefbZZ3nnnXdwc1PdgZ3FhoRcPI2O/Pmy/vz5m4MczSqmf4j9do1nmi1NEkNDvIxU1UjySisINNlnglheSQX9QxveVy9XJxwMgoJS+x0IO6+4El935yYD6Vjvc05xhSq/1zmkAWlSyu36/FI0oZ8thAjRvfkhQNM6lHaOpaqGez7dzemyKtuyF64dzA2jerE35TRz390BwDNXD+KW0RGdNohTkaWKbLOFIksVReXV+ncVRZZq/bv55ZXVtfh6OOPn7oyfhwv+Hs74ubvg6+6Mn4cz/h4u+OnLfNyc7LaBMiDUk7+GDuDxS/ux7lgOS3en8d7mJBZtTGRouBezR4Zz5dBQvN3qHBSDwrwYFObFE5f158fDmXy+I5XtSQVNjl1kqebJZYd4ctkhbh8fyW3jIon0dz+Xl6dQdDj2JfTtiPnz5/Piiy9y9dVX8/7777N48WLbumuvvRaAkSNHkpycDIDBYOCDDz5gyJAh3HXXXYwfP74rzD5vOJJRxOBwLyb00epT700ptGuhn1dSSZh3QzFv9Yxnm+1b6Pu7N/ToGwwCHzdnuxb6+aUVzY5PYO2dyLdj27szUsosIUSqEKKvlPIYWvGGI/rnNuAFumHxBilE5SlDAAAgAElEQVQlf/n2EIfS60JAnrtmMDeNjuBQupnb3tuBn4czn84fQ7hPxzp4LFU17Dl1ms0n8thyMp+DaYVNKsxYcXE04OnqhKfREU9XJ7zdnInwc8fT6IiTg4HTZZXkl1SSWlDGvtRCCkorqWnmYEKAj5u1UeBMsKeRQWFeDA7zYmCYFx4uXS8dnB0NzBwYzMyBweSVVLBsbzpLd6fx1HeH+ccP8cwYqIX2TOzjb2u0uDo7cM3wcK4ZHk5SXilf7kpl6e40cpupxPX+lmTe35LMhD7+zJ8YxaTYADUCr6Jb0vX/rfU5Q897ZzJ+/HiSk5PZsGEDNTU1DBo0yLbOxUUTEA4ODlRX13XxHT9+HA8PDzIyVKXRzqS6ppajWcXMHdubMG9X3J0dmnTb2hsFpRUMDmvYEKkTnfZZ7rGyupYiSzV+zQlmd2e7Fsu5JZX4Nwo5Ak28ABSW2a/tPYD7gU/1ijuJwO1oYaJfCiHuRKvkdn0X2nfGfLLtFF/vSbPN/+OqgdwyJoKE7GJufW8HJqNTh4n8mlrJkYwiTdifyGNncgEV1bW2gabumxZLn0APvOoJek+jEyaj4xlXkamtlZjLq8gvrSCvpJKC0kryS7Tp/NIK8ku0hsH2pAKW7dPea0JAtL87g8O8GBzuzZBwLwaEeOLeheLf38OF+ROjuXNCFIczili6O43v9qWz4kAmQZ4uXDM8nNkjw+gTWNeLF+XvzmOX9OMPM+JYdyyXL3amsO5YbpOGz+YTeWw+kYefuzP3TevD7JHhmIwqv0fRfbAvoW9n3Hrrrdx888089dRTbW5rNpt58MEH2bhxI/fddx9Lly5l9uzZ58DK84/k/DIqqmvpH6KNqBgbZOJYlv0KfSklBaWVTQSzr7s2b6+ecatdjWP0AXzcnezWboDTpZVENjNIjreegHu6tKrJOkXHIKXcB4xqZtX0c21LR7D7VAFPfXfYNr/wygHMHRdJUl4pc5Zsx9Egzlrkn8ovZdNxTdj/ejIfc7n2++wbZGLOmN6M7+PH6CjfDheYBoPAx90ZH3dn+jRJj25IXkkFB9PNHEwzcyDNzLbEhuK/T4CHLv69dPHvdc6roQkhbGE6f76sH+uO5vDVrjQWb0rk7Q0nGdbLm+tHhXPFkFC89PwdRwcDMwYEMWNAkK1M52c7UkhrVPo4v7SSp5cf4enlR7h1XG9uHRdJn0CPc3p9CsVvQQl9oKysjPDwcNv8I488wiOPPMKcOXN48sknufnmm9s8xsMPP8zvf/974uLiePfdd5k6dSqTJk0iMLCNp6fijDmVrw0yFR2gxU7GBXmwtpmh5+2FIks1VTUSv0YhMDaPfol9Cua8kuYr1wD4ubsQ30wlC3uhsKzS5r2vj5ODAZOLI6eVR1/RDnKKLNz18R7b/OS4AOaNjyLtdBlzFm+jplbyxYKxvzmO+1C6mVd/SbA9v0K9jFw8IIgJsf6Mi/Gzq5A+fw8XpvYNZGrfundaTpFFE/96A2DTiTy+2ZsOgEFAbKCJQWFeDIvwZkpcwDktY+ni6MAlg0K4ZFAIOcUWvtubwVe7U/nLt4d4evkRZg4M5rZxvRlVb2Rya5nOuyZFs+JgJm9vSGz2OffR1lN8tPUUE2P9uW1cJFP7BdoG9lIo7A0l9IHa2qa1dgE2b97M7Nmz8fb2ti1bv369bdrf398Wo//ee+/Zlvfq1YsTJ050iq0KSCnQqhlF6C+N3n7u5JVUUlZZjZuz/f2krZ5v30ZC3+TiiJODsNsQGKtdzYXA+Npx6E5NraTIUm3z2DXGx91ZCX1Fm9TUSu793x5bgxfgjZuGk2W2cMvi7ZRUVPPZgrG/Kak7PrOI135J4Ocj2Xi5OvHHi+O4fEgokX5u3aq8Y6CnkemeRqb3D7Ityy6ycCDNzMG0Qg6mm9mQkGMLe4oL8mB6/yAu6h/IsF4+50wcB5qM/G5SNPMnRnEw3czS3Wks25vO8v0ZjIjwZsGkGGYMCLLZ4+hg4KphYcwaGsqm43m8veEkv57Mb3LcTcfz2HQ8j16+rtwxPoqbR0eoQbgUdof9qSI74f7772fVqlWsXLmyq01RNCKloAw3ZwebcA730QZtSj9dbpeVVPJ1odA4dEcIga+7MwV2GqNvrUXv597Uo+/r7oy5vIqqmtoGJUPtgSI97MG7hTr5Pm5ODSqnKBTNsWxvOjuT68a5eGvOCKpqa5mzZBv5JRV8Mn8MA0O9zuiYx7OL+dfq46w4mInJxZGHL4rjjgmRPSrmO8jTyIwBRmYM0MS/lJKkvFLWHs1hdXw2izYm8tb6k/i6OzOlbwAX9Q9iYqz/ObkHQgiGhHszJNybxy/tx1e70liyOZG7P9lNlL87d06IYvbIcJtYF0IwSR+Vd39qIe9sPMmqQ1k0ruacWlDO08uP8Maa49w/LZZbxijBr7AflNBvgTfffLOrTVC0QGpBGRG+dZ4vq9BPK7RToW+NdXdv6hn3c3ex29Ada5JwczH61mWnyyrtKrwAoLANoe/tpjz6itapqK5pMPLtwFBPLozx58ZFW0kvLOfD20czPMKn3cdLyivl9dUJfLc/AzcnB+6f1of5E6LPi0HbhBBEB3gQHeDB/InRmMur2JCQy5r4bNbE5/DNnnScHARjovyY3j+Qi/oHnZMQHzdnR267MJI5YyL48XAWizYm8uSyQ7z2SwK3jotk7rjeDXphh/by5r9zRpKUV8riTYks3Z1GZaORd0+XVfH3H47w4k9HeXRmPyX4FXaBXQj982U4ensf1Km7kF5oIczb1TZvTYJrnDxlL7SW1OrnYb8hMPkllTg7GpotpWd9ARaU2qHQ10W8t2vT+w2a7SdzS86lSYpuxqfbUkgvrHuevD/vAp5YdpCTuSW8N+8CxkT7tes4aafLeH31cb7Zm46zg4EFk6K5a1JMkzC+8wkvVydmDQ1l1tBQqmtq2X3qNGuO5rAmPtuW7BobqIX4TO8fyIiIzg3xcXQwcMWQUC4fHML2pAIWbUzktdUJvLXhBNeP7MX8iVH09qvLwYjyd+e5awbz0EWxfLAlmY+3naLY0nCALUtVLX//4Qh//+EIT10xgDlK8Cu6kC4X+kajkfz8fPz8evbQ01JK8vPzMRrtSxR1R3KLLQzrVddlro04K0i3U6FvDd1p7uXu6+7MqXz7HEE5r6QSf3fnZv8vbULfDnsjrB79lryl3m5OFKrQHUULFFs0r6yV568dzJ6UQlYcyOSPF8cxMbZ9o/ZuTMjl3v/tobK6lnkXRnL35BjbyMwKDUcHA2Oi/RgT7ccTl/UnOa+U1fHZrD2awxK9Uo6PmxNT+wZyyaBgpvYL7LRQQSEEY6P9GBvtR0J2MYs3JvL5zhQ+3X6KSwYFs2BSDMN61eXrBZqMPHpJP+6ZEsNnO1J4d3MS2UXas97BIGxlOv/xwxH+8cMRnry8P3PG9D7nlYgUii4X+uHh4aSlpZGbm9vVpnQ6RqOxQXUfxZlTXVNLfmklAfW8yAaDIMDDhZxiSxda1jL5pZV4uDji4tj0Aa+F7thnjH5BaQU+LXgerXH79tgbYdZFvHdLybhuzpRUVFNZXYuzo33lFyi6nsWbkmzTwZ5GLh0UzIzXNjIgxJO7Jse0ub+Ukve2JPPsiiPEBZlYfOuoc1ptpjsT6e/O/InRthCfjQm5rD2aw9pjOXyzNx1/DxeuGxHGDRf0Iiag80pbxgWZeOn6ofxxZl8++DWZT7adYuXBLEZH+bJgYjTT+gXaBs8yGZ1YMCmG2y6M5Lt9Gbyz4SQnc0txMAgcDMIW3vPMinieWRGvBL/inNPlQt/JyYmoqKiuNkPRTSgorURKmnjGAjyNzY5uaA/kl1Q2G7YDWuhOaWUNlqoau+vaNZdXtRjnXj90x96whe40U14TsDVeCsvtL+xI0bXklVTwxprjtvkv7hrLP36Ip6C0kvfnXdCmN7miuoYnvz3EV7vTmDkwiFdvGNalA0l1Z7xcnbhyaChX6iE+64/l8sWuVJZsTuKdjYmM6u3DDRf04vLBIZ12j4M8jTx2ST/undqHz3ek8N7mJOZ/tIs+gR78bmIUVw8PszlwXBwduGFUL2aPCGd1fDZvbzjJnpTCBt59UIJfce5R7ixFtyJHF/MBjSrYBJpcyCmyT6FfUFrZYkyuPQtmc3lVyyUq9QaAPXr0raE7nsbmX/4+atAsRQv8e21dWeRHL+lLUl4pX+9J457JMQwKa73CTm5xBbcs3s5Xu9N4YHosb80ZqUR+B+HoYOCiAUEsvnUUW/88jccv7UdBaSWPLj3A6GdX8/jXB9iTcrrT8uA8XByZPzGaDY9O5fWbhuHsYOCxrw8y4Z/r+M+6E7ZeRNB6mC8eGMzX91zIl3eNY0pc86Fez6yIZ+jff2bJpkTKK2s6xW6FAuzAo69QnAlWr31jj36gyYVdyQVdYVKb5JVUtDhqprUST35JJaH1EoztAXN5y7XoHR0MeLs52WVp0MKyKkxGRxxb8L5aB9JSlXcU9UnJL+ODX5Nt8zeO6sWVb26mT6AH90/v0+q+h9LNLPhoFwVllfznlhFcPiSkk609fwk0Gbl7cgx3TYpmZ/JpvtiZynf7Mvh8ZypxQR7cMKoX1wwPa1LOuCNwqldff8uJfN7ZeJKXfjrGf9adYO643twzOcbWkyiEYHSUL6OjfInPLOKVn4+xOr7hwI6V1bU8syKe135J4KGL4pgzNsIux4JRdG+UR1/RrbAK/cAmQt/I6bKqJuXO7IGC0spmS2tCvdFx7UwwSykpKq/CswWhD5pgtsd69K2FHEGd0C9UQl9Rj1d/OWabfnB6LK/+kkBWkYWXZg9pNr/GysqDmVz/9lYAlt59oRL55wirkH7lhqHs+Mt0nrtmMK7OjjyzIp6xz6/hnk92s+5YToOwmY4894RYfz6+cwyrHpzIjAFBLNqYyMQX1/HvtccprWhYhad/iCdLbruApXeP44LIpmVZSytreHZlPOOeX8uijScpq6xuso1C8VtRQl/RrcgtacGj76nN59lZYquUksKyKrzdW4p11+y2t9AdS1UtlTW1LXr0QQuNaVxWzh4oLKtssbQmgI/+t7DHRoqiaziZW8KyfRm2+QGhnny6PYU7xke1Wi//f9tT+P2nexgQ6sl3901oM7xH0TmYjE7cMiaC7+4dz08PTWLu2Ei2JeZz+/s7mfDPtbz68zFSCzqnuln/EE9ev2k4qx6cyJgoP17+OYHJL63jgy1JVFQ3DMkZFenLl3eN4715o+gX3HTMF3N5Fc+tPMqEf65j0caTWKpUSI/i7FFCX9GtyCmyYDI6NklctXpp7U0wV1S3LpitlWHM5fYlOq32tCr0XZ1so9DaE4Xt9Ojb229F0XV8tSvNNn3FkBCeWxlPbz83/nBx3xb32ZaYz1+/O8TUvgH873djVOlMO6FvsIm/XjmAbU9M5z+3jCA2yMSb604w8cV13PHBTnZ2Uohnv2BPltw2iq/vuZA+gR4sXH6EaS9v4KtdqQ16FYQQTOsXxMoHJvKvG4fRy7dpyGZBaSXPrTzK9Fc28P3+DDUGj+KsUEJf0a3ILaloErYDdQmW9lYf3WxLDG1eeJr0hNGicvvyjBdZ2hb6JqMjxRb7ut+glddszW6jkwPODga77I1QnHuqa2p5e8NJ23yErxun8st45upBLVZESS0o4/ef7qG3nxuv3zy81dAeRdfg4ujA5UNC+OiO0Wx+bBoPTI9lb8pprn97K7Pf+pU18dmdIqBH9vbhs9+N5eM7R+Pr7syflh5g5r828uOhzAbnMxgEVw8PY80jU3h61kD8m6nMll5YzgOf7eW6t35lb8rpDrdVcX6ghL6iW5FbXNGs58xaMtHeEizb8ow7Ohhwd3awCWt7oV0efaMTRXYoltvy6IP9NlIU555Nx/Ns08N6ebP8QAbDenkzoY9/s9uXVlTzu492UV1Ty5LbLmixEa+wH8K8XXlkRhxbHp/GwisHkGm2cOeHu7jkX5tYtjed6pqOze0SQjAxNoDv7xvPW3NGIKXk7k/2cPV/trC53u8NwNnRwG0XRrLhT1P5w4y4Zkci35NSyDX//ZUHP9/bYMRmhaI9KKGv6FZoQr9p7XNvm0ffvoR+UTsEs5cdhsBYy8W1Fbpjb2JZSqkl47YSow9WoW9/jRTFuad+pZ0LY/xILSjnnikxzY4IXVsr+cOX+0nILubft4wgyt/9HFqqOFvcnB2ZNz6K9X+awqs3DKVWSh76Yh9TXl7PR1uTO7zMpRCCSweH8NNDk3hx9hDySir5v3e3c8vibU089O4ujtw/PZaNj07ldxOjmh3M77t9GYx/YS0v/3SsScKvQtESSugruhW5xRVNaugDNmFnbwmWttCdNgRzd4zRN7k4akm7dlTpqKSimppaiadr6yXqTEb7a6Qozj2nSyvZkKCNyu5pdGTdsVxiAtyZ0T+o2e3fWHucHw9n8cRl/ZnUQn10hf3j5GDg2hHh/PTQJJbcOopAkwt//e4wE/65ln+vPd6gLn5H4Ohg4IZRvVj7x8n89YoBHMsq5pr//sqCj3aRkF3cYFtfd2f+cvkA1v9xCjeMCsfQtL3Jv9edYMQ/fuHLnamdUlVI0bNQQl9hIyG7mNlv/covR7K72pRmqaiuobSyBt9mKtg4OxrwcHG0u9Cd9sS6ayEw9iU625uMC9iVYC7RvVymNsIpPFyUR18B3+1Lt03fPDqC+Mwi7pocg6EZdfXjoUz+tfo4140I584JajT3noDBILhoQJBtcKsh4V68/HMCF76whudWxpNdZOnQ87k4OnDHhCg2PDqVR2bEsfVkPjP/tZFHvtzXpCpQqLcrL84eys8PT+KSgcFNjlVRXcujXx/gijc3s/VkfofaqehZKKGvsPH41wfYdeo0D36+1y7LelmFWUvecW83J/tLxm1XCIyj3SXjWoV+a4LZlkhsR4LZ+hsxtTAqrhWT0dHWKFCcvyxcfsQ2vT+tkGBPI1cPC2uy3bGsYh75cj/Dennz7DWDmg3rUXRfrDX53799NCsfmMhFA4JYsimRif9cx+NfHyAxt6RDz+fh4sgDtjCdaFYcyGTaK+v523eHyClu2LjoE2ji7bkj+fb3FzIu2q/JseIzi7h58TYWfLSL5LzSDrVT0TNQQl8BQJbZwp6UQsb38aOssoZ1R3Pa3ukcU9RGBRttACf78uiby9sWnvbq0TcZHXFort9Yx/p3sCePvlXoN5fQVh8tdEcJ/fOZ+Mwi2/QFkT5sSyxgfjOx0bW1kse+PoCbswOL5o5sUtpX0bMYEKrVxV//x6nccEE43+xNZ/qrG/j9p7s5mGbu0HP5uDvzxGX92fCnqcwe2YtPtqcw5aX1/Hf9iSY1+IdH+PC/343hoztGN1uD/+cj2Ux5eT3P/HDE7kJBFV2LGmtZAcDG41qc6hOX9eeGt7eyLTGfSwfb1wiPRTaPfvM/W283J7uL0S+yVOHu7ICTQ8ttanusR19U3nqJSqjrWbGn3ghro6Ot0B2T0dHuGleKc0v92vlF5dV4Gh25aXREk+2+25/OvtRCXpo9hEDPpoUAugopJQWllSTllZKYW0piXik5RRZqpUQCtRJqpQT9W1q/9X1NRidCvY2EeLnW+3bF0+ioeiyACD83nrl6MA9Oj+P9LUl8vPUUKw9mcdngYB6d2Y/IDkzEDvYy8vy1g1kwKZrnV8bz4o/H+GpXGn+7cgBT+gbathNCMCkugAtj/Pho6yle+yWB4kY9k0s2J/HV7jT+cHEct4yOwLGVd4/i/EAJfQUAB9PMmFwcGRDiycBQLw6kd6znoiNoq4KNj5szKZ00+uFvxdxOwVxcUU1trWw2NrgraI/ddaE79iOY62L0W3+0eeqhO/Z0zxXnjppayXtbkmzzCTnF3De1T5OeoNKKal5YdZQh4V5cNyL8XJsJaKL8eE4Jx7NLSMorsYn6xNySBmFzTg6CQJMRB4PAIDRRKAQYhECgf1uXA+byYrKKLE2SOd2dHQjxdiXEy0iYtyshXq5E+LkyNNybKH/3864REGBy4dFL+nH3lBje3ZTEoo2J/HIkmzljevPA9Fh83Vuv8HUmRPm7s+jWUWxIyOXp7w8z7/2dzBgQxF+vGEAvXzfbdo4OBu6YEMUVQ0N4YdVRvtmT3uA45vIq/vrdYT7aeoq/XN6fqfUaC4rzDyX0FYDWjd0vxIQQgkFhXny6/RTVNbV25Q1oa/ApHzcnTtvZaKfm8qpWK+6AJjqlhOKK6jbF9bmivQ0UsM/QnbZj9J2QEkorq9v0/it6HgfSChvMOzlotcwb8/aGk2QXVfDfOSPOaYNQSsne1EJWHcxk5cGsBrXTQ7yMRAe4M2tYKFH+HkQHuBPt706Yt+sZP69raiW5xRWkF5aTaS4ns9BSN222EJ9ZRF5J3TPV282J4b28GR7hw/AIb4b28j5vxhHwNDrx8Iw45oyJ4LXVx/loazJf707j7ikx3DkhqkNDuibHBfDjQ5N4b0sSb6w5zvRXN3D35BjumRzTYBC3QJORV28Yxs2jI3hq2SGOZjWs4HMip4Tb39/JpLgAnry8P3FBTUN+FD0fJfQV1NZK4jOLmD1S81j1CzFRUV1L2unyDu2ePFusnuOWhLOPuzNFlmq7aqAUtUfo20Jg2hbX5wpzeRV9Aj1a3cYeR/UtaWeMvodue7FFCf3zkU2NBi2a2jcA/0Zle1MLynhnYyJXDQtlZG/fTreptlayN/U0Kw9msepgJhlmC04O2sBLD06PZWCYJ1H+7rg5d9xr28EgCPYyEuxlBHya3cZSVcOp/DL2pZ5mz6lC9qaeZn1CLlKCENAnwIMRuvAfHuFDn0CPVnN7ujuBnlqYzZ0TInlh1VFe+ukYn2w7xSMz4rh2RHiHXbuzo4G7J8dw9bAwnlsZzxtrjvP17jSeumIAMwcGNehZuSDSlx/un8An207xyi8JTfKPNibkMvN4LndPjuHB6bEqz+Q8Qwl9BdnFFkora+ijt/atg8Ak55fal9DXBWVrybigjYza+KXdVZjLqxp0uTaH9XrsKQSmyFLVpqfOw9kRIezNo1+FEODehhiyNlJU5Z3zk/9tT2kwf/mQ0CbbvLDqKA5C8Pil/TrVliMZRXy1O5VVB7PIKrLg7GBgUpw/f5zZl+n9g7q88W90cqBvsIm+wSZuvEDLYSiyVHEg1czelNPsTS3k5yNZfLErFdAa2SN6+zBjQBAzBwTZVV5DR9In0MSS2y5gW2I+z6+M509LD/Du5iT+fFl/JnfgGAvBXkbeuHk4t4yJ4G/fHebuT3YzMdafhbMGEhNQ54xxdDAwb3wUlw8J5YVVR/l6T1qD40gJb60/yYoDmTx7zSAmxqpxIM4XlNBXcCpfi2uP9NMEaW/927rcXiiyVOHkIDA6Ne+trz86rr0I/aLytgWzNbnY3jzjbYW/GAwCk4ujfZXXrKjGw9mxzTALU3MVg3Ysho0vwcznYPDszjSzRyOESAaKgRqgWko5SgjhC3wBRALJwA1SytMtHaMzKbJUkVWvPrqLo4Hp/RrGMG9LzGfFwUweviiOEC/XTrEju8jCSz8d4+s9aTg5GJgUG8Bjl2ri3t7DYTyNTkyI9WdCrD+ghRol55dpwj+lkM0n8nhq2SGeWnaI4RHezBwYzMyBwT1yJOGx0X4su3c8PxzI5MWfjnLbezuYGOvP45f2Y2CoV4eeZ8UDdV77S/61kTvGR3H/9NgGPZgBJhdeuWEot4zpxVPLDnOkXnUpgJSCMua+u4Orh4Xy5BUD7OZdqeg8lNBXkKIL+t6+2kM4wMMFN2cHkvPtqyavVTS3lAxm9ejbU+WdIkvbcffW9Q08+pVlsOllGHEr+ER2ooVNqamVlFbW2MJbWsPUuDRodSWs+hOEDoeR8zrPyBYobkcDBZoZA0BK2PZfKMmG3R8ooX/2TJVS1o+PeRxYI6V8QQjxuD7/WFcY9uuJhoMLTe0biHs9oVRTK/n78iOEebuyYFJ0h5/fUlXD4o2JvLXhJNU1kgWTovn9lD5d7rk/G4QQRPm7E+XvzrUjwpFSciKnhJ8OZ/HT4WxeWHWUF1YdJTbQwyb6B4V59pjEXiEEVw4N5eKBQXyyLYU31x7nijc3c83wMP5wcV/CvDumsWj12l8xNJQXfzzKOxsT+XZvOn+5vD+zhoY2uJ8je/vy/X3j+XR7Ci//fKxJOM+yfRmsic/hqSsGcP2o8B7zt1A0RQl9BacKSnE0CEK9tS5WIQQRvm62BoC9UGSpbjXe3Sb07SQht7qmlpJ2JNjaQnfql9hcvRB2vAOnfoU7fuxEK5tiDWdpK84drKVB671AdizShPLuD6DPReB1biuVFFuq2tVA8awXow9A3nEoSARXHzi1BcoLwdW7M00937gKmKJPfwisp4uE/rd7G4Y0XDakYRnhHw9lcSSziDduHt4g8fFskVLy/f4M/rnqKBlmC5cMDObPl/Wjt1/P83ILIYgNMhEbZOK+abGkF5bz8+EsfjqcxX/Xn+Df604Q5u3KjAFBXDwwiNGRvnaTV3U2uDg6cOeEKGaPDOe/60/w/pZkfjiQyR3jo7hnSkyHNeb8PVx4cfZQbh4dwd++P8yDn+/j020pPH3VQPqHeNq2c9STzC8fEsI/Vx3lq90Nf/vFFdU8+vUBvt6TxnPXDm4QCqToOXT//yzFWZNSUE5oo4oNIV7GBt3b9oDm0W9l4CnXRl7aLqatuv9WrI2XBoOcHF2hfadshdK8ZvbqPNpbohI0wdwg/OX4z2DQ9zuxpjPMa5WSivYl1zYJ3cncr32PfxBkLeQe7SwTzwck8LMQYrcQYoG+LEhKmQmgfzep9yeEWCCE2CWE2JWbm9s5hknJT4ezbfPNhe18uDWZXr6uXN6B44jsSy3kurd+5cHP9+Hj7sznC8by9tyRPVLkN0eYtyu3j4/i8wXj2PXkDF6aPYT+IZ58tiOFWxZvZ77PqLQAACAASURBVMxza3h+ZTyn7KwX+bfi5erEny/tz7o/TuGKISG8s/EkU15ax/tbkqiuqe2w8wyP8GHZ78fzwrWDOZ5TzOVvbOJv3x2yjchuxd/DhZeuH8rX91zIwFDPJsfZnlTA9Fc28NovCU0G6lJ0f5TQV5BZWG7z5lsJ9nIly2xnQt/SegWbZuOuAU5trRNy55C2RvK1YnLRklptDRRzGhSlwYCrtPm0XZ1pZhPqKte0TzDb7K6ugNTtMHoBuPpC6o7ONLNZii3V7eqJsG5jvVZy47UGSr8r9Xkl9M+C8VLKEcClwL1CiEnt2UlKuUhKOUpKOSogoHMSBRvnHU3r1zBsJz6ziB1JBcwd27vDqqd8vDWZa/+7hdTT5bx43RC+v28CY6P9OuTY3RFfd2euH9WLJbeNYs9TM3hrzghGRfqwZHMSk19az9x3t/PjoawOFcRdRZi3K6/eMIzl901gYKgXTy8/wtX/3dKhI+waDIKbRkew7o9T+L+xvfl42ymmvrKer3alImXDMRJG9vbh+/sm8I+rBjbrNHt9zXEufX0T2xLzm6xTdF+U0FeQabYQ2ijhLMTLSH5pJZYq+2ndt5XYamocjgGQuB7evwSWzICqc9twaa9n3GAQeLg41oXupO/WvkcvAOEA6edY6FdYR5dtX6x7qbVyTf4JqLZA2EjoNfqc2w3tSyIGcHN2wMEg6n4rOfHg1wd8o8HJDXKU0P+tSCkz9O8c4FtgNJAthAgB0L9zusI26wjgVi5r5LX/aOspXBwN3DCq11mfyxrr/9R3h5naN5C1f5jMDRf06tGlJ88UdxdHLh0cwjtzR7HlsWk8fFEcJ3JKuPuT3Yz/51pe+yWBTHN52weycwaFefHxnaP575wR5BRVcNV/NvP35Ufqnp0dgLebM3+/ahA/3D+RaH93/rT0APPe30lGYcP752AQzB0Xybo/Tml2ELjE3FJuWrSNR5fup7DMPsJgFWeHEvrnOTW1kuwii15HuY4QfT6nqKIrzGoWLUa/ZRHn5GDA6GRoWDLx0Dfad00FHFvRyRY2pG7wpnZ4xl0c6+zOP6l9hwwFv5hz7l222t2eWHc3Z4e6l1VegvbtHwcBfbXrqD23DcWidgp9IbTGla33Jy9Bs9tgAP9YyD/eyZb2TIQQ7kIIk3UauBg4BHwP3KZvdhvwXVfY98OBTNu00cnAtHphO+ayKpbtTefqYWF4u53daKelFdUs+GgX721J4o7xUSy6dZQar6ENgr2MPHhRLJsencriW0fRP8STN9YeZ/wLa/ndR7vYkJBLbaNRfLsTQgguGxzC6j9M5pYxEbz//+yddXhbV7bFf0dsyzJTHOY0zNQ0bcrclJmZYabttPOmM+9NO9NOp4wpY0qZ4pQx1DAzOew4ZlsGWXTeH/dKdmKho6tYidb3+VNE1rYi3bvOOmuv/ftWTnhyJj+t3Rv+yVFgYFE6H984gf89cxCLtlVx4lOzmL5gRxt1PydNSed58+oxFAaIQP148S6Oe2Imny/b3ea5SSQWkkT/MEdFfTNur6RT5v6KvnK9I6kpkURV2izGfa07W36FfieDISXuFhhfHZEQT6u5lTJetQXSCsBsUxTmymIty2wD/wIlQguMf4FSvhEQijKe0we8LqjZEfL5sUZ9sytiQmWzGJS/VUrFLpWpZIST2Q1qdmpY5SGNAmCOEGIFsBD4Wkr5HfAocIIQYhNwgno9rpBSsnBrlf/6pD55+9h2PlmykyaXh8sndD+g19lT28T5L8/jt43l/P2sQTx0xsCkih8FDHodJwws4K2rxzLzj1O48ejeLN1ezZVvLOTof//KS79toaK+4whQ0SLdYuThqUOYcdNEbBYj172zmJvfW8LeGPbE6XSCKyf24Pu7JjO0SwYPfraKS19bwM6qtgEbU/rn88M9k7lgdFt1v7LByV0fLeeKNxYeMv0ThyOSRP8wxx7Vh99pvxV9rk1RtFqPPz+YcLg8NLu9YafM2iytct0bq6B2B3Q/EoqGx9/rHkV6TZqlFWGu2qoQfIDs3koajDd+flV/3REuUJrdXsVPW7kJMrqCKVWpG5RFS5zg8nhxuLwRvd/Qqr+goVyxHPmIfkY3qN2pLACSiApSymIp5TD1Z5CU8hH19kop5XFSyr7qZVW43xVr7KreV7SY0LvFJ+/1St6dv53R3bMY3Ln92eerd9cy9YW57Khq5PUrR3P5hB7t/l1JQLecVO4/eQDzHjiO5y4eQefMFB77bj0TH/2Fh75Y3aGEqGgxqnsWX90+iXtP6s8v68s4/omZvDtvW0x3Lbpmp/L+deP4x9lDWLmrlpOensXbv7d9jXSLkX+dN4y3rh7j381vjdmbKjjxqVm88OtmXIdA78ThhoiIvhAiUwgxQwixXgixTggxQQiRLYT4UQixSb0MPD87iQ6NMlVFyE/fd2hGtlUh+lUNHUM58anMoVJ3wKfo+xTmDcpl3gAl1710VVzJWzSEeR9lvKq4FdHvCe4mqC/Vqsw2aGnGjcy6A9Dg9CgqeJaqhuaoRD+OuxH1jsjTggCsJj2NTrdC6kFZpABkdgVXo7JQTOKQward+zZAjuuZ7f/3zE3lbK9s5IqJPdr9+1fvruXCafMw6HTMuHkCx/RvEyyURDthMug4Y1gRH94wgZ/umcw5IzozfcEOjv7Xb/zP56vYXZOYhN9k0HHrlD78cPdkhnXN5C9frOHcl39nfWld+CdHCCEEl4zrxg93T2ZMj2z++uUaLnplPlsr2ir0x/TP5/u7J3NhgB6VZreXx7/fwOnPzolpM3ES2iNSRf8Z4Dsp5QBgGLCOlgEofYGf1etJJBh8iv3+0/GyVY9qZQfJpPcNZQqn6O8T91jhI/r9FOLpbgJ7/AizPQriaTWp1h2PWxnalN5ZucM3LKt6u0ZVtoW92Y0QSk3h4FsMKIR5V0vd1nzQGcFeomWp+8AexQIFVLuUb4ECCsGHluz/2vjajpLQFq1tO2lmwz554+/8vo3cNDMnDyps1+8urXVw3duLyUw18ektExlQ2DbCMInYoE++jUfPHcqvfzyG80Z34aNFOznm8V958LNV7KruWLNfIkX3HCvvXjuWpy4cxvbKRk5/dg6Pfbc+pmEYRZkpvHX1GB4/byjrS+s4+elZvDqrGE8Adf+x84YGVfc37LVz9otzefbnTYdEMtLhgLBEXwiRDkwGXgeQUjqllDUoA1DeVh/2NjBVqyKT0A4+r2NO2r7NZwa9jsxUI5UdxLoTcVSlz3cNyhAkQ4pixfAp5FXxU5jtDjcmvQ6zIfzQHcWj71FsJNILNpVw2NRUkDgq+naHizSTAV0EvuJUlVQ3NDWDfU8LSdbplL8hngsrf1pQZB59q1lPY7Mb6nYrN/gWKX6ivzvWJSZxEPHW79v8/x7dI8vvm69qcDJrUwXnj+6CyRC9m7XR6ebatxdhd7h47crRFARobEwi9uianco/zh7Cb/dO4cIxXZmxeBfHPP4bf/rPyoBe9I4OIQRnj+jCz/cczdkjOvPSb1s48alZzN4Uu5kSQgjOH92VH+85mqP65vLIN+s47+Xf2Vxmb/NYn7p/0Zi26r7bK3nyx42c+/I8tpTXx6y+JLRBJEe1XkA58KYQYpkQ4jU1TSHsABSIzxCUJNqPivpm0i2GgGQ022qiKpCi74n/QKpIh0/tk6RSu0shbTrdQSH69c2RTWkFSDPrlbp9hN5H9NOLlMu6PYGfqAHqHe6o6gZortkD0gMZnVvutBVCXfwV/UitO6m+XRR7KejNylRcgDT1vY/j4ioJbbF/asjYVradn9btxeOVnDo4+gFZHq/kzg+Xs25PHc9fMnKfXYIk4oPOmSk8PHUIv917DJeM68anS3cz5d+/cd+MFQnZQJplNfH4+cP44PrxGHSCy19fyF0fLotpA3JBuoVXrxjNMxcNZ2tFA6c+M4cXft3cRqFPtxh59NyhvH3NWIoCqPsrdtZw2rOzA/r+k+g4iIToG4CRwEtSyhFAA1HYdOIxBCWJ9qOivpk8mzngfTlWE5X7e/S3/AqPdoMFr8ShuhbURqzot/Lo15W0EOX0LspApHgS/QiHN4Hi429wepA+Qu8j+ilZoDcpanmcUN8ced2pqr3HW63aXNJbJTfYOsVV0W+PR7/B6VGsUrYCEOoOhjUPEFB/UKLek9AA+w/Kau3P/351KZ0zUxjcOXqS/th36/lx7V4eOn0gUwYkPfkHE0WZKfzfWYOZdd8ULhvfnc+Xl3DsEzP5w8cr2FGZeAr/hN45fHPnUdxxXF++XrWHE5+aFdMoTiEEZw3vzI93H81xR+Tz+PcbOPvFwP0BR/fL47sg6r7D5eWvX67hijcWJnRz9KGMSIj+LmCXlHKBen0GCvHvEANQkjgwVNidbfz5PuRYzW0V/e//DK4G+OHPcR1A5bfuRJC60+j0KMpEXUmLHUNvUIhnHBXm+ubIMt1Bse54vBJ3rUrofaqyEKoFJs5EP2JFX3mcx65+/W0FLXfGmej7rDvRePQbnaqin9bKm603gDVXWQAkcUhgxa4a/7/NBh1DOmcCymd99qYKThpUiBDRRWB+sHAHr8wq5ooJ3bnqyJ4xrTeJ9qMww8LfzhzE7PumcMWE7vx3ZQnHPzmTx79fH9MBVfGAxajnnhP68c0dR1GYbuG6dxbzP5+voskZO+9+ns3MS5eN4sVLR1JS08QZz83hmZ824XQHVvffCaLuz9msJPMkc/c7HsISfSllKbBTCNFfvek4YC0dZABKEgeGivpmcoMo+tlppn09+nUlULYGehwFHifs+D1OVbZqxo1A0Qeob2pWrBfprbbjbZ3i2hxaF42irz7OVVMCCEhrpQ7aiuLeRBypz92XuiMb1JHpqbktd9oKobkWnPHZPo9mQBkoRN/lkXjte/ddoIAyx8CeJPqHCn7b0GIbHdkty+/F/3V9GU6Pl5MHR9eEu7akjr98vpqj++Xx0OkDY1prErFBQbqFv54xiFn3TeH0oZ144dctHPvEb3yxPPGIaN8CG5/dOpEbJvfivfk7OOP5OawpiW3yzalDOvHjPUdzyuBOPPXTRs56YW5A7/7kfnl8f/dkLh7brc19doebuz5azq3Tlwa2/SZxUBBp59HtwPtCiJXAcOAfdIABKEkcOMrrm8kLquibqG50tnjvts5SLo/9i2KD2To7TlVCXZPS2Goxhv7I+hT0hupS8LpbrDugkP44e90jt5GoynhdqaIm61uR1Tgr+naHK6JhWdBKPW/0Ef0WS4S/kThOi5ToPfpqX0r9foo+KEQ/qegfMvhsWUtj9bheLZ/R79aUkptmYlT3yNOh3R4v9/9nJZmpRp6+cDgGfXIcTUdGQbqFJy8czn9unkCezcydHy7ngmnzYk6UtYbZoOfBU4/gvWvHYXe4mPrCXF6dVRxTb3y21cSzF4/glctHUVbn4PTn5vDhwrZTdW0WI/88ZwjvXtui7hv1LTti36wq5aSnZ/HL+uQxtCMgoiOUlHK56rMfKqWcKqWs7ggDUJI4MDhcHuwON7lpgce9Z1tNeCXUqLYZ9qxQUmy6jIbcflC2Nm611jlcpKcYwm6v+3L2HZVqZKKtFdG3FXVYr7vPKiP3t5GAslip2xO3GQBRefTVx+kcVWC0grHVhGXfbkqc3nO7w41RLzBHmJxiNRkw4kbnqFGIfWukFSQ9+ocI9icpw7sqth2Hy8Nv68s4YWBhVJNr35i7lVW7a/nbmYPIsgY+dibR8TCqezZf3DqJR88ZwpbyBs54bg5//mxVwinPk/rm8t2dkzl2QD6PfLOOK95YGNOpugAnDirk2zuPYlT3LP706Spum77M3yfXGkf1zeObO4/ixIEFuDwSk16HQf0uldubueatxTzw6aqEs0wdakhKEYcxfF38wTz6bYZmla2F/AGg00PBINi7Ji51guLRD2fbgRbbhrtml3LD/oq+sx4csRtGEgqKRz8yG4mPWOsaSlsacX2wFSp9Ec1tt1G1QDSpO6lGRRU3OqrAmrPvnXFW9OubXdgsxoi91lazgUzU93T/2tPyFUU/wbb4k2iL/ad7D1STceZurqDB6YnKtrO9soEnf9zI8UcUcNqQ6FN6kji40OsEF43txq9/OIYrJ/bgw0U7mfLv33hn3raEyoTPspp4+bJRPHrOEJZsr+akp2fx3erYHmfz0y28e8047ju5P9+tKeXUZ2azZHt1m8dlppqYdvko/u+sQSBQZ7C0pPh9sHAHpzwzm0XbklrwwUKS6B/GCDYsywff7f4T5d61kK/6UfMHKhNFHfHZ/qxzuLGFacSFFtuGrFW9+Omt4x5V0h8HhVlKqeTRR9GMC2BsLGvrF7fFTxn3eCUNTk/Eir5OJ7Ca9BibqyF1f6KvEqg4KvqR1g2QataTLVSiv3/taQXgdUFT2xNbEomF1jnfuWkmf8rY92tKsVkMTOiVE+yp+0BKyQOfrsKo0/Hw1MFRN+8m0XGQkWrkr2cM4ts7j2Jw53Qe+mINpz83h3lbKg92aRFDCGXR8t87JtE1K5Wb3lvCA5+uVAIGYgSdTnDLMX345KYJCAEXTJvHC79ubjNkSwjBFRN68NktE+manUqjy0NmqtGv7u+oauSCafP457fraHbHrpE4iciQJPqHMSrsqqIfrBnXr+g7oakGGsogT+3JzumtXMZpYqui6IcncT4FXdhLlMmsrQmcz0oSh+SdZrcXl0dG0YyrR4cXU1NFC7H3IY5Ev8EZnc8dFPuOxVXTliyb08GYGj9FP4qeCFCsO36in5K9752+xVbSp5/wWNkqceeITukIIZBSMndzJZP65EY8JOvjxTv5fUslfzp1AIUBUkeSSDz0K7Dx3rXjePmykdQ3u7n41fnc8/HygDaVjoreeWn85+aJ3HxMbz5ctJPTn53Dql2xFeBGdsvimzuP4pTBhTz+/QYuf31BQLvQoKIMvrptEueO7EJNo4sUk95/DpQSps0s5qzn57K2JD676kkoSBL9wxgt1p3APtMclehXNjgV9R4gs9u+lzVxIvoOV9hoTWghqIaGPQqx17X6iMeRMNc3R5npbjaQQx0Cb1u/uK/uODQSR9vQCortKMUdgOj7okHjFGkataJv0pNFCEUf4pp2lIQ2+GDhTv+/fQOtdlU3sbumiQm9I1PzK+qbefjrdYztmc3FY9qmjSSRuBBCcPLgTvx0z9HccWwfvlhewslPx3YirdYwGXTcf/IApl83niaXh7NfnMtLv21po7wfCNItRp67eAT/Oncoy3bUcMozswM221rNBv59/jCevnA4Xq/E5fFSkN4iJq4vtTP1xbm8v2B7wqUfJSoiPysmccihsiG0dcfXaFbd4IQa9WSZ4SP63ZXLmh2a1uhDXZM7Qo++8pG2NJbu68+HVlNmtSee0Q5vSjMbyBGqypG23+Ad3/UG7ZtDfXWnmSPrLQCFMKc11OwbremDNR8a4nPCtDe76ZwZudKaZjaEtu5AsiH3EMDWipZ4V58/f16xYtEYH6Ft5+XfttDQ7OYfZw9BF0XjbrxQ0+hkfamdkpom6pvd2B1uGprd1De7qXcolzohSLMYsFkM2MwGbBYjaRYDaWYDeTYzvfPSyE0zHbaWJItRzz0n9uf4gQXc/dFyLn99IVdM6M6fThngHwzY0TGhdw7f3nkUD362ise+W8/MjWU8e9EI8tNjswMlhOCCMV0Z2T2L2z9YxjVvLeaaI3ty/yn9MRv0+zx26ojODOuaye0fLGX17jqKMizUNLlodHpwur38+bPVLNpaxSNnD/FbV5PQBsl39zBGTaMTi1GHxagPeL9RryPVpFe2Mf2KvjoZLyULTLb4EX01dScczAY9Jr0Oc3MlpA3b905jClgy46Lo26MkzFaTgaxgpNNsA4MlLqSz3jd0KgpFP9PkxSKb9o3W9CEtD8o3xqq8kFCacW0RPz7V3FrR3692P9FPKvqHEnyK/vziSrKtJvrmp4V9TpndwXsLtjN1RGf6RPB4LSGlpLiigVW7allfamd9aR3r99gpDWCjMOiEn8inmQ14paTeoSwC6p3ugH3mGSlGeudZ6Z2XRu/8NHrnpdG/wEbX7JTDZgEwtEsmX99xFI9/v4E35m5l1sZynrhgeFQRrAcTmakmXrhkJDOW7PL3Hky7fBQjusWu/j75aXx2y0Qe/XY9b8zdyoKtlTx38Qh65e37/eiZa+U/N0/ksW+V9zLbasJmMbC3TnETfL68hNUldbx06Uj6FkR+7E4iOiSJ/mGMmkYXmSmh4+EyUozKVNqaHQrZtOYpdwih2HfiQPQdLkUBiETRB7Ca9aS4apQ8+v3hi6rUGNFOadXpBJ0MqvIYyAKTlh8Xot+yQIn80JCvD1I3KIr+tjmxKC0s6h1urObAi9ZA8Hn0mw1pmPX7fbbiuLhKQjs4XC2Nfya9jl55VgAWFFcxrmd2ROT15d+KcXkkdxzbV7M6Q0FKyZqSOr5dvYdvV5dSXK5834x6Qe+8NCb0zqF/oY0BhTa651ixqeTebNAF/fu8XkmD0+1X/0trHWwpr2dzWT1byuv5bWM5nyzZ5X98QbqZ8b1ymNArhwm9c+iWnXpIE3+LUc9fTh/I8UcU8MdPVnD+y79z09G9uev4fhH3dBxMCCE4f3RXhnTJ4Pp3FnPhtPk8fPZgLhjdNWavYTHq+duZg5jUJ5d7Z6zg9Ofm8L9nDuK8UV32+WyYDXoeOmMgR/bJ4Y+frKCm0U2vPCvbKxvxeCWby+o58/m5/POcIUwd0TnEKybRXiSJ/mGM6kYXmamhyXO6xago+nInZHRRSKcPcSL6/qm4EXj0AWwmQYqjLrCVxFYYF5U2WusOQIGhAbwEJ8xxsO60x6Ofr1dTTQLVnZavJNd4XPsOAdMASv5/5K+RYtSTJew0GTJpY14TQn3PK2JaYxLxxbbKFttO34I0jHodO6sa2V3TxA2Te4V9flmdg/cXbOfsEZ3pkWvVstQ2WFNSyxfLS/h29R52VjWh1wnG9czm6ok9GNszh155VoztHNal0wlsFiM2i5FOGUpT6uR+efs8prbJRXF5PWtK6phfXMnczZV8sVyxPRZlWBjfK4fxvXM4bkA+OUHsn4mOCb1z+O6uo3j4v+t48bct/LqhnCcvGObfGeroGFCYzpe3TuK2D5Zy34yVrC2p48+nHdHuz00gHD+wgG/vnMxdHy3j3hkrmbO5goenDm4TLX3cEQV8c+dR3PnhchZuraJnrpW6JheVDU6aXB7u+mg5C7dV8dDpA4O6DJJoH5JE/zBGTaOTrNQIFH2HCxw7IWM/NSCru6LWSrnvAiDGqGtSyGckqTsAhcYmdA4ZWNFPK4CKTbEsLyB8zbjRKOMFhnpw0jYBBhTCHIeEo2ibiAFydSrRD/R++3aAGsrb9kzEEM1uDy6PjKpunU6Qp6unXp9BZqAHWHPjsrhKQjss3NqS3T2gsMW2A5H581/8bQtur+T2Y/toU2AALN1RzXM/b+LXDeUY9YIj++Ry25Q+nDCw0J+EFg9kpBgZ0S2LEd2yuGx8d6SUbCmvZ96WSuYXVzFzYzmfLtuNXqfUeOawIk4aVBDx7JBEgc1i5LHzhnLioALu/88qznx+Dnef0I8bJ/eOatDawUKW1cTbV4/l0W/X89qcrawvreOFS0bGdHFWmGHh/evG8+Kvm3n6502s2FnDq1eMbmPH6ZSRwgfXj+e5Xzbx7M+byLaa6ZufxqYy5RwyfcEOVu6q4cVLRtEtJzVm9R3u6Ph7UElohpomF1nWMIp+ioHaJrfi0c/cj+hndgOnXfOs8WgV/U7GMApzHAYhtUcZz9HZqdfZQB/gOda8ODfjRl530IZWaGkk1tgC0566AbJFPfW6IOpcWvwaiZPQBt+sarHp9c5XFPn5xVUR+fNLax1MX7iDc0d2pnuO9mr+guJKLnttAee8+DvLd9Zw70n9WfznE3jr6rFcOKZbXEl+IAgh6JNv4/IJPXjh0pEs/p/j+fqOSdw4uRfF5fX88ZMVjHr4J256dwnfrNqzj23qUMBxRxTww92TOWFgAf/6bgNXvLEgYabqGvQ6/uf0gTx5wTCW7qjhzOfnsqYkthGcep3g9uP68uEN46lv9jD1hbn8sKbt7rleJ7jr+H5Mv348Bp1gR1UjR/XN9U80X727jtOem833AZ6bRPuQJPpxwhM/bODIR39h5saOQxxqGp1khPHop6cYcTTWK4QnY79YOX/Eprb2nTo10zhSj77fShJM0fc4wVHT9r4Ywq/oR0H0s4WdOhGCdDZWglfbk6ddrdsaRcpEFkpakAy4E6E2tWpMmH3vd7TpDVnCTm2w99yaC/Ud5/uaRPSYX9yi6PdSrTcLt1Uytkd22PScV2cX4/VKbtfYm7+5rJ6LXpnHha/MZ32pnQdPHcCc+4/l1il9yAhjrTyYEEIwqCiD+04ewOz7pvDpLRO5ZGw3luyo5pb3lzLq7z/ywKer2FwWn4ne8UC2VWl0/dd5Q1m0rZozn5+TUJnw54zswoybJuCVknNf+p0vV8Q+gW5Mj2y+uv1I+uSnccO7S3jmp014A8R8ju+Vw3/vmMSwLpnM3lTB6B5ZdFLnU9gdbm58dwmPfL0WVwJNLO6oSBL9OGDFzhqe+2Uzu2uaePDTVYFHbUsJe1ZAY3zGREspqWl0kRWBRz/Noa6s91f0fVae2p1oiTpVrc2IIHUHIE+nnliseW3vjFNsot3hVtJ/DJF7DbOknRqCJA9Y80F6FbKvIerVLPpoIgTTZS1eKWjUByDMvv8DrRX9dlilADJlHTUEI/qqou9NnmgOBfTItVLT6GRnVRPDuwU0a/nhcHmYsWQXJw8upGu2NhYCr1fy2uxiTnt2NutL7fz1jIHMuX8KN0zunXBxg0IIRnbL4m9nDmL+A8cx/bpxnDqkE58u3cXxT87iqjcXMmdTxSGRmy6E4ILRXfnkxgm4PZJzXpqrO4IjRQAAIABJREFUCWHWCkO7ZPLlbZMY0jmDOz5Yxj+/XRfTvH1QLDof3TiBc0Z25qmfNnLz+0v8x+jWyE0z895147hsfDfmbq4kN83MkM4Z/vtfnb2Vi1+Zz57appjWd7ghSfTjgM+X78Zk0PHoOUPYXdPEil0B1OQFL8O0yfDSkdBc3/b+GMPe7MbtlWE9+ukpRmwulaSl79cR7x9Ape0WW22Uin6uL48+UDOu30qi7cRTu8MVlZoPCmGuDkb041l3lCTD5qmjBiuNgSavx2kGQHuan3E1YaGZShnEwpGWD9Kj+e5PEvFBjxwra1T1dVBR6GbKb1fvobbJxSXjtBmOtb2ygYtemc/DX6/jqL65/HD3ZK4+such0YSo1wkm9snl8fOH8fufjuWeE/qxenctl72+gFOemc3Hi3fS7E58W8+wrpl8dXsrwvxN7AmzVsizmXn/uvFcOq4b02YWc/Vbi6htjO00YItRzxPnD+Mvpw/kx7V7OefFuWxv1Rzvg8mg4+GpQ/jnOUNYX1pHdaOT4wa0zJJZvL2a056dk1ADzDoakkQ/Dvhx7V4m983llCGd0OsEv6zfj/S4nfDbo6A3g70ElrypeU2+L3W4reGMFCN5qETHVrjvndZcEHrNib7fuhOhR99nJQmc6x4fRb++2R0d6QRs3joqvOGIfserO9VTS7W00egMwPRNVjBaNbfAtEvRV3fPKmWwXZT47EYkoQ1aq8dFGRYsRr3flzyoKCPY0wClKbBHTioTIhyoFQ0+XryTU56Zzbo9dfz7/GG8esVo8m2xGWjU0ZCTZuaO4/oy5/5j+dd5QwG4b8ZKjnz0V16ZtSXhffw+wnz5+O5Mm1XMVW8upKYxMXz7JoOOR84ewj/OHsK8LRWc9cIcNu6Nrc1KCMG1k3ryzjXj2FvXzJnPz2XOpsBJZheP7cYH14/H4fIyv7iSqcOLSDUpC9+qBidXvLGQp37cmDCLqY6EJNHXGKW1DnZVNzGhdy4ZKUYGF6WzbMd+CuHWmYpqeME7UDgE1n+teV3V6sEorKJvMZAn1Kad/Se26vQKcdaa6Dtcqg0mso9rhqylRlqRugCkL47NoVGRTimxumup8AZRl60+ZVx7whztTkSqq4YqbDQ0Bzlpp2nfSNwuj75qgyp3B2m0bJ0YlETCYVd1y3a/LxrTN6EzVGPrpr12Fm2r5uKx3WKaFS+l5MkfN3LfjJUM75rJ93dPbpM5fqjCYtRzweiufHvnUbx37TiO6GTjH9+s57gnZvLZsl0BPdyJApNBx9+nDuaxc4ewoLiKM5+fy/rSxPHtXzJOIdj1zR7OfmEuv2+OfaTwpL65fHnbkRSmW7jijQW8Nrs4oI1rdCt//+fLSzimfx7d1fQdKeGZnzdx9VuL/AEdSUSGJNHXGEt3KIk0vql6gzpnsHp37b4f8s0/gyEFek+BfqfAzgXgiG1H/P6oVhX9cB79jBQjuaIWr94M5gDb3bZCzSfN1jW5SU8xRHxCTPfWUinTaXYH8FZbMkFv0t4C0xwl0Xc2YJBOyjzWwCe9tPioy/ZoFyiA2VVNlUwPrOiDskiJk0c/qt0IlejvdQdbXPmIflLRT0TM29LSz9LTR/RLahnUObSa/8HCnRj1gnNHdYlZLW6Plwc/W8WzP2/igtFdeOeasRRlpsTs9ycKhBBM6pvLu9eO471rx5GZauTuj1ZwxvNzmKsBwYwnLhzTjQ9vHE+z28PZL/zO1yu1H8wYK/gIduesFK56c5EmiTfdc6x8estEThxYyMNfr+MPH68IuKPT2t//zapSijJSGNuzZXd+1sZyzn3xd3ZUNsa8xkMVSaKvMVbtrsWoFwxUB2wMLsqgzuFmZ1Wr5pKdC6DzKDCYods4pemyZLmmdfm2FzMj8OjniRqcltzAWfm2TnFR9CP15wNY3YrC3OgMoDD7BiHFgTBHRzqVk1yVtOEI5F81pyvWrjgo49Fad0zN1VTJIO83xCWmsl3xmirR3+MO0mzp7y9IbAISbwgh9EKIZUKI/6rXewohFgghNgkhPhJCxCUncu6Wlv+3nrlWGprdbK1oCOnPd7g8/GfpLk4aVEhujHLGHS4PN723lA8W7uS2KX147NyhGGI4sChRMalvLl/dNomnLxxOTaOLS19bwJVvLGTdnsRRw/fHyG5ZfHXbJAYWpXPr9KVMm7nlYJcUMTplpPDxjRMYWJTOze8t4ZPFsQ/ZsJoNvHjpSO45oR+fLtvNBdPmBWy0be3vX7C1kqoGJ1OHt8xh2VRWz9QX57JoW3zCSxIdyaONxthcVk+PHKt/bPaAToofeJMvcszVBKUroesY5XrRSOVy9xJN66pRFf1wk3EVj34tTeYAja0QJ0XfFbE/HyDVXUOlzKAhQJc/0JKlryHqm13RDY5RSWelTA9sgRFCrVtbwhx1M66UGJurqSaIRx8UZTwOir4Q+D2dEUH16O9xBiH6KdkgdEmPfvS4E1jX6vpjwFNSyr5ANXBtPIr4bytFtUeOlXV76pBSEVuC4Ye1e6ltcnHx2Ng04TpcHq58YyE/r9/L/501iD+e1P+wsOpECp1OMHVEZ37+w9H8+dQjWL6zhtOenc0/v1mXsP79/HQLH1w/njOGFfHPb9fz5I8bEyZtKDPVxPvXjWNi71zunbGS1+dsjflr6HSCO47ryyuXj2JLWT1nPDeXxQEIe2t/f0V9M7+sL+PKCd2xqeenqgYnl766gE+X7op5jYcakkRfY2wpr6d3Xos1wJflvLVC7T6v2AheN3QarlxPzYasHkrUpobwefQzwxBon6LfYAzQ2AqKot9UBe7mWJfoR53DHRXRtzirqJK2gHFegNJX0NE8+irpDNrUCqoyrn3dUS1Qmu0Ir4sqGcqjr84A8AT5u2IAu8NNmilyexcAjZVIBJVeK85ANi+dTkluSlp3IoYQogtwGvCael0AxwIz1Ie8DUyNRy2tm/a65aT6E3cGh7DufLd6D3k2c0yacKWU3DdjJQu2VvHUBcO5YkKPA/6dhyosRj3XT+7FrHuncOGYrkybVcypz85myfbEVGxNBh1PXzicC0Z34dmfN/HI1+sShuxbzQZev2o0Jw8q5O//XcuTP2zQpPYTBxXy2a1HYjXrufjV+XywMPA8nkl9c/ny1kl0ykjh3fnbOX1YEX3UYXdOj5d7Pl7Bv7/fkNB9HlojSfQ1hNPtZXtlo/9DCcqKOdtqothH9Ms3KJd5/VuemDcAKjZpWltNowubxRB2CzkjxUieqKVOH4zoq0k8Gtp37E0u0iO1k3i9mJw1VBLCM66xoi+ljL6pVVX0Qza1amw58nglDU5PlAuUFstRSEUfqekMgIZ2NBHTWEmzMR0vujCLq6R1Jwo8DdwH+FZOOUCNlNL3Bu8COgd6opbolGFhfWkdWalGCtIDW3IcLg+/bSjnhIEFUc2RCIanftzIlytKuPek/kwdEfc/OSGRkWrkn+cM5b1rx9Hs8nLey/P4+3/X0hTMFtiBodcJHj1nKFdN7MFrc7by589XJwwZNRv0PH/JCC4c3ZVnf9nMX79co0nt/QpsfHHrkYzvlcMDn67iiSCLim45qXx6y0ROGlTIBwt30DPXypT+LXNynv91M7d9sDQhPyfxQJLoa4jtlQ14vNI/et2HnrlWisvVrPzyDUpEZXbvlgfk9oXKzZpOQa1pdIa17QBYDZJs7FTrsgI/IA5Z+nWOKKw7TdUI6VUV/WAKc4FCUDV6f5vdXlweGR1hVslktbTR5ApGOrW1wDQ429PQqihuVdhoCOXRB02V8fpom58BGitxmpTPddD+Amtu0roTIYQQpwNlUsrWvsNAjDkgYxBC3CCEWCyEWFxeHluLms1iZGtFAz1zrUF3feZsqqDR6eGkQYUB748G/1myi2d/2cwFo7twyzG9wz8hiX0wqW8u3989mcvGdef1OVs55ZlZLCjWdligFtDpBH89YyC3HNOb6Qt28IdPVgQemNkBYdDrePTcIdwwuRfvzNvO3R8v12RKbWaqiTevGsMFo7vw3C+befCz1QEjNH3+/j+c0I8f1+6lvtnN9Uf19N//zapSLnxlHmV1jpjXmOhIEn0NsUUl833y9s3p7pad2tKMW74ecnqDoVV/Wm5/8DRDzXbNaqtudIWN1gQQjZXohKSSINvdfkVfG5++lFJJ3YnUTqIqzIrXPYRKK72aKbV2tTE04l0IUGwkwkAdqaEVfQ0XKPYDaGitwUZjsPfbqn2kaXtiQWmsxG32Ef0QtSfjNSPFkcCZQohtwIcolp2ngUwhhO8/pwsQcIyolPIVKeVoKeXovLwAU62jQGui0L9AOf4qRD9IwhLw/ZpSbBbDAdt2lmyv5k+frmRi7xwenjok6clvJ9LMBv4+dTDTrx+HR0ouenU+z/y0KWFUcR+EENx38gDuPak/ny3bzW3TlwW2CnZACCF44JQB3Hdyf75YXsKN7y7RpHfCoNfx2LlDueWY3nywcAe3vB/4dYQQ3H5cX569eATLd9Ywc2M5957UH4O6A7dyVy1nvTDXPy8jCQVJoq8hNpcpRL9X3r6KfqcMC3vrHMoBq3zDvrYdgNx+yqWG9h1F0Y8g/EK1uOz1BhkZr7Gi3+z24vR4SU+JkMSp5L2KUETfNzRLG/uOf3hTlETfk5INiNA2Eun1q+ixhj+5ph2WoyZDZgSKvnaEuX2KfhUei2JJC764yksS/QghpXxAStlFStkDuAj4RUp5KfArcJ76sCuBL7SuZW8rVa9LVgqNTjd765rpmRu48drt8fLTur0cNyDfH5zQHjQ5Pfzh4+UUpFt46dJRB/S7klAwsXcu3981mbOHd+apnzZyw7tLEjJH/dYpfXjo9IF8t6aUG95dnDDNxkIIbjmmD4+cPZhfN5RxxesLNXn/fQuih04fyPdr9nLlG8Ff58xhRbx99VhKahy8N387D556hP/4v6fWwfkvz+PHtdoGbiQSkkchDbGlvIGiDEubIT6dMlNweyUVtXaoKlYU/NbI7atcVmzUrLaaJlfYRlzAr8KWeoNE0qVmg86omaLvn4obU0VfJfoaWUlaoh6jS93xpkRAOkG7upuV9zqqZlx1YdVkzA5hf/HNANDuwBt18zPs854HjwbNA1cjONuObk8iYtwP3COE2Izi2X9d6xfcpIosAEWZKWyrUDK3fYOz9sfCbVVUN7oO2Lbzr+/Xs62ykX+dNzTs1PEkIkeqycATFwzjb2cM5LcNZUx9fi6by2I7xTUeuGZSTx49ZwgzN5Zz7duLEkbZB7h0XHeevWgEy3ZWc/Er86lu0GYC8DWTevLMRcNZsr2aC6fNp8we2IozsU8uH904HrdX8vRPG7nv5P7+/ptGp4cb3l3MK7O2JEwTtJZIEn0NsaOqke45bU8sndKVcedVO9eD9CjNt62Rmq2QIw2JfnWDM+ywLMBPzkrcQYi+EJpm6ftW9BF79BtaEf1wCrNGVhK7WnPUFphUxTIQXNH37URoVbdvgRJNRGUl6E0IszV43WYbGCzaW3eijAWN6D2Pg+3oUISU8jcp5enqv4ullGOllH2klOdLKbWL6FKxtqQli70oM8WfctYzCNH/eV0ZJoOOo/u33zK0oLiSN+du44oJ3ZnYO0gccRLthhCCq47syfvXjaPO4eKs5+fy3erEGUrlw0Vju/H4ecOYu7mSBz9blVBE9IxhRbx6xWg2ldVz9VuLgh83DxBnDe/Ma1eOZltFA+e9NI/tlYGFlkFFGXx680Ry08w88vU6bjq6N33V8BMp4R/frOdP/1mVUAsqLZAk+hpid3UTnbPaTj/slKkQ/aY9atR0bp+2T87tB+XaEH23x0udwx2VdWe3M7i3Vcss/dqmKP3uKtGv04Xx6INmCrO9nVNadVaFHBy8BYqv7ijz/1NzSDUbg+9E+IaUaWndcUTp0Xc2gKcZndVH9MPtohx+9h0hhCXAbQnBYFsPXSrKtLBNJQo9AggvoEzRHd09i1RTlLtCKhqdbu6dsZJu2ancf/KA8E9Iot0Y1yuHr26fRJ8CGze9t5RnftqUUGQZ4LxRXbjzuL7MWLKLF39LnKFaAMf0z+e5i0ewclcNN7+3VJMGXd/rTL9+HHaHi3Nf+p3VuwP77rtmpzLj5okc0Smdv/93LWeP7Mw4dZKuyaDjo8U7ueatRcH5wGGAJNHXCE63l712B50DjDnvlKHc5qrYptyQ1aPtL8jupdh6NECdSugiU/TLadJZqWgOofLaCjuOot9YAeYMTCZz8C+2yQqmNM0Ic72jfURfn5aLEIRoatXautOeZtwqSM3FatKHVnc0TAySUlLvjHZugdJbYLApvDX4LsrhS/SBRUKI8b4rQohzgd8PYj0RozUp8Cn6BenmNjZKgNpGF+tK6xjXs/1NuC/PLGZHlWLZCfQaScQWyhTX8ZwzUvHt//Pb9QlH9u86vi9nj+jM499v4KsVAfvTOyxOGlTIP85WLEj3frJCswbpEd2y+OSmiZj0Oi56ZT6/bwkcoJFtNTH9+nEc0z+ff323geHdMjltaCecbi9pZgNzNldw+esLqG1MvN6OWCBJ9DVCaa0DKQmo6GelGjEbdOhqt4M5A1ICRFdmdVcInbMx5rX5h2VFqOg3GrP9am9AaGndidaj31AB1hzSzIbgyjhomqUfNWH2eqCxCpGaQ6pRH7xuSwboTR1sgVIBqdmkhnu/NVT0G50epGxfWpBRJfLh+wsOS+vOJcBzQojHhRDvA9ejJOl0ePjnlACF6Ra2VTQEtFGC4s+XEsb1CjIrJAzK7c28NruY04Z0YnwMBm0lERnMBj3/Pm8YV0zoziuzijXLetcKQggePXcIY3tk84dPViTccLCLxnbj3pP68/nyEh75RruBYH3y0/jPLRPplGHhqjcW8e2qwO6BVJOBVy4fxQWjuzBtZjFWk55rjuzpPx8v3VHDRa/Op9yuuXOwwyFJ9DXCrhqFoHcJoOgLIeiUYcHSsAuygoxaz1LzYWsCT4s7ENT4iX5kzbhN5hzqne7gB1FbITTXatKw6Cf6kabuNFZAaq5CPENt1Wk4Hdfv0Y+UMDfVAFK1wBiCq8saW2B8liNrNPYF1bpjNemD70SApop+u1KOmpSTqinDp+iHs+4cfkOzpJSrgEeAm4ApwG1SyoSbN5+bZqakpokuAUQXULz1JoOO4V2DJIuFwQu/bqbZ7eUPJ/Y7kDKTaAd0OsH/njnIn/X+wKerAmawd1SYDXqmXT6KogwL17+zJKgXvaPilmN6c/WRPXh9zlZenqmNAwGUHZxPbprA4M7p3DJ9Ke8vCBw97ovpvP3YPny8eBfbKxu4/+QB+BJu1+2p48Jp89hd06RZrR0RSaKvEXZXKx+kQIo+QGGGhQzHHsjsHvgX+G6v3hbz2mrU7atIcvSp30uzJQ8poT4YAdUwYrPOn0kfqaJfCdZcrGaDnwAGhIaKvr3ZjUmvw2yIsKnVNzFWJcxBve6gKWG2O1ykmQ3RTQVViX6KSR+cLIOmMwDal/+vEH1jWh56nQi+KDSYlZ0UDYd9dVQIIV4H7gKGAlcDXwkhbj24VUUPo16w195MUUbgY/H8rZWM6JqJxRhFE7qKHZWNvL9gOxeM7kqvvBB9TEloBl/W+x3H9eWjxTu55+PlCTOUCiDLauLNq8filZKr31qUUPYSIQR/OW0gZw0v4rHv1vPxop2avVZmqon3rxvPMf3y+PNnq3ltduCFhRCCP5zYn7+fNYhfNpTxw9pS/nH2EMxq1G1xRQPnv/R7y9DSwwCHF9HfswJm/kvTfHofdlU3IUSLH39/FKVbyPXsDU70s9TbNRiaVa0eSCJV9N0piqpZH8y+4x+apQHRb3JhMugiPwk3VoA1lzRzGOKZVqAd0Xe4o/bnA2DNIdUUQtEHpW4NY0GjqtvjhqZqZWEVSd0azQBoaFdvgfKeC2sOqWEXKYdtlv5qYIqUcquU8ntgPDDyINcUNcrszXi80h+C0Bp1DhdrS+oY107LzdM/bUQnBHcd3/dAy0ziACCE4J4T+nHvScpgp4e+XJNQnv2euVamXTaKnVWN3PTekoTaldDpBI+fN4zJ/fL406crNc2vTzHpeeWK0Zw6pJCHv17H9AXBHQ+XT+jBS5eOZE1JHa/OLubJC4b7OU9JrYMLps3bp2n/UMbhQ/T3roHXT4RfH1Eu67Rtftld00S+zRx0YEqv1EZSaMabGcS6Y80DYypUx57o10Tq0Xc5oLkWqUYMBvXp+xX92Cfv1Dlckav5Xq+qMOeSagpn3ckHR63yN8YY0RN91RaSmoPVHEbRt+ZBvTakM+qIyqZq5TI1h1RziN4CaNXUGvtFSvuaiCtB6MGcoRL9EJ8Va75m73lHhpTyKdmKLUkpa6WU1x7MmqJFn/w09tQqu6uBFP2l26vxSvwpHdFgT20TX6wo4bLx3SlIb7uISCL+uHVKH24+pjfTF+zg7d+3HexyosK4Xjk8PHUw84oreXPu1oNdTlQwGXS8dOlIhnTJ5LbpS1m4Vbt+A6Nex9MXjmBK/zz+/PkqPlsW3E148uBOvHftOMrqmnnihw08d/EIcqwK76mod3LhtHks3VGtWa0dBYcP0f/xISVt5YovwVkPsx7X9OV2VzfRJSvwFEaAnnqF3NlTOgd+gBCK2q+Jou9ErxPhIytVUiZsSn67Pdg0PL+irwHRb3JH7s931IDXrSr64aw7vqFZsSdwdocr+ohKUAhzWGVc9eh7Y781bY82otJfdzZWkwGn2xs8ak3DPHp7eyf6pmaDTqfuRoRaXOUeloq+EOJIIcSPQoiNQohiIcRWIYR2RtwYobVto29+GiU1ymI+kKK/VlX0BhdlRP06787bjpSSqyb2aF+hSWiCe0/szwkDC/i//65l5sbE+t5eMLorxw3I5/HvNySctcRqNvDmVWPonJXCtW8vYn2pdmq5yaDjpctGMa5nNn/8ZCXfrQ7uJhjbM5u3rh7D3joHf/1yDc9c1EL26xxuLnttAXM3H9o9WIcH0a/YBJt/gvE3Q6+jYeiFsHw6OLT7IJbUNgWM1vShEwrhqTJ2Cv5LsrprpOgrU3GFCOPFVkmZPt1H9IMQUEuGsvugiUc/CkXfTzxzsUZi3QHNiGe7rDs+RT+c1116/M2ksYS92X0ACxTFWhV8wqxK9DUgzL6dG1uUk4h9w7JSw35W8g9Ljz7KBNsngUnAGGC0etmh0fo4VZBu8Sv6gWyU6/bY6ZyZEvUUW4fLwwcLd3DCwAK6ZgcXdJKIP3Q6wdMXDqd/YTq3TV+aUBN0hRD84xzFT37fjJUJZeEBJeby3WvHkWrSc9O7S0KLbQcIi1HPa1eOYWiXDG7/YCm/bQh+jB7dI5u3rhlLaa2Dv3652q/s6wS4vZKr31zED2u0SQ7sCDg8iP6qGYCA4Zcp10dcBm4HbPxOk5eTUrKn1kGnjODbubkuRf0u1eUH/0U+RT/GXsOaRldkJzbVw27KUBR7e7AvrRCaDc2qa3JFPRUXaw5WUxhF3x+bGHs/oaLoR0H0GyqVhZIxRVH0w6XXgCYLlHqHC1tU9hef5SjXnx0efMKshnX70oKimuhb1UL0jWF2Uaz5ik3JkzhNcjFCrZTyWyllmZSy0vdzsIsKh7pWO4+5aSZKahxYTfqAO5jr9tRxRKcgU79D4Ivlu6ludHH1kT0PqNYktIHVbOC1K0djNui49u3F1DYlzne3IN3CX88YxOLt1byVYPYjgM6ZKTx38Uh2VDXyZ40n/6aZDbx11Vj65tu48d0lzC8Ofnga0yObN68aQ0mNouw/d8kIsq0mBIr3/+b3l/L5st2a1XowcXgQ/Q1fQ/eJkK6q513GQlohbPhGk5eraXThdHtD+jYzmksol+mUOUKQk6zu0FzX4oWOEaobnREn7gBYsoqAENYdUHz6dVp49N2RT8Xdj3iGtJL4FX0tiH60yrgSCQooqTvhFH3QRGG2O9o3dKq1oh+0v8A3A0BLj357rDtEoOirE4sPw4jNX9UM/QlCiJG+n4NdVDiUtcrJzraaKa110Ckzpc0OpsPlobi8noGdbFG/xtu/b2dAoa1d3v4k4oPOmSlMu1xpcP3Xd+sPdjlR4ZyRnTl2QD6Pf7+erRWJFbkJil3m7uP78cXyEj5ZrG0ib0aqkXevHUvX7FSufWsRy3fWBH3suF45vHHVGHZWN/K3L9fw3MUjsVkMeLySvDQzd3+8nPfmx95FcbBx6BP9xiooXQW9prTcptNBz8mwbU7M1XKA0jrFExqK6Kc27GaXzKey3hn8F2kUsVnT6IpwKq5CyqxZqqIfcmiWdop+RtSKfl6LwhyMeGqpMEdLmNUhX0DoHH1otUCJvQWmvrm9lqNsUtXs/aZghNk3A0CDuu2OKONMQak9RSX6Jn34xm04HO0741DsOv8AnlB//n1QK4oAOypbhgxmphqpqG8m32Zu87gNpXa8EgYWRafobyi1s3ZPHReP7Rbe/pjEQcWo7tlcfWRP3l+wgyXbE6fpUgjBP88Zgkmv474Z2k2e1RK3TOnDxN45PPTlajbt1dY+lZNm5r1rx5GTZubKNxaGTNOZ0DuHN64cw46qRv73qzW8cMlILEYdjU43PXOs/M/nq5mxJOHGhYTEoU/0t81WLntO3vf2nkcpfuHyDTF/yb0q0S/MaHty8cFg38EumUdFfYgpbVk9lMsYN+TWNDrJSIlE0S9T1NoUC3qdCK/o20tjunCSUioe/UiJvk/Rt+ZiVRXmoNn/BpNC9GKs6Hu9knpnFLsQ0EbRd3kkTnewnQht0ms8Xkmj0xOlKl4F5nQwmP3vd0PIRUqeJmS5oTnKJmIp9/XomwzBFyjQamhWYjX2xQDHSymn7PfT4SfjlrQahpORohD9nLS2x2IfGYjWuvPlit3odYJTh4Tor0qiw+CeE/pRlGHhwU9XBd/h7YAoSLfw0BmDWLStmncTUGXWq70SVpOB26Yvw+Hao7S+AAAgAElEQVSK/QyV1ijMsPD+dUp/wOWvL2BLiGbmiX1yef3KMWytaOCvX67hxUtHYTLoqWxw0jkzhftmrOC71bEXLg8WIib6Qgi9EGKZEOK/6vWeQogFQohNQoiPhBARMMeDgOKZYEqDzvvtOPc4Srn0LQRiiL3hFH2vB1G7i0pjYWhF35elH+OG3JqmSBX9vZBWgBCCNLMhjKLfCdxNSmRljOBweXF5ZHTDskw2hXj6Ff1w03FjS/TrnW6kJDrrjjrkC/Ar40FVfUumYoGJ8U5EuyIqGypa2V/C1A2qoq+NdScqf76jVkln8hP9cHYp3+7PYUf0N6vWnSMOdiHRoKS2JTI3I8VIZb3Tn7LRGhv31pNi1NM1RDra/pBS8uWKEib2ziEvwC5BEh0PVrOB/ztrMBv22nllVocPjdoH547szPhe2er0ZW2JshbIT7fwxAXD2LDXzv9+tVbz1+uancp7140D4NJXF7CzqjHoY4/sk8trV46muKKBv325hpcuG4lRr6NW7Qu844PlzN50aBzzo1H07wTWtbr+GPCUlLIvUA10zHzlrbMUf75+P+KV1QMyuir3xxiltYpKn28LQvTrSsDrps7SmcqGEIq+2aaozjFU9JvdHhqdHrICnPjaoL7MT3LSzIbgA7NAk4hNX1NdxPGaDeV+C4yPsIafjhtb4ulbDEVsgZFSVfSVun2ENSjxFELN0o913ep7HW3qjq/ucB59UBV9baw7adEm7oD/s51U9INiKLAReF0IMV8IcYMQIvrO1TjDl7IDSjKHvdkdkJRvq2ygR641qknQy3bWsLOqibOGB4lFTqJD4viBBZwyuJBnf97kF+ISAUIIbp3ShzJ7c8I2ih7TP58bj+7FBwt38N+V2s4vAuidl8a7146jyeXhyjcW7tOcvz+O6pvHq1eMZnN5PX/7cg3TLh+Jxaj2bAm44Z0lLNmu3UyAeCEioi+E6AKcBrymXhfAscAM9SFvA1O1KPCA0FQDlZug69i29wkB3SbArsUxf9m9dgc5VlPQYVnUKmOim6xFlIdS9CHmEZs16lTciHzvqqIPCnGtC6foQ2yJflOU5LOVBSZscyhoouj7CHPEir6zQUmA2l/RD5cYFGMLTPsbWlt6CyACRV+DGQD1zVGmBbVKZwJlkeL0hGjcNtvAYDnsPPpSSruU8lUp5UTgPuCvwB4hxNtCiD4Hubyg2N7Ko+9WP2uBFP1tlQ30yIkuGvPrlXswGXScOKjgwIpMIu740ykDcHq8vB9immpHxKQ+uQwqSmfarOKE9OoD/PHE/ozolskD/1m1Tw+NVjiiUzrTLh/F9qpG7vkodI/D0f3yeOXyUWzaW8/fvlzLq1eMIt1ixOOVeKXkqjcXsbYksSfoRqroP41yoPedCXOAGiml76y+Cwgocagq0GIhxOLycu0UMYfLw4OfreKcF+e2TDorXaVcdhoR+EmdR4K9JOb573trHaEnJdYoBxqPrRuVoTz6EPOhWT6iHzZ1R0pFNVYbEdMtxtAefV+iUQzfyxZFPwrrjqq+WqNR9GPYVxC1ot8qKQgiUPRBk50I325N1Kk7USn6+YplxhE8FaE9aGiOsrfAp8yr73lKuBkAGjYSd2Sods0zhRCfAc+gNOP2Ar4CtIksiwFap5Q4XCrR38+j7/FKdlY10j3HGtXvnrmxnHE9s6Pb+UqiQ6B7jpVj++czfcH2hLLBCCG48ejeFJc38OO62KfExQNGvY5nLxoBAm7/YGlc5gOM75XDn089gp/W7eX5XzeHfOwx/fN5+fKRrN1Tx9M/beKda8aSatJj0utAwhVvLEi4AWatEZboCyFOB8qklEta3xzgoQH/56SUr0gpR0spR+fl5bWzzPB4/pfNTF+wg9W767j+7cVKikbpSuXOTkMDP6lIXQCULI9pLaV1DgpDZOj7iL4uq0tojz4oin7NjpipoNWNyutlhvPoN9sVz30rRT+kRz9NA+tOk/J6ETe2NpT5m1XD5rqD8re5m5RJyTFCi6Ifac0+G0kUir5vOm4M0S7LUUOFf2HlI8tNoRquNEo6Ujz67cj/t/oWV5HsRhyW03E3AWcBj0spR0gpn5RS7pVSzgC0GUISY1Q3KMe7nLR9hY2SmiZcHhmVol9S08Tmsnom99XuPJaEtrjqyB5U1Dv5emViNVqeOriQrtkpvDxzi6a59Fqia3YqD08dzIpdtcxYsjMur3n1kT2YOryIp37ayK/rQ593jh1QwMNTBzNzYznTF27n5ctG0eTykJ5ixOn2ctlrC9jdqtE/kRCJon8kcKYQYhvwIYpl52kgUwjhO7t2AbQ3XwVBncPFa3OKOXNYER/cMI7KBicfL94Je1aAraglHm9/FA4BoYOSpTGtZ29dMwXpIRq1anZAWgGZ6ek0uTyho/0yu4PHCfWxUcp9in5You8jNa2Ifkh13JSqZKXHMEs/KkXf692HeEasjENMiWcLYY4yKcifuqN8pcJm6cfYAuMbhhYx0Xc2KIsklSyb9DoMOhFZTGXM7VLtiDOFNjav5HTcNhgqpbxWSvm77wYhxF0AUso7Dl5ZkaPSR/T3s+747D3RKPpzNimfm8n9kkQ/UTGpTy6986y89fu2hCLMBr2OG47qxbIdNSzaljgxofvjzGFFjOiWyZM/bgwtrMQISkzpUI4oTOeOD5exLcxMgovHduPGyb14b/4O1u2p45/nDGF3TRPdc6zYHW4uf21B6KTEDoqwRF9K+YCUsouUsgdwEfCLlPJS4FfgPPVhVwJfaFZlGHy1ogSHy8u1k3oyqns2g4rS+XJFiUL0g6n5ACYr5A2AkmUxq8Xl8VLZ0BzeupPRlVx1OzmeyTs1fkU/jHXHZ8FRFfI0iyG0dQfUiM2D5NFvqgbp8Q+U8hPmOBNPH9GPfBdiX794qtlHOsPUHWMLTIt1J1KblLoQVBdWQghSTeEGT/ny6GOrjDdEm//fUKGkMxmV72jLLkqYoVmH2cAsKWWgra574l7IAcA3EXX/nqRtlcoJv3sUiv6sTeXk28z0K0iLXYFJxBVCCC4d152Vu2rZESKRpSPivFFdybaaeH1OYiUHtYYQggdPPYK9dc28MWdrXF4zxaRn2uWj0OsEN767JDQnAO4/eQAnDyrkkW/WkZFi5I5j+7Bqdy2je2RRUtvEFa8vTKhJy3BgOfr3A/cIITajePZfj01J0ePndWV0z0llaJcMAE4eVMi6HXuRFRuh07DQTy4aAbuXxsynXWZvRkooDEX0a3dCZjf/dnJ5qBViZg/lMkY+/Zomn0c/DKHz7SCoTbY2ixG7wx1aBfFl6ccIvi9TRCTOp7aqC5MUox4hIojXBE2I/gEr+iFJp88CE8u6o7UctQwn85dlNkS4sIqdMu72eGlyeaLsLWgZUAatGrcPQiNxAiKhJkS1HEP2/T6W1DSh14nQx+lWkFIyb0slk/rkJodkJTiO7KMcaxcnmDKeYtJz8uBCft9cGRePu1YY0yObEwcW8PLM4rip412zU3n2ohFsKrNz339WhuQxOp3gqQuHM7RzBnd+uJwTBhZy9ojO/LqhnNOGFLGpzM41by3SfC5ALBEV0ZdS/ialPF39d7GUcqyUso+U8nwp5UHZz3C6vcwvrmRy3zz/Afjo/nkcIXYgpDc80e80TDnxx4ighs/Q90KNSvTV7WSfjzQgMrsCImaKfnWjE5NBR4oxTO64XSWRraw7bq/0N7cFRIyJfp3DjdmgwxKuVmghjyrx1OkEqcYw+eh+oh9L644Lg05gMUb41WqoUHLxzTYgCkUfYlp3fbMbIVpIb1j4Ff1c/01hFX1LJugMMbXA+BZEUXn0G1rSmaDlbw4ZsalRI3ECImEYhsWoo67Jhc1iQL9fhGZpnYN8mzniaM1d1U1UNjgZ0T1Li1KTiCP65qeRbjGwOAFjE8f2yMbe7A45+TURcP8pA2hyeXj2501xe83J/fL440n9+XrlHl6dHXpXJMWk59UrR5NtNXHdO4u46/i+jOuZzVcrSrh0XHeW7qjmgU9XJYz9K+En4y7dUU2j08Okvi0n7oGd0hlpVIlxOKJfqFp7fI27B4i9tWGIfn0peF2QqWzDAVSFIvoGs0KgY6To1za6yEwxhlel7HtAb4YU5cTmU8RCT8ctVP++2KiedU1RTMX1E8+WfoywCnNKNgh9zBX9NIshctWvsVIhnerjU40RpNdoYIHx+dwjrns/6w6o73eoBYpOp84AiGHdzapiG7Wi35ro+/oiItj9iXFCV0eEEMIuhKgL8GMHig52fZEix2qmrskVMEq4rC6MvXI/rNilLPCGd8mMWX1JHBzodIKR3bMSTtEHGNtTGVC4cGviLVJao3deGheP7cr0BTvimmZz89G9OXVIIY9+u565m0NbMfNtFt64agwNzR5uem8pT144nC7ZKXy+fDdnD+/MZ8t283qc7EcHioQn+nM2VaDXCSb0btmKN+h1HJVWQq1Ih/Qwg00KBimXMSL6paqiHzR1p0btNs/s3kL0G+OXpV/d6AwfrQkK+bUV+Amoz3NuD0WcbZ0U1bMxNl7mOocrCq+7r3l4P6IfSqXV6dSoythaYKL2i1v3/eyaDToaXfFX9KOKDNwvohJURT/UAgViPgPAtyCKLl5zf6IfQTNuuspv6w5a5kDcIKW0SSnTA/zYpJRRvNEHF9lWkzLlMsDnurTOEbFtB2DFzhpMBh39C22xLDGJg4TR3bPYVFZPbWNiea2LMlPokpXCom2JTfQB7jyuHyaDjse/3xC31xRC8K/zhtE7L43bpi+l3B7aiNK/0MYLl45k4147f/l8Na9fOQa9ECzaXsXYHtn845t1/ib9joyEJ/oLtlYytEtGm4P5AIpZ5emOO5yXzZIOWT1bMvcPEHvrmjHpdcE98Gq0JhldSTUZsBh1oRV9iGmWfnWji4xw/nxQFH3fECxa8tVDRmymx3ZoVl2TO3JFv75MUectLYqb1awP23gT60x6u8ONLaoprfvaSEBZoIQkzClZoDPGlDDbHa7ok2vM6f6GVlCU8ZALFIj5+12vKvoRW3d8saCt3nN/vGaoz4qP6NsPfaJ/qCDbaqLOEVjRV2adhEhG2w8rdtUyqCg9+BDEJBIKRZkpQEvcdCJhbI9sFm6tShjbSDDk2czcOLk3364ujev02TSzgZcuG0l9s5t/frMu7OOP7pfH384cxC/ry3j79228duVoyuqaqW1y0TU7lds+WMrODt7YndBHLSkl6/fYGVyUse8dbif5TcWs8vbwpyuERKehsCdG1p06B/np5v9n77zD4zrr7P+5U6WRRr13W+7dsWMncXo16QES2oYEQu8LG2CXXxYCywLLUsJDJ0AgkBASWNKAFCdxeuLu2FZxU+9tZqTR9Pv74507ajNz3zuSbcnWeZ4840e6o7m5upo573nP95zEFghXlOjnVAKQ57DpE/3canC3Q3j66oPLG9QfxAXh0c8ca3+Us+5Eif4MRWwKRd+AdSejUKj0UThsOtYdmPF2XI8vhQSYjIlE32EzJ7eRKIo4b8/MnfewP2S8dMqRP+FLUoq+s2Rm5ziMdi343cI6F0/RTzZcpfVEnAGK/umC/AxbVCyYeG+M+EN4/CGKk3WdjIOqqtR1ullZlnUiTnMepwDa3Jc/NPeG6zctyKN/JMDRXgluM8vx4QsXUJBp41cvnlwLzKIiJx+5cCF/3dPOa0f7dY+/9Zxq7jh/Afe92sSRnmHuefc6Gro9LCzIIBJR+fDvd56UuNBUMaeJfvvQKB5/iGWlk7ZTe+swqSEORBZQ1+nR/0Elq2HwOPimP+DS5dLZEh5qEWqiTeQ352VKEP2calAjIq1nmpC37nQJUhaFRl6TKvrOmS3NciXw18bFSG8scUdDht5wKMy4wuz2BeUTdwC8A1MVfZuOog9CYXa3p3CG8TFseIHSO8GfD+K8ky5QQFjphrtnZNEKqbQnT0w5ArBbTJgUnXhNi038/84T/aRQFCVNUZQ3FUXZpyjKQUVR7o5+fYGiKG8oinJYUZSHFEWReBOaHvIybHHL1LSkjyKnHNHvGw7g8YWoLZyP1TxdYI/uzMylhlwNq8qFsHmkR4LbzHI4bBauWV3K8w09+qLcDONTlyymIjedux49QEBiwfcfVy9n04I87n78ECvLsvnAlhqeb+jl7WdV0NDt4c5Hkqf5nErMaaJfHyXxy0omKS2d+8T3WUB9lwR51wZyuw9O+5y6PT79DP2omg+Q67DFSl0SYoay9FVVZWhUwroTHAWfKwHRT0LQMosBZcbIkGGiP5l46g3jglBqh7shPDNvMh5fSF5dDvkh4Jng0QeRvKNPmGeW6KdUOjXpejvsEop+VhmgztguijvWW2CQ6I9T9EUHgMwipWxGeyJOU/iBS1VVXQusA7YqinIO8B3gB6qqLgYGgTtO9Ilk2C2MBsOxyFoNg17JiOEotGHBBQXy5VrzmN2wW+auom8xC7fAHE7YnIBr1pThD0XYptNcO9NIt5n5+g0rOdIzzL0S3QRmk8L3b1mLAvzrQ3u586qlLCtx8sT+Dj64ZQFP7u/k59tnZ8fBnCb6WsTUlAGpzn1gz8JasDC2GEiKWPLO9H36wvuZjOiLaE0N+Rm25PGaIBR9mLZPfzQYJhCK6Cv6sbKs8URfs+4kIUNmq7DvuNqmdZ4AkYiaMDEjLoZ7JyTugKTCnF0hdktmqHl42Eh5Uxx1GaKKvt5ORFa5WFDNkILgMVw61TvFcqRd76SqhjYcP0OLQbeRrgUY11sw1XaUNF4TRMv2vKKfFKqAFqNhjf6nIhrVH4l+/XfAjSfo9WP/TreJGR0tslaDdGlgFMeibZrziv7pA+1zwWaeexTIpGhE//Rg+hurcyly2nly/8l/b710WTFXrSzmR9sOS/nsK3IdfP3GlexsHuS3rzTxo/esx+MLcaRnmGtWl/I/T9XzQsPsa1Cfe3f5ONR3eajOd0xVIjv3QckalpZly+XNOksE2eraN63z8fiCjATClGQnGPJSVWG/yR6n6GdIWHeyysTw5TQV/aGokpWjR541oj9O0ZcaxgWxWzEDFqPhQIiIOrXRMi5UVQymTrbu2C3JYypBEH0A1/TVcVVVo0TfYFlWPI++3k5EdjkEvTOW6y6sO5LnHYlEIyqnKvoRVUcli6XXzMxuhNsXxCbbtQBxi75Am4vQW1yVzhN9CSiKYlYUZS/QAzwDHAWGVFXVbuo2YEocmqIoH1EUZaeiKDt7e1OLYB1/79ktJvyhyBRFP/Y+KKnoH+8bwWYxxQY45zH30dDlQVFg8RxsOdaqH04Tno/JpHD16lJeaOhl+CTbdwC+et1KTIrC3Y/LOTpuXFfONWtK+cEzjfiDEf7fNcvZ3tjLirIslhY7+cyDe2jqm13zE3Oa6Nd1uVk2Wc2PhKHrAJSuYUmxkw6XT580KYrw6U9T0e92C+9nQkV/pBdCvjGFHqHoD/tDyb2CJrMgpNNU9AdllazhqUTfbFLIsJn1iX52xYwQfS32TIroB4bFdZ1i3TEbUJinvwvhDYQJR9TpK/p2GUU/SphnYIESNNouOzoodkEmk+VYB4BEes0MnDdoVimDKUcQZ3FlYVTGujM6AEGfwbM8s6CqalhV1XVABbAJWB7vsDjP+6WqqhtVVd1YWFgY5yn6GL8ro/3ZTy6B0xR9qVkloNPlozQ7bUrp1jzmLuq73FTlOWIdGnMJymmm6ANcs6ZU2HfqZi5gQhZlOel87vLFPFvXw9MH9Xf2FUXhmzeuoiDTzuce2sM7N1Ry+fIi7nn2MJ+/Ygkmk8KnHtxNKDx7bGFzluiPBsI09Y1M9ef3HYbQKJSupSZfeCqlkndKVkNP3bSGBHVbcYcmJu6AUPQBBkd0XncGsvRdst5ULc1lXLwmCPtOUo8+iN0KV/u0S7O06nqpIctYK+4k647dgqoKy1JCZEeJ/gzYjbRFkLQyHscvDlrDrB7pjO5EzIDCrBFzaaKfiCxrMZV67bjWjBm17kjPRIC45tYMsE5UZ0UUq4R1B+YjNiWhquoQ8AJwDpCjKIr2i6oATshFDIz7cNWI0GQyN6S9t0jeN70eH4WZ8lGc85j9qO/ysLR4bnYiaNad04jns6Eql+IsO0/uPzUzUB/YsoClxU7ufvyQVHpOjsPG/968lqO9I3zrH3V85x1ryHZY+e5TDdx1zQoOtLv51Uuzp0xrzhL9wz0eIiosn5y4Ex3EpXQtNQUOAJr6JDJOS9dCOAC9qZc3dEVbcROm7miK/CSPPui048KMZOkPxras9Tz6nWC2xVpxNTjTLPpba9kVIr5wmsOWGtGXUvRjZVlTU3dAp2U2LVvkwc+AwqwtgqQVfe0ajYsxBUnLUcwCM/0FSiyi0nAL8dTUHdAh+ooyo4PEbl8Ip+x5w5SCMg3pNkvyeE0Y64mYofjY0xGKohQqipIT/Xc6cDlQBzwPvDN62G3Aoyfi9cNxJhTTbRM/5lyjQZx2CxZJf3aPx0+Rgcz9ecxutA+NcrxvhNXl2foHz0JoRPR02mGK2Xcae/XFxBMAq9nEN29aRfvQKH94XY5nnb+4gA9uWcDvX2vmrXYX37t5LYd7htnbOsRVK4v5wbONHD2Jrb/JMGeJftLEHUs65C82rujDtOw7+q24Y2VZGrTtY6ks/ZFeCKTu/RqMbVnrEKPhbjGIO6kLwJlmkfDoRxcx07TvpET0p/iuNeIpEfk4A8RTS4CRzqMf7hb3qn3iYtVhMzMaDMclLTE4S0RB2Awo44auNYy73pMV/ejCSiox6BQp+nEKyiAaxaq3iNVsXvPJO8lQCjyvKMp+YAfwjKqqTwBfAj6vKMoRIB/49Yl48XgxeVrCiobRQJh0m+RMB9Dr8UtHcc5j9uOhHeKz6cb1U8ZE5gR2Nw8CsK4yR+fIuYULlxQSCEWo7zo1saEba/LYVJPHH99oISIZafTFrUtZUpzJnY/sZ1V5Nh86fwH3v97MJUuLSLOY+PJf9kv/rBOJOUv067rcOGxmqvIcE7/RuQ9KVoHZQobdQpHTznGZwYj8RYJ0TYfou3zkOKyJBwMHjguSkTa2OMnPjBJ9vYa+WPJOS8rnFyN0utadTnAWT/lypqx1B2aO6MsMzCWx7gASuxDlM2TdMWYJEAuqoikLKk0ZT2o5MpkF2Z+BnQjjRD/+QGtM0dfdjSifMaLv8QXldyIgbkEZiIQW3bmIWCHczMWanm5QVXW/qqrrVVVdo6rqKlVVvx79+jFVVTepqrpIVdWbVVVN3j2fInzjZp20VvTJySreQHiKbz8RguEIHl+IvIwTHvs/j5OAUDjCn3e0cuHiQionc4c5gtePD1CanUZF7uk1HK45IXo9J+StQQrvO6eK5n4vrxztkzo+zWrmh+9az5A3wP/8s547t4rIzR8/f4Qvv205O5oGuV9yh+BEYu4S/U43S0ucmMZvX0Ui0LVf2HCiqMnPkJuANpmheKV4forocuuUZQ0cg7yFE76UlyG2hAeGdW7u3BrxOA2f/uBIAIfNPEXhmoJJrbgapBR9LcVmaGaIvm5CECRUmDOiCrNUVOWp8OgPd08YeNagKeNSCvMMkM7UFH0F0vMmfFkjT9J59JHpl9W4jfQWgFgUZhZN+bKINNU577QssDnnrTuzGKHwmHqm7YjZLBM/5kaDYdIlhzC1xbbswmAesxsvNPTS5fbxnk1V+gfPQqiqypvHB9i0IC82lHu6oNApuNCpJPpbV5WQl2GTtu8ArCjL4r2bqnh4VxudQz6+cs1y2gZHGQ2GuXBJId/5Z71UdOeJxJwk+qqqUt/lmWrbGTwuKu61XHygpsBBU7/kRS5ZLYh+ilMu3W6dDP2B41OIfna6FUWR9OjDtHz6Q6NBOeI83DVlEBeEUu3WI/ppWcL3PgOKvsWkyH3ADveIeQLzxP83eUW/Ulg6ppmmYmhxAklJJyAR9zgzXveUiL4jD8wTyVKGXdYqVQZqeEZKs4R1RzYWNByNYY2zuJKJ1wTh058fxp21CI4bxtVIv3WSoj8aCJNulfvo01J8jFh95jE7EQxH+N+nGyjLTuOy5VPfd+cCmvq99Hr8bFqQp3/wHEOuw4bZpMSaq08F7BYzN2+s4Nm6ntjMpQw+eekirGaFHz7byAWLC7lgcQE/fu4w//62ZSjAf/zfW6e0NXdOEv1ut58hb3DqIG77bvFYflbsSzUFGfQN++UGPEpWi0bYFElqlyuJoh8cFYOTk4i+2aSQ67DpW3cyCsDqmJaiPzASIC9TZws66BPxiXGsO840K8N+ieuYXTVthVxrxZVSLTxdY4ko4yBtJdGSd6ZJmg0lBUHUujP1OseUcSlFf/qlWYaJ/nDPFNsOjJ231A4KTNu+4w+F8YciBoaI+0QsaLxdFJuFQCiiH4nmnM/Sn80ITlD0xe9ysqLvDYSkYxU1oj+v6M99/PLFY9R3ebj7hlVTFn9zBW8e7wdg84KpgQJzHWaTQn6G7ZQq+gDv21RNOKLGZjlkUORM47bzanh0XweN3R6+tHUZg94gj+/r4EtvW8ZLh/t4eNf0XQOpYk7e7XVdogRriqLfsVv47AvHYpsXRAdym2VUfc3yk4JPPxiO0DvspzjRIK5G0CcRfRDDsbqKvqII+85A6hXL/SOBmFUoITSyq8U3jkOm3YIvGJmgmsVFdsWMWHekiaenIy55y5AeDp2ZiE3XaJA0q2R5U8gvFlRxiH6GTEwlzFhplms0iNWskCapcuotUE7WwkqzShmaiYAE1zx67rrJOzM3XzCPmcf4hVoij34gHJlC/hNBs+7o2h3nMatxrHeYe7Yd5urVJVyxYurf/1yAqqo8vLONsuw0agszTvXpnBAUOu2nnOhX5Tu4cEkhD77ZYigL/2MX1pJhs/D9pxtZVZ7NjevK+PXLx7l8eTGbavL4rycO0eM+NR0sc5Loa4k7SyeXZbXvEmR9nKVAG7iR8kgVracEo+sAACAASURBVADFBJ3Gffq9Hj+qmiRaUyPocYh+foZdn+gD5NdC/xHD56ahf9gfi/NMCI3sZk8l+lps5Mlox3WPGhiy9HSNRR+OQ8wCIxMJCtMmnkPeADnpkkN7sUjQqVvIhrzuMO2BXEO7JxDdQZl6vR0xy5HkwmqahNk9qsWZGthBgbhEX7NmjOotrnIqxXzBNPo25nHiEIyTcDE5hjAcGcsi14PscfOYvQiEInzpL/uxW0x87bqVp/p0Usb2xl52Ng/yiUsWnXb+fA2FTju9p9C6o+FfNlfR5fbxXH2P9HNyM2zccf4C/nmwi7faXHzhyqWoKvzw2Ua+/Y7VeANhfrb96Ak868SYm0S/y015TvpExTccFAR9nG0HxOoMoEWG6NscIn0nBUVfi9YsTaTox4j+ginfys2QUPQB8heLOYQUScbASEA/PUIju9lTo8c0QiWVvON3CxtUipBW9MOh6FBrHOuOrDIeU/SnS/SD5MikBMFYKVkcv3jsvHXTa2amNMvQokpVo0R/Klk2m8SugO71Ts8FS9q0F1bavEhWuqSi79Ean+Mo+rKLwpwqYf+ZT96ZlQiOi9fUuJBp0qdcJKIi69zQFgmhWRCRNw/jiERU/u3hfexoGuS/blxFUbIZulkMVVX53tONVOSmc8vGSv0nzFGkWcz6M3UnAZcuK6LQaeexfcY+W++4YAE5Divfe6aByjwHt55bzSO72ghFVK5fV8af3myV43ozjDlJ9Os63VP9+T11ohG3fMOEL2elWclxWOWIPohB3hSIfrdLpxV34JhoBXVMHaLJy7AzoNeMC1CwGCKhlCI2fcEw3kA4FueZEJqinxWP6Esq+jOQvCNN9Ed6EvqubRYTVrOi/8ZhTROxp9Msn3IZIcwxdXkain6s1fck2qS8A6IQLY6iD4Iw65JlrTRrmlYpd6zhdOYUfd1FitYTMY2Y23mcOITGNXIrCJI+WZUPq6p02ZBFI/qzqM5+HvL477/X8di+Dr60dRk3rJubufkATx/q5q12F5+9bLG07Wwu4nCPh9rCzFN9GljMJtZV5lDX6Tb0vKw0Kx+9sJYXGnrZ2TTApy5ZRIbdwnf+Uc8nLq7FFwpz3ysnvzF3zt0x/lCYo70j8f35AGXrpzynKs9hgOivBleL8E8bQKdLpywrTrSmhrwMK4PegH6xQv4i8dh32NC5gfDnAxLWnVaRR2+Z6uWXt+5MnwxJk0+tvChrqqIPwk6iG1MJYnEyAx59+cSdxKQzVvSld96ZJaLBeJqNycbmIaLXO87CCkQ0qC5ZhmjT8/TIckpxpvZssE7Nn5Zq9YV5oj/LERg3jKvx+8mUPhJRpS05MUU/PK/ozzX8YvtR7n35OLefV8PHLor/2TsXEImofP/pRhYWZHDTHC35ksFoIMzxvhGWl2bpH3wSsLzEyfG+EXx6c1uTcNt51RRk2vnpC0fJzbDx8Ytr2Vbfgy8Y4coVxdz3atNJb/+dc0T/SM8w4YjKsimJO7uEYh6HTFfmOeRzTFNsyO12+7BZTIlbZ5MSfTvhiIpb75evEf3+FIh+1PemO4zrao/rzwdw2iWtO9r/Z4qDw5GIiluWfGqZ5gkU5ky7RS42MadqWolGYNC6Eyv5Spxeo3veJtOMnLchoj8ctb/EsRyBpKIPoul5sEnuNRNA+3sxZN2JY9uBMUVfar5AMc0T/VmK8cq7RuUn+5kjqjzR13bodN+b5zFrEI6o/Pff6/jWP+q5ZnUpd127Yk572n//WhMN3R4+d8USLHM0LUgGDd0eIiqsmMztThGWlmQRUQXnNAKHzcIN68p4+XAfI/4Q7zm7CotJ4fH9HXzi4kW4fSEeeOPkfn7MubtGG8Sdoui37xH+/Dh/0FV5DtoGR2MFKkmhZfAbJPpdbh/FWfb4byihgFDKkyj6IJGl78gTJUUpDORqir6uR9/VFtefDwYUfUeeWHQNpDZ44vGFiKhiuEX/4ORE32EzSxLPGqGMR1LfojecFOQoAMvU/0e7xYTZpOjn0YNQxqdJmI2dt+Zzj0/0023m5I2+GnKqwdsPfmNvouMx5E0hFjTODgqMpe7oDuOarYLsT3NxNY8Tgwle+uh78eS3ZLNJkfssQCQ6mU0Kg3rxx/OYFfAGQnzsD7v45YvHuPWcau559zppm9ZsxGtH+/nGk3VcuqyIa1fH/4w7XaDZZGaLoq+FvdR3eQw/97LlRQTCEV450kduho0tiwp4cn8nayqy2bIon3tfPm54p2A6mHtEv8uN3WKiJn9cfbXPBT0HoXxj3OdU5TkIRVQ6XaP6L5BZKEijUaKfLEN/qEX4yJMo+iBB9EH49PuME/2BYQnrjqqKIcPs+MM+Y0RfQt3Kr01Z0dc6BbQFUFJ4OsFkiauMgxhslVL08xZAOJByGZIvGGY0GCbHIZm64+5IuKBSFCW6QJE4b22BkiIi0Z2kmSL6hhR9mGYBXACbxUS6TJwpiN2IBETfYZUcxgWxizKv6M9KjKd01ijBm1wzYTWbCEh67hVFicYfzyv6sx2drlFu+cVrbKvr5qvXreDrN6yc0wp464CXT/xxFzX5Dn747nWY5vCCRQZ1nW4ybGYqcx36B58E1OQ7sFlMNHQZ8+kDnF2Th9NuiaX2XLumlLbBUfa2DvHJixfR6/Hzl90nL1d/zv0V1Hd5WFLsnPgH3PKGINI1W+I+pyrPQPIORBtyjSv6JdlTvb/AmLIdJ3EHIC9KDqWTd1Kx7owI607SYVzfEASG4w7iwpgXWmoqPm8h9KdI9KPXIVeGNLs7hY1kcrRGFBl2A4o+pKyOu42WTrnaE15nEIRZStHPrRbzJCkmHHn8IVTVwHl7ukTzcRyfO4gdFCmPfux6T4PojwTJdUjGgqqqUPSTzBYAkrsR80R/tmL8vaD9c7J6bzWbDA3X5jpsMevjPGYfVFXl0b3tbP3hSxzvHeHe2zbygS0L5rRdZ8Qf4sO/30k4onLvbWfLBw7MYRzqcLO8NGvWLGgsZhOLizJTUvStZhMXLi1kW30PkYjKlStLsJlNPLG/k3Nr81lbmcPPtx89aUP+c47o13V6pibuNL8CJitUbIr7nCojWfogiH5vvSg1koCqqlFFP4H/vbdePBYujfttra1WOkt/uBt8xlaZ/SMBbGYTmfYkfuYkGfogUmzsFpO+dQcgr1bYlYLGCyIGZW1GkLAsS4O8whxdhA2kNhFvuF3W3Z5wgBgE8ZTaiZgmYXYbbfP1dCa0SYG2gyKjiteIx2nYjgaN9Bb4XKJcLMlOBCC3i5JTJe670LydY7bBMo4kaPx+MtG3mBVDcZmVRsIc5nFS0Tfs5+N/2M1n/7SXhYUZPPbp87l02dwsxNKgRYI2dnv48XvPYkHB6VmONR5HejzsahnknIWzq/F3aYmThhSIPsBly4ro9fg50OEiO93KhUsK+PtbnagqfHBLDa0Do+xrSz2C3AjmFNHv9fjpG/ZP9ec3vyL8+bb4Wz6l2WmYTYqxiM1ISER2SsA1GsQfiiSO1uypF6pzem7cb8cUfRkfaMFi8WjQpz8wLDL0k6ocmkqZkzin15lmieWXJ0V+LaCmROS06yCl6LvaE1pgwADxzK4AxZwy8RyKEmapYdzAiNg90VP0pWwkUQtMiudteIEy3J10YeWwmfXz/0HMcdgyp2fdMTL8HGt8jn/N06wmFAX5uQg1Mu1Y03nMPOzjogfVBETfajbhD8kraQsKMmju9+qnos3jpEFVVR7f18GVP3iR5+p7+PLblvHIx86bFdGM00EoHOErfzvAPw508R9XL+fCJfEtqacb7tl2BIfVzAfPj+96OFWwmkyk+ld/8dIiFAW21Wn2nTI6XT52twxywWLxe33taN8MnWlyzCmiXx/1Sk1I3AmMQMceqD4v4fMsZhPlOem0DEh49GEseadzn9Th7UPi55blJLDu9NYnVPNBDDCmW80xH31SxJJ3jBH9fpmyLI0s5ib+Y3OmWeU8+nm14jGFgVxpRV9Vo8PDiRcm0sTTbBULnMHUFH1tMFRKYdaSgpIQfYfNoKKfImE2bDnSrFIJIL2wUpToIHHqRH/QG5BbDMJYGVqC3SpFUXBYJW1H00yVmseJQ9q4eQ01+hEdmjRgn2mX3OWLoqYgg9FgmG7Pqamvn8dE7G4Z5J0/f41PP7iH8px0nvjM+Xzsoto5PXQLwhL7od/v5ME3W/jExbXcMctI74lCQ5eHJ/Z3cPuWGrld/JOITrcvcQmqDvIybJxVlcu2ehGlffmKYuwWYd/Jy7CxrMTJa8f6Z/J0E2JuEf14iTvHXxLq+4ILkz7XUJZ+3kJw5EPrm1KHtw8Kol8ej+hHItDbAEXLk79khk3OupO3UCjPmh1IEv0jAf2yrIHjImc8wc4DCEVfyrqTnzoZGvCKIUstZjIhRvpESZqWbR4HmbLEEwRpPhnKuFbMlcS6k2G36CfAAKTnRBOOUlugDHoN7ESEQ8K6k4AsA6RbzfiCEblUk2lcbxDnniszsA3jrnnixVW67FxEfnQR239q6sznkRh261RFf7JNR/o9LIraQmGdaOxOPSFqHtNH64CXTz6wm7f/9FVaBrx85x2r+dsnt7CkeHbEMU4H3W4f7/rFa7x0uI//vmk1X9y6bE7PGBjBPdsaybBZ+PAFs6/roNvlS+zUkMCG6lwau8T7RqbdwuaF+exoGgDgvNoCdjYN4g+d+PSdOUX067rcFGfZJ676Dj8F1gyojj+Iq8FQlr6iQOU50PKa1OGaol+eG4fou1ohOAKFy5L+jLwMm5x1x2KHgiXQfVDq3DT0D/v1y7IGmyCvJm5EqQZnmkVuGDc9NxoFmpqin+fQsRmBKDYDHUXfgi8YkRt6yV2QMmEeiv7usmUIszua7JPEciQUfUkykl+bcpTpwIjWryAZZaqGk1q7tBkQqXPPWyB2UFKINFVVlSFvQD7lyNUuFsjJ5jlky74yCsHmTPmaz+PEwW4ZEwc0v74/OPH+EkRfPkVndXk2igJ7WoyVKM5jZtDS7+X//e0tLvvedrbVdfOZyxbzwr9dzLvOrprzKj4IRfumn7xCU58YJH7v5sTC1emGQx1u/v5WFx/cUiP/Xn4S0TUNRR+E8BUIR2K2v9KsNHo94jP33Np8/KEIe1qGZuRck0GyaWZ2oL7TM1HNV1U4/AzUXhK3yXU8qvIcDIwE8PiCck2aVedAw5PR7O2ipId2DI1it5jiE+neBvEoQ/RlFH2AklXQ8rrcsQhS1OPxU6S3Mh08DsUrkx7itFvp9UgqW3kLUyJDAyNBuQz9oahHOgnx1PLRvcEwWXpRa/m1MDoA3gHhITcA12gQRQFnsmFnDZpf3JlE0bdZ5CxHIOxcTa/IHTsJ/UYSjnSGtQEyoxGsw76QflJEwWII+YTanmRXJh6G/SFCETVxQd1kuNvFELEp8S5RulUy0lRRxI7VvHVn1iFtnKJvNgsSODlJSdgPQ6iqKqWaOtOsLC12svskfCDPYwwHO1z8fPsxntzfgcVk4h0byvnsZUsSt8/PQTxf38NnHtyDw27mzx87l5Vl2af6lE4qfvhsI840C3ecP/vU/NFAGNdocFqKvrbDGAhHSDOZKXTa6R8JEImobFqQh0mBV4/2n/Ah5Dmj6AfDEY70DE8sU+ipE4r54it1nz+WvCPp0686Rzy2vqF7aPvQKOU56fE/NHqjA71JPPpgkOgXrxT/36NyCpN7NEQgFKHImWQxFAmLYVzN850AmUa2vfNrU4rYHPQG5DL0tWHIJIp+ht1APnrBEvHYZzy+dGBE+MWlosFc7cIaZk38BiJSd2Sv82JBlgPGk0EGRwJkpVmwyuRNx4h+8mFtkIxgTXHeBMbNREgr+omL4DRk2C2MBiWveV7tvHVnFmL8MK6m6E8upslOtxKKqHK7N1Gsr8plT8ugdNHWPFJDOKLyXH03t/3mTa750cs8X9/Dhy9YyEtfuoRvvX3NaUPyXaNBvvjIPj5w3w7Kc9P5v09sOeNI/u9ebeLpQ9189MKFcjvhJxldbjGTMx1FX9th1HYVC512whGVQW+A7HQrq8qzef3oiffpzxmif7R3mEA4wrKScX68Q48CCiy5Svf5hrP0S9eCJU1KOW8fHI1v2wEx0JtdqasQGyP6q8Rj9yGpw3uiQ2SFyYi+u0MURiUZxAWD/ta8WkFAg5KLqygGRySHLIdawZ4lfOoJoFlJhmXOWUs06muUOc0J6B8O6FujNLg7kvrzQcvRD6NObvuJh/zUB5/F7Eby3bAYYlapJIq+3UipWpTop1AAN2gkmQmicabJib50SRmIaz7UAuH5IqXZBMu4Pg1z9N+Tib4mePR45LPxtyzKx+MLsat53r5zItA64OX7Tzew5dvP8cH7dnKww82dVy3llS9fyr9fvXxaqupsw7a6bq78wXb+srudT1xcy98+uSVxkMdpiqcPdvG1xw9yxYpiPn7xolN9OnHR3D8CkLgIVQLaDqPmwy+Iftb2Rns5NlTnsrdt3roTw8F2kbizqjyq6KsqvPVnWHBBUt+tBsNZ+hY7lJ0l5dNvH/Ilrm3u2CsWDTrIy7DhDYTxBcMTkiPiQrPXdB9MWBI2HtoHWpEzyQ0bS9ypSfqznGlWhv0hwhFV3x85PgpUSzKSwIBXIiEIhKKfRF2GMYVZKhI0pxrMtpQLyXSHnTUMNY+R3ARw2M2EIyr+UET/fkjxOoOWXCNb8tUm5i5siXOdNVuc1GIws1h43VNQ9A0NEauqWFwtuybpYQ6bmR63JPnLqxXzCoPNUDA7P6jORIx/T0qk6Guksdvtk84ov2hJITaziacPdrFpgTFb3zziw+0Lsq2um7/ubuflIyJm8KIlhXzt+hVcuqwYm2XO6JBSGBwJcPfjB/nb3g6WlTi59/1ns7rizFLxQcy6fOZPe1hTkcOP3r1+1s5Z/OnNVrLTrayrSiwk6iGm6IfGFH0QUfHLSqLfPwmbhHOH6He4SbeaWVAQzclt3y08sud/Xur52Q4rWWkWY8UnVefAqz8SlogEGf2+YJi+YX/8FbnPJVTWde/RfSmN2A6MBPRX985SQbi65dp7NUW/KFGhF4zFSiZo79WQlTY2bKnrwdaShnrqpAloKBzBNRqUV/ST+PNhrAjKLaMwm8yCwKVg3ekfCSRe7I2HqgpyWHtZ0sO0AidvQGLhp8U9pqCM9w8HqJCtHHe1JVXzYez+kCL6ihK1d6Vi3dEUfQmi7+0XswBZyc89wyY5aA7jkneOzBP9WYTxqTuamuaZ9Dstjr4Pdrvl4zKdaVa2LMrnqUNdfOWa5WdMIspMwzUa5NlD3fzjQCcvNvYRCEcoz0nns5ct5uaNlfGT6+Y4VFXlif2d3P34QYa8QT53+WI+cfGi024hI4Pm/hHu+N1Oipxp/Pq2jaTrJeudIjT1jfDUoS4+efEiHLbUabJmJdQU/fFEHyAciZyUhc6cIfoHOlwsK3WOXZQ994PZDiuul/4ZVfkGGw6rz4OXvy98+rWXxD2kYyhJtKaWw1+6XvelNGIrRfQVRaj6ksk7mkqZ1KPfd1io2TpkyDmOyOkS/bxa0VjcI2cxAvFBoKqSKTCulrFZigQwRDxBqOMGzleDtHVnuEdEgursnGjRoiP+kP61sGWI31sKhHlgJMAaWVXJ1aZr7co04tEHsbPRJhdjOx6GPPqx2QJ9j770XIQ2z9FbD0u3yj1nHiccGeM+lCMq2Mwm3KMTf6dF4xR9I3jb6lK++Mh+3jw+wOZZ1uA5W6GqKkd7h9ne2MeLjb28erSPYFilLDuNW8+t5urVpayvzJGbbZpjUFWVFxp7+d7TDRxod7OqPIv779gsJwidhhgYCXD7b3egqir3feDsmI1lNuLXLx/HajLx/vOqp/VzNPuP9jkVUbVuD/EYjkxs8z5RmBNEPxJRqetwc+P66Af1cC/sexDWvhvS5Le+qvIcsSx+uSecK4jqsecTEv2kZVkde8Vj2Trdl9JsH4Z8+rt/J4ZokySJgFg9pllNMf90XPQ1CtJlTn5LZNo1a0YQ0FmQWGxR4izXMAzjvNd65NY7IHZMcpP/IWaljT9fCRQshoa/C++1Wc7SEgiJXYj8DIk3Lq3YSue8tSFi6YHB/FrDswWqqkYHn2U9+m1Qc0HSQ5ypXO8DfxFzHFZ5NU+7T3Jkegs0W1pO8muuzZ9IpbGk54idNS1Vax6zAunjdr88viBZ6ZYpu3lOu4XsdCvN/caG169bU8Y3n6zj9681zxP9JOj1+NnRNMCLjb282NhLh0ssqBYWZHDbuTVcvaaUdRWnJ7nX8OrRPr73dCO7mgepzEvnezev5cb15bPWpnKi0eP28eHf76R9aJQHP7yZhbO4wXhwJMDDu1q5cX1ZcruzBJ6r72FNRXZsUfNWmwsQkb0gFP2T8XcwJ4h+66AXjz/EyrLoSvjNX4it+HM/ZejnVOY5ePZQj5y/HMCeKRTjo8/BFV+Pe4i2Q1CdH8f+0LFHKK0ZBbovNd66I4WSVRD0itx3HetAj8dPkTMtOXnpbZCaJXAaVcgLl0H7LrljgV6P+P/XVce1vHutgTcBNOI5WdVLiIIlooCt/ygUJY9E1aCRTimPvtYEK6voyyrMRcth9/0ik94ktyXs8YcIhlW5nYjRIfC7da07DqsZRTFyfywFVLFIkbj/NAx5gzjTLFhk0oI0W5rE/Ek4ojIaDMtt1xYuHUvVmseswPgPTW3XUWt/1qAoCgsLMzjWO2LoZ6fbzLzr7Ep+/fJxOl2jlGaffjYTo4hEVI70DrOzaZCdzQPsah6MLaCcdgvnLcrnk5cu4sLFhVTmSVoE5zB2twzyvacbeOVIPyVZaXzzplXcsrFSLtXsNMUbx/r55AN7GPGH+Ml7z2JD9eyecfnD6834ghE+NM0Cr4GRAHtah/jMpYtjX9vXNkS61cziIrHQCavqvKKv4UB0EHdlWbZQ5179MSy/HgqXGPo5VXkOAuEI3W6f/JR77SWw7esJ8/Sb+73YLKapk9mqCs2vQs35Ui+T5zBK9KOe9869EkTfl9y2E/QJpXnNLbov6xyXky6FohVw8K/gHxYLJx3E5gmSnS+MJczkJyf6aVYTFpMirzAXrYieyEFpot8XnaAvkCL6TeJRJzc+pujLpsAUrRDFbEPNunMWsVMZkdw9gbHMeJ2fbTIpZNoNJDPFrnedIaI/IJvMBGJR6MiHtORb5uMXsXJEf3l0V01+cXW6Q1GUSuD3QAkQAX6pquo9iqLkAQ8BNUATcIuqqic0wmZgJIAz3RprrR6PhQWZvHyk1/DPvPWcan7z8nF+/NwRvnmTscH3uY5hf4iGLg+HOt3URf9r6PLEdh3zM2xsqM7lvZuq2FiTy5qKnDOC4EYiKi8d6eO3rxznhYZeCjJt/Oe1K3jv5ir9+arTGKqq8quXjvGdfzZQnefgjx/azNKS2d1i7PEF+d1rTVyytHDajcsvNvaiqnDJsjHeuK91iFXlWTGBSlp0niZ0P81mwxv3wQ4XFpPCkqJ0+NP7hVVl67cM/5zxEZvyRP9SQfSPPiesQpPQ3D9CVZ5j6vbLwDEY7pIm+tnpVkyKAaJftBIs6dC2E1a/M+mhPR7/xFjSyeg/AmpkzHecBDGFXJo4Rwdye+uhYqPu4b0yCUEgFHfFpKvSKopCVrpV/nwLl4oG1e5DsOodUk/pH9YUfRnrThNklujaVIwr+hphPiRN9LWyLClFP0b0ky+sQCh58hGsC8VsiMGm575hf/K42PEYPK47WwDjib5kSUrRMrGr5tLvnziDEAK+oKrqbkVRnMAuRVGeAW4Htqmq+m1FUb4MfBn40ok8kS6Xj4IMG52uqV78hYUZ/GV3G8P+UHJL4yRU5jl43+Yq/vBGC7efV8PiaZKB2QJVVXH7QvR6fPR4/PS4/bQMeGnu99LcP0JTvzcmaICYfVpemsUtGytZVZ7NhupcavIdZ9SQsssb5OFdrfzh9Waa+r0UZNq486ql3H5eTUyoOVPh8QW58+H9/PNgF1tXlvDdm9fIFZWeQoTCET71wB4GvUE+NU6FTxXP1fdQkGljTdSmEwxHONjh5tZzxiyk9V2e5CEpMwSZu/GUv3Efah9kU2EQ+6MfhWMvwHX36FoI4mE80ZduIitZK7y49U8kIPpeauLZdppeEo86nmYNJpNCrsPGgFeS6JstwvvfvlP30F63nwsXFyY+oE+uvRdSGG7VokC73pIm+jaLiax0nVtz4Ki4B3QakcFg9r/FLhY8Bohn/4j4AJQaIB5s1vXnw9hQoVTRF4ztPnQf0o2R1DAwnIKiL0FoRQSr5MLKbIWCpYbmOEDcJ7WyPs+BJqjarHtYVmwRa8CWBsL2Nk/0AVBVtRPojP7boyhKHVAO3ABcHD3sd8ALnGCi3+nysaYim/3trinf09S6+k43G2uMWQk+c9li/rq7nW/+vY7f3n72rCW3DV0efvrCxAF9VRUzRSOBEMP+ECP+ECN+kRynRQCOR2l2GtX5Di5fXkRVvoPFRU6WlzoTF0SeATjQ7uL+15p5dF87vmCEDdW5/OsVS9i6qiQWp3gmo6HLw8f+sIuWAS9fuXo5H7pgway/V1RV5e7HD7G9sZdvvX01G6pzp/XzwhGV7Y29XL68OCYCN3R58IcirK0UcZ0t/V72tAzx5bfJOQemA12if6rfuFVV5cetbycTL7hNcPnXYMPtKf2sspx0TIqBLH0QW/LLroU9f4DAyIQMcVVVaeofYcuiOB78ppeFcqtjLRmPvAxbjHxJoXwDvPkrCAXE4GscjAbCePyh5Opnb6NQx3Wy3WEsVUWaOOfWiIHpzr1Sh4t5Arv+G0P/USl1GQwSfRCLk1b5JBhN0S+QGWodbIbqc3UPM5xeY3eKYdMe+QWKtqiUVvSzyhPGzI6HofZkELs+za/IH48oHJFarIcCorQtd+oifTK0xaWh+RMQuygSpX1nGhRFqQHWA28Atgz9LAAAIABJREFUxdHPElRV7VQUZYoPUlGUjwAfAaiqSm5tk0GX28dlziL6h/1TtsjXVgqVbW/rkGGin59p53NXLOEbTxziTztaec+m6Z/riYDHF2Rf69QyHpvFRIbdQqbdQrEzjQy7hfxMG0VOO4XR/4qcaVTkpp/R1pPx8PiCPHWwmwfeaGZ3i/BZ37S+nH85p/qMa7RNhFA4woNvtvDff68nM83CAx/aPGeG1n/zShP3v97MRy9cOCN/zw/vbMU1GuTy5WNvc8/X9wCwLkr0H9vXDsB1a5OXZ84EDO0vGX3jjj5nWm/e4YjKoUUfoSArjYXnvsOwL388rGYTZTnpxiI2AZZfBzt+BUe2TYjz7PH48QUjUwdxIxE4/qKw7RhYyeYaaccFoZC/9mORp1++Ie4hHS4tFSiJFaHnkCDkVn27QrrVjNmI511RhPe6Q5bo+/QtGaoqFP3VN0v9zHgDeUlRvBIOPCJSfSRSnfpHAlhMiv4uRHBUlHzlvlf3Z2ZH02RcXgPnXbTCkDI+YMSj3390LK9fB840i7H7uHiFKL8bHUracqzBHwoz5A3KWXdcrcKWJmFnGhvclrzm6TmisK3rgNzxZxAURckE/gJ8TlVVt4yip6rqL4FfAmzcuHHaNTIDIwEKnXYi6ti/NRQ50yjPSWdf21S1XwYfOK+GFxp6uPvxg5xdk8eiotmXIrKxJo8X7oyfFjcPfYwGwjxX38Pj+zp4rqGHQCjCgoIM7rp2Be/cUBF7j54HvHS4l/96oo6Gbg/n1ebzw3eti8XYznY8c6ib/3ryEFtXlvClrdNX11v6vXzjiUOcV5vPVStFmWuP28fPtx/l8uXFVOY5UFWVR/d2cHZN7knpjpAm+qm8ccP037wtZhOb/uVuo09LiKo8hzFFH6B6ixjmO/CXCURfSxeozp/Urti+E4a7YcnbDL1MfoaNwz3D8k8oj1ph2nYmJvpa/GeyhIjOfVCmn/UPwvPuTDNQLARQug7e+HnSnQcNPW4/Cwt12iq1aE0DxLOpz8DvPNY8fEhKfe8fFq24UrsQqFKLVavZhMNmjjtImBDFK+Dw09JRlb0eP+lWMxkypSUDx6QtQZl2i7HowvHzBdXn6R6u7aBIEX0tncmQR9/AvV2yZqwvYx4AKIpiRXxW/FFV1b9Gv9ytKEppVBQqBXpOxrlosxZdrqkCwtrKbPa0pDZWZjIpfO/mtWy95yU+9oddPPzRc+UWzPOY1QiEIrx0uJfH93XwzKFuRgJhCp123rupiuvWlp22mf+p4ljvMP/99zqereuhMi+dn//LWVy1smTWW3U0HGh38ZkH97CmPJsfvGvdtH+34YjKFx7ei0lR+O7Na2M/7zv/bCAYVrnrWjGzWN/l4XDPMN+4cdW0/x9kIDUSn+yNO/r9k/bGPV1U5TloGRg19iSzBVbfIvLVR/pjX26KliFM8ejXPSby95dcaehlDCv62RVCUUxie2gfTJLzDzA6KJJaDCSeGLbClK2DcEAqirB32K8/iKvlxUtYjSCq6MvuQMC4RCM5AifKsiRIpzYLUbBU6udmJ0gMSYjSdaCGpecLut0+irMkbFI+F3j7DCysrMbJMkhfb21gu1Bm+FkyLQhS6AAA8XfTfwT8Bvo5TmMo4mb6NVCnqur3x33rMeC26L9vAx49GedTGW19bh2cuvA8uyaPtsFRWgzm6WsoykrjZ+87i9YBL7fft8OY+DGPWQNvIMQzh7r50iP7Ofubz3LH73byfEMv168r44EPbeb1f7+Mr12/kg3VufMkPwqXN8jXHz/ElT94kdePDfDlty3jmX+9iK2rSucMyd/ZNMDtv91BXoaNX81QS++9Lx1jR9Mgd9+wMqbU72kZ5C+727jjggUxUfhve9uxmBSuWV067deUgUzqjt4b97c5iW/c00VlnoO+YT/egGSEnoazboU3fgb7H4JzPwHA8b4RLCZlIolWVah7HBZeZKjMC4SiP+QNyEcuKYqwBx1+WrxunD+wjqFRTAqUZCcgz537xaNEqZcGp91qkAxFf3bH3qQLCmlLhtZcqynBOjBMPJ2lYr6iY7fU4T0ePwUy6nLfYUCRntswTPS1XZmOPVKDzz1uv9z2an80ylSS6GelWYzdH1na9d4jdXiM6Etd8wawZ0Nmse6hGTYzJiMdABC9n1Vh35HY/TkDsAW4FXhLURTNr/cfiM+JPyuKcgfQAsj57qYJLdEinl3zoiUioGB7Yw+3nluT0s/fvDCfn7z3LD76h1186Hc7+MWtG+ctHXMAzf0jPFffw/MNvbx+rJ9AKEKm3cIVK4q5fm0ZWxYVYLOc/tGgRhEKR3jgzRa+/0wjrtEg7z67is9fsUQ+AW0WIBJR+eVLx/juUw1U5KZz7/s3TrsYC6Cu0833nm5k68oSboqWu0YiKl97/BBFTjufvEQIkwc7XPz2lSauWFEsF+AxA5BhurPqjXu60JJ3WgdGjWW6Fq8UVpmdv4bNHwWTmcPdHhYWZkzMCm59Q2SlX/AFw+eW67ARUcE1GpS/AWrOFy3BPXXCujEJ7UM+irPSEucZa0OypfJEPzPNIp9MAsI2kZYDbTtgw20JDxuL1pQg+vZs6eQlzWpkaAFVvgHa5Yh+p8vHCpla894Gkbgj2QCbZZToZ1eAo0CaMHd7fKyp0PfEiwUKosVWApl2C/5QhEAoIv9hWbZeeo6jd9gA0e+pj0am6v/eFUXrADCo6AN07Z8n+oCqqi8DiS72ZSfjHNZX5bCnRQyhjgbC5DqscYn+goIMqvIcvNDQmzLRB7h8RTHfv2UtX/jzPt7+01f4ze1nT7VzzuOUIhCKsKNpIErue2JlaQsLM7j1nGouXVbE2TV58+Q+ATy+IA/vbOO+V5toGfBy7sJ87rp2BSvKJD73ZhEGRwJ84eF9PFffw9WrS/j2O9bE0tamgxF/iH99aC9Z6Va+edOq2K7GX/e0s691iO/dvJZMu2jp/sQfd5PrsJ402w7Ipe6c8jfumcT4iE3D5Q3nfRoevg0O/h+sficN3Z6pROmNnwslXzKDfTy0ZtWBkYAxog8i5ScO0e8YGk3eGdC5D7KrwCGfPJGVZqF9aGo2dUKYTFC5WSyCkqBHI/p6ubLdh0RSi+QWYVZUYRv2hch2SP5Rl6+Hhid1B0QDoQj9I/7EOybj0XdYqqtAQ3a61dg8iaJECbM+0VdVVVh3pMjyIWFFk7RKOcclBuXpzGTEULYeGv8pLDD25H+X2oJQqom4tx6Wys/KZKUb3f0pgYwi6UXKPE48lpVkxYh+t9tHVX4GTX1TW3AVReHipYX8eWer4Tz9ybhhXTlFzjQ+/sdd3PCTV/jBLesmFOXM4+TCHwqzv83FG8f6eeO4aOz1BsLYzCY2L8zj1nOquWRpETUF8wuyZGjp93Lfq02xv5GN1bncde0KLl9eNGcsOhp2twzy6Qf20OPxcff1K3n/udUz8v/Q5fJxx+92cLhnmF+9f0OsT+fVI33c9bcDnFWVw03ry1FVlTsf3kfb4CgPfeQcCmSspzOEM67VYTzRN4zl14s2zO3/g3fRNbQOjHLzhsqx77va4NBjwtpjM/4Gkmu0HRdEpGJ2legX2PyRKd/ucI0mV23bd0PpGkPnKawwBj3JVZvh8FNixiEjfuSWVFmWqooISQMLKY14un1BA0Q/OtzcsUe0IydAj8eHqoq86aSIRKD/sLB0SSI73cpBI4o+CMJ8dNuUKNjJcPtC+IIRuWKonkNigWKWu3aZaWMLK+kFa9l6QBVWspotSQ/t9fjJcVj1M6tH+sRsgUQ/hAZnmtXYbpW2uGrfJf+ceZxQjC8H7HL7WFKUyfMN8UfIrl9bxu9fa+Yfb3Vy88bKuMfI4tzafP72iS185P6dfOC+Hbx9fTl3Xbtifkj3JMAXDLOnZYg3jvfzxrEBdrcMxnoBlhY7eeeGCi5YXMiWRfnGLLtnIFRV5c3jA/zmleM8c6gbk6JwzZpSPrBlQSwaci5BVVV+/fJxvv2Pekqy0/jLx8+T28mWwKEONx+8bwceX5Bf37aRi5eKxf3zDT189P5dLMjP4Be3bsRkUrj3pWM8dbCbr1y93HCk73Rxxt3xOQ4rTrvFePIOCGX6srvgT+/F/cz/ABtZUjwuVm3b10Vr76aphFsGGikaGPHrHDkOigKLL4d9D0HQNyEiMxJR6RzysXVVAjLn7hCtoZs+bOg8cx02Bo0sRgAqzxGPrW/AsqvjHtLtFrsESa077g4xHCrpz4exki9DA7ma3719V1Ki3xVt3dRV9IeaIeQzrOgbsu4AlJ8l4iQ79iYlzD3atZZp5eupEzsyknBO53p37JYi+lKDuL3R4eciI0TfYuy8ASo3iUWsd8DQztg8TgxWlY/NRrUPCovmw7vaxH0z6b1Fa3R9ZFfbtIk+QE1BBo9/+nx+8twRfvrCUV483MtnL1vMLWdXzpcpzRAiEdFfs7/NFf1viP3tLgKhCIoCK0qzeN/majYvzGNTTd78QksSgVCEJ/Z38JtXjnOg3U2Ow8rHL67l1nNq5HasZyGO9g7zzSfreK6+hytXFPPdd66VF/t08Hx9D596YDdZ6VYe/th5MRvTUwe7+NQDu1lS7OT+OzaTl2FjV/MA3/5HPVeuKOZDF8g1188kzjiirygKlXmO1BR9EBGDq2+haM+PON90J4uLowrtvj+JQd0L74Sc1AoXNCtCv1ESveRtsPM30PwyLLo89uW+YT+BcISKRNadpmhaT3VyYjUZBU4bI4Ewo4Gw/KR6+VnC/tH6ekKi3z44is1iSr6lpQ3iahGYEsiKpakYUGrTcwUpb3k96WGdUaJfmiy+FISHG6BE3peXlWZlJBAmGI4knrGYDI2Qt7yWlDB3u8ViUlfR97lFFv3GD8i9PikS/cxCMcvR8rqwyCVB3/BUwhYXWsqTAUXfsC0Nxq55207DSVvzmHmMT0FrHvDGki0aujxT7htFUXjnhgr+9+lGjveNsGAGrBx2i5nPX7mUt60u5T8fPcBdjx7kJ88f5ROX1HLLxsr5EioDUFWVtsFRQejbh9jf6uJAuwtPNOEozWpiVVk2t59Xw+YFeWysyZsfhjYAVVV5q93Fo3s7eGxfB70eP4uKMvnvm1Zz0/ryGUmiORXocvm4Z1sjf97ZRprFxH9eu4IPbKmZMbvR/a8389VHD7C8NIvf3H527HP08X0dfO6hvaypyOa+D2wiO93KruZBPnr/bspy0vnuzWtPieXpjCP6IOw7R3oN5NVPxtXfpe/ILn4b+R/Mr7aLSMO9D0DNBXBR6uXA+Rl2FEWkoRjCggvAkg6NT00g+u3RDP2EJLTpJTHUqsVJSkJrgO0b9lOZp9+UCogB1LL1YpYgAdoGR6nISU8eYaYNDxtQ9A0XIWmo3gJvPQLhkIhYjQNtF0JX8ejcD4oZiuQXKNnRAi73aDDm+9OFI08Q25bXkh6mnbcu0e+tF48GrndOuliwGr7eVecKZTxBgpSGLrePjTIV5b0NYMsUjb6SSMmWVn6W+N22vjFP9GcBxtvFDna4+bcrRZztW+0uzl88tcX8lo2V/Oi5I/xi+1G+/Q5jNsZkWF6axZ8/ei6vHu3nB8808p+PHuR7Tzdyw7oybtlYycqyrDnncz6R6Bv209jtobHLQ2PPMIe7PTR0eWJWOpvZxPJSJzesL2NNRQ5rKrJZVJiJRVYEmUcMR3o8PBYl9039XmxmExctLeRfzqnmwsUFc/a+dHmD/Gz7UX77ynEiqsqt51TzqUsXzZgfPhiO8J1/1HPvy8e5bFkRP3rPejKisz2P7Grji4/sY2NNHr+5/WwybGb+8Hozdz9+kLKcdH5926lL5DoziX6+g+caeuRTWCYjPYf/zP9fbgz/jK0HHgEUOPtDcMXd0j7meLBZTBRm2mMlV9Kwpgt7Sf2TsPU7wmLEuJz/ggRkvPkVkRRiMrZqH7/zIE30QZzji99NaHFoHfRSnqujjLftFDn0Eg2qGnKiW3WGbTA158Ou34rm4QSFYp0uH+lWc8welBCd+wQBl2gf1pA97ryliT4IwnzgLxAJJ/zddnskbFIwlslvhOhHz3vISKsviHtx3wNiaDlBqVgoHKHT5dO/T0AsropXGmqnNtwRAWIWonSN7rD5PE4OxpOUfa1D5GXYWFiQwa7mAWBqtG1RVhrv2ljJn3a08OnLFs9oU6WiKGxZVMB5tfm8fmyAB99s4U87Wvn9a80sK3Fy5coSLlpSyNqK7DOCsPpD4Vh3QXP/CMf6RgS57x6eMJuWnW5labGT69aWsbw0i7UVOSwpyZy3P00D7UOjPL6vg8f2dnCo041JEXMlH7+4lq0rS2fM0nIq4AuGue/VJn72wlHcviA3rivn81csMcZPdPDS4V6+/vghDvcMc/t5Ndx17QrMJgXXaJDvPlXPH15v4YLFBfzy1o0oCnzxkf08vKuNS5YW8sN3rT+l1/eMJPqLizIJhCI09Y9QW2i8ulxVVV7vCJGz8i623rRKEIkZWgGX5aTH7CCGsPLtotCr5dVYEs/x3hFMCvFv9sFmUfSzQd6SoUFbHfcPG9x5qL0Utn8Hjr8IK2+c8u22wVFWliXpHlBVEdFpsHFY82gOeg1aorSW1qZXEhL9LpeP0uw0fQWkaz/UGgup0lb/hhco1edFFygHEvYW9Lj9OO2WmBqREJ17o1Gm8v7lGNFPRdEHcQ8nIPrdHj/hiEp5js4beDgkrvlZieNc4yErzcqwP4SqqsZUrcpzYNd9U+Zk5nHqMeIPsbEml6cPdROJqHF3DD92cS1/2tHCj587wrfebmyHUwaKonBubT7n1ubj8gZ5bH8Hf9vTzo+fO8yPth0mO93K+YsKOKs6l9Xl2awsy9L/25yFCIUj9Hj8dLl9dLl8NPd7aRkYobnfS3O/lw7XKKo6drzTbmFxcSZXrihmcbGTpcVOlhRnUuiUKPKbhy76hv38461OHtvXwY4m0QK9rjKHr163gmvWlM5IfvypRCgc4ZFdbfzw2cN0uX1csrSQL25dxnKZuGtJtPR7+caTh3jmUDdVeQ5+eesGrlxZgqqqPL6vg68/cYj+YT8f3LKAL25dSv9IgI/dv4u32l185rLFfO6yxae8aG3uvZPMALSboK7TnRLRbxnwMuQNsrYyJ6aezxTKctKo70yhZXPZNcKmsP+hGNE/1jdCRa4jvgpS93j0efH98smgKfp9Rol++QawZ8Gx56cQ/RF/iIGRAJV5SdS0gWPg7ZcqgxqPDJsZq1lhYMQg8cwqE77xppfhvE/FPaTTNapv2/F0wXC3ofZhmCbRB3HeCV6zy+WTG8Rt2wUVGwzd5+lWMzazybiin78IMgqh+VXYcHv804nO1lToKfp9jRD0JlygJYIzzUI4ouINhI0RrYUXiUK9tjdhwYWGXnMeJxYN3R421uTx551tHO4ZjhurXJ6Tzvs2V/O715q4eWMFZ1VJWMNSRLbDyq3nVHPrOdW4vEFeOtLL9oZeXjrcx5NvdQJCN1pYkMHy0iyq8hxU5jmozHVQmZdOWU66/MzODCAcUXGNBhn0BhgcCTAwEmDIG6R32E+320eny0d3lNj3DfuJqBOfn59hoyrfwdk1uVTnV1Cd76A630FVXgYFmbZ5Qj+DCEdU9rYOsr2hl+2Nvexvd6GqsKQ4kzuvWsp1a8qoyp85lftUocvl46EdrTy0o4UOl4/1VTnc8+51bF4YP9EvFYz4Q/z0hSP86sXjWMwKd161lDvOX0Ca1UzrgJf/97cDbG/sZXV5Nr+9/WxWlWfz6pE+PvXgHoKhCPe+fyOXr9AvajwZOCOJ/uLiTCwmhbpON9euKTP8/L2tIqN57QxFNI1HWXY6z9X3GFcUbQ5Yfh0cfFTYd2wOjvWOsLAwwXBZ3WNQvFq67XQ8NEW/b9igQm62ChJ0ZNsUH7Y2T1CRm+RNqG2neKw429DLKopCrkO0DhtG7SWw/88Q8oNlKjHudvvZvFAnaUXLWDcYY5oy0c+uEIPER7bBuZ+Me0jbkDf5tQYR0dlzEJb+m6GXVxSFbIcV16jB660osOAiOPq8iCONs7jQ7hNd647WJWCQ6GeNu+aGiH7N+cKnf+yFeaI/C3DVymKeOtgNQH2nh4uWihbcFxp6Evan/NtVS3nqYBf//pe3ePzT55+U8qRsh5Vr15TFPod63D4OdLh4q83NW+0u3mp38c8DXYQmsWdnmoVch41ch5Wc6GOG3YLNYsJmMWG3mLFbTNjMJswmhYiqElFVwhGij+K/QDjCaCDMiD+ENxjG6w/hDYTxRr826A0wNBqcoMKPR1aahZLsNEqy01lW4qQkS/y7JNtOSVY6lXnpsRmpeZwY9Lh9bG/s5YXGXl4+3IdrNIhJgfVVuXz+8iVcsbKYZSVzq9gqHsIRlRcbe/njGy08V99NRIULFhdw9w2rZjTXX1VVHt3bwbf+UUe3289N68v50tZllGSnEQxH+NkLR7lnWyNmReGr163g/efW0D/s5z/+7y3+9GYLtYWZ/OLWDSxMQUQ+UTgjib7dYqa2MJO6VJRzYF+rizSraWK05gyhNCcdXzDCoNdAO66Gs94vWnL3PYC68Q6O943EJ6HuTuEnvuQrKZ1jmtVMpt1Cv1GiD6K8qP4JYQkZR8LaBiWU2tbXxa5F0XLDL5uXYTPWT6Bh8ZUi0ajlNVh48YRvBUIRutw+fU9v6+tgshhqH4Yx0ml4qBXEUPbO30BwdEoTr6qqNPd7WV+po1p27BFRnQZ3UABy0q3GFX2ARZfBgUfEXESc3Yi2wSjR17vmHXvEvSJZ8qVhfJdF0qK5ybA7xQL06PNw2X8aes15zDyuWlkSI/oHO1y8d3MVK0qzeOZQNx+9aKpPH0Sj89dvWMWHf7+T7z/TyJffJp/WNFMoykrj0qw0Ll02pgSGIyqdrlFaB0ZpHfTSMTTKkDeqsEcfj/UN4/WHCYQi+MOilVoGFpOCw2Ymw24h3WYmwyYeCzKFCp8XXUTkZtjIy7CR47CR57CR47CSn2mbz6Q/BQiGI+xqHmR7o9gJOtTpBsS81ZUrirloaSEXLCqc05778eh2a+p9K+1DoxRk2vjoRbW8++zKGW2gjkRUXjrSx4+2HWZX8yBrKrL56fs2sKE6F1VVeeNYP1997CD1XR6uWlnM165fSYbdwg+eaeTXLx8nGI5w6znV3Ll12bTK904EZtfZnEQsK3Xy5vGBlJ67r22IVWUnZniqPEfYQDqGRo0T/apzhT3mtZ/Sveg9jAbDLIwXF7f7d+Jx5dtTPs/8TJtx6w7A0quF8nno0UlEX1P0E5ArVRUKdc35hoeHIZr9n4qiv+BCMNvg8DNTiH7roJdwRKVG782m6RUoO0vsuhhAyoo+CML8+k/Fay++fMK3XKNBPL4Q1XpbuNoOilYeZgA5jhSJfu2l4vHItrhEv31wlIJMu35EYcce8XyD1jrNlpbSvVJ7Cbzw7fk8/VmA8xeNpetsb+wF4IoVxfzoucP0DfsTpnBcsaKY92yq5Ofbj7KiLIvr1xrf8Z1pmE0KFbkOKnIdnIucNUFVhVofCEUIR+cSzIqCSVEwmcCsKJhNyrxtZg7AFxQtvzuaBtjZNMDOpkE8/hAWk8KG6ly+uHUpFy8pYnmp87T5fYYjKi8e7uWBN1p4rl4Ep5y/qICvXLOcy5cXz+hum9sX5JGdbdz/ejPH+0YodNr5n3es4Z0bKohEffj3vnycfa1DlGan8ctbN3DR0kLuf62Znzx/hEFvkOvXlvGFK5fM6MJjJnHGEv3lpVk8ureDIW+AHIc8oR4NhHmrzcVt51WfkPPSVMSOodEJxS9SUBSRQf7w7bh3PAiUsqBg0q5D0Ac77oXFV0GBMbVzPPIzbPQbKfbS4MgT5PnQY3DZV2P2ndYBL/Zo6lBcDBwTpVM6GeuJkJthpbE7hUhVW4ZYXDT+E6765oRvNcdSjZL8cQe8ogQqhfO2W8ykWU2pEf3qLWBJg8NPTyH6WoeEbiJB2w7IrYGMqZGEeshOt8V2aQzBWSIsZUeehQs+P/WUhrz6/ny/R+wYbfms4ZdPqZ1aw+Ir4IVviZjbde8x/vx5zBiKxsXGtg2OMuQNsHVVCfdsO8xjezv44PmJS2vuvn4VR3qG+eIj+6jOc4hZrDkGRVGi9p35lJq5hoGRALuaB9nZNMCOpgEOtLsJhMUOzaKiTK5dW8ZFS0TL7+lkiwqFI+xoGuTpQ108daCLDpePgkwbH75gIe/ZNLPqPYhejd+/1sT/7WnHGwhzVlUOn3v3OrauKsEXjHDvy8e475UmOlw+FhRk8I0bVnLTWRU8daCLS/93O+1Do1ywuIAvbV1mnKudZJyxRH9VNN1lX5uLi5YUSj9vZ/MAgXCE8xYZJz8y0DLv/3975x0eV3H27Xu2SruruuqS1Wy5494xtsHYmOpQAyFAQk9PIAkk78ubQMIXSCcJNQRCC6ElFNMNphiMu7HlbktWb1avW+f74xyt5CZLq7Iree7r2uvU3X10dHbOb2aeElTmHYAJKyFtBhmbf4OD+8g52kd/23PQWgPzv90vOxMc1uCLjk36CrzxA00A66PFBTWtZDvtJx6ROLBaW445+/jHT0KcLUjXHdBmId76sZZqsluhrsLD2t+f3dPIeOkG8Hv7XJSsE83uIIS+OVLL8rP7DVhx3xEj20W1mt09juj7vCfMjtQb4u1mdpQFeb3HngNr/wgtNVohrW6U1bcz6WSNavEX2jXPPqPPX+2090Pop83QcvbvfkMJ/TBj46F6lk1MZmpGDM9vKO6xeI7FZODhr8/kKw9+xtcfX8+T35w95CXrFacGUkqK69rYeKhL2B+s0QaQzEbBlIxYvrkwm1lZ8czMiuv7LH+Y0+b28sm+Gt7bVcWHe6ppaPNgMRn00fuJLJs4sKP3Xp+f93dV8dS6Q3xRUIfFZGDl1DSunZ/NaRkxFNW28pu39vDiphIO21rWAAAgAElEQVTa3D7m5zr51Vcmc/qYBFbvruKyhz9nT2Uzp6XHcP+lU45blyMcOWWF/vTMWIwGwcbCuj4J/c8O1GIyCOYMUsPvtFuwmAx9z6XficEA5/+eiL8v5bcRT5IWfWnXseZK+PDXmotPzuL+2emwsqW4Prg3T7oY3vkZbH4qIPT3VTf3HNy8/z2IHw3xwZWPTnBYqW9z4/X5++5yNeliePsOrXhWN6F/6HArURGmnhvfQ2tBGGDUnKDtDspFCjS7976pdTYy5wV2B0b0ewrGLd8CrqYuV5o+kuCwUtviPmE6wx6Z9BX49Pew5w2YdX1gt98vKW/o4JzJKT2/v/ATrQpzZ8XaPhATacYgoD4YoS8EjL9Ac41zt2qzQYqQMTMrjs1FWhv10d5qlk1M5mtzM7njlR1sKqpndg9teILDyou3zOfrj6/nmn9s4NFrZrKoD88JheJoOkV9flkTO8sbyS9vYmdZI7V6WxMdYWJWdjyXzMhgdnY8UzJiRmQV5cMtLj7YXcV7O6tYe+AwLq+fmEgzS8cnsXxSMmfkJQ54atnS+jZe21bOs18UaXVYYiO589zxXDFrFHE2MxsP1XPz05t4f3cVJoPgwqlp3LAwB6vJwL83lPCTl7dT1+omy2njr1dN5/zTUkOeMrMvnLJC3241MTktmg2H+uan//nBw8zIjBu0HMcGgyA9NpKSYNweOkmfybO2a7m27Sl4+6ew7B5or4cXrgZvB1zw537n/U9waCPkQRUdi4jRROiOl+Gce2kTkZTUtXP5zBPkam+p1oIcT5DisjckRVuRUssUdNJ0mEdjT9D88/Nf0QIt9Wt3qLaVnIQeZiEA9ryl5ViPCG5qLzHKGqhi22fGrQCjFXb+9wihX1LXRoLD0vM9fPBDQATdIXQ6rHj9kqYOT59c4wBInqx16na+eoTQL2tox+3zkxV/EgFd+InWsepjTARov784myXw8O0zEy6ADY9qM1ATVwb3GYoB4VuLR3Pj01qcyZs7KvjVyslcODWNe9/czSMfHWT2N3oerEmLjeSFW+Zz7RMb+OY/N/Lj5eO4ZVHusHrAK0KDzy8pqGkhv7yR/LIm8ssa2VXRFCjGZzII8pKjOGt8ElNHxTI7O568JMeIvLeklBQebmW1Lu43F9cjpZZQ4WtzM1k2MZk52fEDHvN4oLqFd3dW8k5+JTvKGgEtdufuiyZx1vgk9lQ28/dPC3hrRwVFtW3E2cx898wxXDYzgw2FdfzitZ1sKqrHZBAsm5jMV2eP4oy8xOCKrIaYU1boA8zOjufpL4pweX298mWsb3Wzo6yRHyzNG1S7Ric6OFAdhD+5jsfn59dNKxib7mbexr/Dlqc1VwajBa54CpL6n00iMcqKX2ouDoknq656PGZ+U3Mj2vIMB0Z9DeDEWYx2vATSB1O/Fry9uu9/TbOr70If4LTL4dVbtRzv2ZobTuHh1p7zbdcVaOkpz/l/wZgMaB2qneWNwb3ZGqX5jee/Ast+BSZNcBfVtpF5Mv/8gx9qwdJBBpUmBGot9C0GBtA6UpMu1tx3mis1v30I/Cbyesp21XpYK5S1+I6g7AatwFrQbl6ZC+DCvwTtqqUYOLpPqze0efiytIHpmXHcsng0v3t3L1uK60+aLz8xysoLt8zjzle2c/87e1hXUMsfr5h6wmBexalHXaubA9Ut7K9uZk9FM/nljeyuaKLDo/nVW00GJqRGs3JaGpPSYpicFjOiq/xKKSk43Mr6gjrWF9byRUEtVU3arPTE1Gh+sDSP5RNTBjx4WErJzvIm3smv5J2dlYHnxfTMWH527njOmZRCi8vLqu0V3PvWbopq2zAaBAtGO/nOkjFkJ9h5dVsZ5/9lLS0uL7kJdn527ngumZERnMYJI05poT8nJ57H1xayvbSxx2ncTt7dWYmUcPaEwS2CkJfs4ON91Xh8/qAKo+yvasHtlVTNvwvirtUq5prtmt9wXPaA2NgVS9Ae3I9g1GzNh/qzP3Ng0XIA8pKPk99aStj6nObi048OSmdwXnVzBxDE6PrElfDOnbDx75B9Oi6vj/KGdi6Znn7i9+x5U1uOP7/v36ejue4E6QIDWuGpPau012Qty1JxXRuzs3sQOI1lULIBltwZnNEcWT15TFIQaWinfU1z39n6LCzS8vjvr9bS4eb19Hm739BSgvbjmic6rNQ0B+kuZTTBzL5V41UMDke7Pfx3axnTM+P4xoJsnvyskN++s4fnb5p3UrERHWHmwa/N4Ln1xdyzahdn/f4jfnj2WK6ZnzWkhasUoUNKSXWzSxP0Vc3sr27hgP7qPvsXZTUxIS2ar83JYnJ6NJPSYhidaB+UDH3hgpSSA9UtfFFYx/qCWtYX1gXaz8QoK3Nz4pmb6+TMcYknr93SR/x+yZbi+oC4L61vx2gQzM2J59r5WSybmMzhZjdv7qjg2ic2UFynifvTxyTw7SWjmZgaw8ZDdfzz80PsqmjCajJw/pRUrpydyezsuBGTxeiUF/pGg2DNnupeCf03d1SQ5bQxKW1wi0+MTXbg8UmKalsZk3T84i49ka+PAE9Oj4HEBV2VUgeQND0NaFl9O1OCLRy2+A546gJidvwTi/F0so43yrzvXW1U/KK/9sNaAp2R6mAFnMUGM66BdQ9BUznF7VH4JccGO3cn/xUtg0w/OleJUVZ8fklDexB1FUDzsY/NhM1PwuRLaGz3UNbQztUpmT3bjdRmMYLE2W1EP7gPGK1lZ9ryFCy8DQwG9le1kBhl7XmGYNdrWhG45MnBfS+QHG1lc7DxJ4qw4pp5WTzzRREAL24q4c5zx2O3mvjB0jzuem0nL24q4auze/gt6Agh+Pq8LObkxHPPG7u4Z9Uunl1fxB0rxnP2hORhOZ2vOJYOj4/S+jaKatsoqGllf3WzPlrfEnC7Ac2fPi85imUTkxmT5GBMkoO85ChSoyNGpPtNd/x+yb7q5sCI/fqCukBnJyU6ggWjnczLdTI3J/7krq1BcLjFxfqCOtYeOMzq3VXUNLuwGA0szEvg+0vzOHNcEiX1bby7s5IrHl1HSV07JoNgwZgEbl08mgSHhS3FDfxjbWEgE9/E1Gh+tXISF01LD6S1Hkmc0kI/1mZhwWgnb+2o4CfnjOvxhqxtcfH5wVpuXZw76L28PF3c769qCU7olzXisJrIGcScrp0Fi8qCDRoGyDkD8s5h4YG/syB+yrGjHn4/fPgrTbhN7V8Wk07XneqmIIU+wKwbNKH/+V/ZmazFC0xIPUGnr3Szlsv9vN8H/310jYzXNLuCE/oGo+Ym9cHdUL6NPR1aHMQJ7QbY8aI2g+I8fmGh3uC0d1ZP7sf1nvkNePl6LbXp+PPYX93S82h+W53mn3/69/sVg5IcHUFVk6vv1akVYcf3lo4JCP0Oj5/Xt5Vz5ZxMrp6bxartFfxq1W4W5iWevACbztjkKJ65YQ4f7qnm3jd3c8szm8mMt3Ht/CwunzVqRIqEkUZjm4eiulaKatsormujqLZrvbKp44gqwAkOC2OSHHxlWrom5pMcjEl2kOiwnhJtg5SSisYOdpQ1kq9Xav6ypIF6vUZKemwki8cmMjc3nnm5TjLjbYMm7L8o0NyA9usuOXaLkSXjtADetNhItpc28m5+Jfe8sYsWvc7A6WMSuG5+NlaTgc1F9fz23T00tHm0hCo58VwxaxRnjU8Kqyq2g8EpLfQBzjstlZ/9Zwe7KpqYlHZil45XtpTi88tAqfLBZHSiAyFgX1UL557W9/evL6hj2qjYQR1ZiIk0Y7MY+yf0AXn+H/D8eTZ3e/4IrvPA2u0Ht/5hqMqHS/8Bxv49QC0mAwkOC5VN/bA3PkdzKdn4OCWTlmE1GRhzogZiw2NgiYKpVwb/fUCqHk9Q0djOuJS+d/oAmH0DfPYAfHw/uzK1eIGJPXVQKnfAivuD+y4dp92C2SioDDaQGGDCRRCbBZ/8Djl2BQeqW7h0Rg+uUluf0WI5Jl8W/HeiuXm5vX4a24MIJFaEFUlRR8bjPPTRQS6dmYHZaOB3l01lxQOf8J3ntvD8TfOItPTOZ1oIwdIJySwam8h7O6t46vND/PrN3fzhvX0sn5TMOZNSWDx24DOHKE6OlJKmdi/lje2UN7RT3thBeUM7JXWdor7tmLokCQ4rWU4b80c7yYq3k+W0kem0keO0EzfC0ln2xPFEfX5ZY2BW1iC0ju7ZE5KZk6MJ+5PWYgmC2hYX6wu7hH3nqLvNYmS2npUoNSaCpg4P6wvruOeNXYEZhZwEOxdNSyM1OoIOr4/NRfX85u09+PySOJuZs8YlsXRCMmeMTSB6BNUgOBmnfEt0zqQU/vfVfF7bVn5Coe/x+Xnys0PMz3X2PBI6QERajGTERQZ8kvtCdXMHe6uaubgnQTQACKFlB+qsaBsspX4nv3LfyiM8AP/6KlzyKESlwZZ/wnv/C+POh8mXnvRzesNA2MviO2D7C8ze90fGJ99xfN/Lmn2Q/7I2A2ANUpzrdBVQ64dgjoiB+d+FNb+mzX0+8fZkkk4UV/HpHyAiFqZfHfz3oWWvSYmJCD5NLGiduzNuhze+T/2Xq2hxGRlzvDgO0PL+r39Mi/tICd5tBzTXHYCqJpcS+iOAey+ezP/8Nx/Q4lNe3FTC1XOzyHTa+OMVU/nWc1v44QtbeejqmX1ywTEbNX/e86ekkl/WyLNfFPHuzkpe21aOxWTgjDEJLBmfxKysOMYmRyn3ngGgze2lqslFRTcR313QVzS00+r2HfEek0GQFhtJltPGBVNSNSHfKejjbadkh0xKSWVTB9tLexb1S8YlcVp6DJPTY5iYGt3rznBf7KhqcrG1uJ4vCmpZd5Swn5Udz8XTM8h22mjq8LChsJ5n1mlFrEBzFVo8NpHkmAgsRgNlDe2s3X84kEJ6fEoUtyzKZemEJKaNijtlf4On3h1+FPF2Cysmp/Cv9cV8Z8kYYmzH9vJe31ZORWMH917cPwHRF8YmRbG3su9C//MDtcCRJeAHi+wEO4cOt/brM7YU1/OefzZlZz7AqE9/An+arOUfd7doKS0v/Xu/U4F2khFnY1dFU/8+JHYUcvGdzPvwHq5KPBM4qiiTlFpKU7MdFv2kf9+F5kZiNIj+CWaAed+CLU9xYfF9bEx5+PjTqxVfann3F9/Z7w4KQFpMZP/tnnoVfPZnIj74X6zczdgTue7s/A80lcJ5v+vf96Fdc+jnLIoibPjqrFEBoQ/w59X7Of+0VGJtFlZMTuWu8ydyz6pd/Ow/2/l/F58WVODk5PQY7rt0Cr/+yuRAdc/3dlbxwZ5qABxWE9NGxTIjK47T0mMYk+RgVFzkiA7S7C1+v6SuzU11k4uaFhfVTR36Utuuae56tbi8x7w/wWElLTaCMYkOzshLID02ktSYSNJiI0iLjSTBYT1lBV5nEPH+Ki0r0P7qFg7o653uN0Ml6gGq9M5FZ8die2ljwL0z0mxkVnYc50xKwWE14Zewq6KJf28sDhR5jLOZmZkVz7zRTqwmAzXNbtbsrQ78LZ3HbzojhzPHJw148O9w5ZQX+gDfPXMMb26v4InPCvnRsrFHHGts8/Cbt/dwWnoMS8YmDZlN0zNj+WBPNQ1tfUtP+On+w8TZzCd2zRhAchPsfLy3Jrhc+jpbixuwWYykLvw6TF0CX74AbYe1AOLxFx5R0bW/pMdF8v7uquAz2OiUTryJqtX/5rKy+6FgFuR2yzX/+V+hYA2c+9tjqroGg9EgSImO6LeLFFYHvnN/T+a/v8r33E+AXHhkB8rrgle/DfYkmHtL/75LJz02kvWFfatTcQwmC1zwJ2xPr+R288tMybjo2HM6GuG9uyBlilZVt590+mv3e/ZHERaYjAZuXpTLY58UAFq8yy9e38kDV04H4PqFOdS3ufnrhweoaXbxt6/NCHqU12Q0MH+0k/mjnfzfBRMpqWtnc3Edm4vq2VzUwN8+3I9f9wE3GwXZTjujEx2MTrKTHmsjOdpKcnQEydEROO2WYRXYKaXE5fXT3OGlsd1DQ5ub+jYP9a1u6o9ab2jzUNfmDpzj88tjPs9hNZEUZSUhysqktGgSo6wkRUWQGKUJ+7SYSFJiIkZkUam+0ul2s1/PCtQZQLy/qpmmbkHEMZFmxiY7WDE5lfEpUYMq6qubNDegzlmD7WWNgWw8BgFjkhzMH+3EbBT63wC7ypt4cM2BwG8kLSaCLKedjLhILEYDzR1ePtlfg9urpS7NSbBz9oRkZmXHMSs7ntxBCP4dCSihjxaYuGJSCo9+cpALp6YGAmCllPzf6/nUt7n55zdnD2mjOyfHCXSVbu8NPr/k4301LBiTMCS25iTYcfv8lDe0B+2rt7W4nikZMdrIVmwmLO7/KPiJyIiLxO31U9PiCozaBkN+RSs/d9/G584/YXr2Eph7K2Qv1NJpbn1GS8U5+6YBszs9NpKyARCdOx3z+Nx7AbfW/AdWj4Kz/k9LB+nzwqrbtHiIq14IOnf+0aTFRlLZ1BFcNeLu5C5hte08bm5bBbtfOjLuQUp45+fQUgVX/UsLPu4nKdHaNHBJXT+K1inCih8vHxcQ+gCvbSvnrPFJrJymuTjevnwcKTER3PVqPpc9so6/XDnt+Ol++4AQgkzd3/vi6RkAtLi87Ktq5mB1CwdrWjlY08K+6mbe3111jNg1GURA6EZFmIiymrVlhLaMjjQTZTVhMRmwmAyYjQbMRoHFaMDcbRu0n4mUIJH4pfZs075OW7q9flxeHy6PH1fnutevb/vo8Pjp8PhodXtp7vDS4vLS0rl0dW17jyPYO7EYDcTazMTZLMTZzeQlOYi1WYi3mwMCPinKSqL+slmUPDmaFpeXotpWimvbOFTbRkFNC/uqWzhY3XLEbIfTrgURXzQtjbykqEENIvb7JWUN7eytbNYLhGnivjPDnRAwJtHB6aOd2KwmpNTcofdXt/BufiVunyba4+0WchPszMt1YjIaMBsEpfXtrCvQvBRMBsHk9Bium5/FzKx4ZmbFDfv89kOF+iXp3L1yEuf/pY5r/rGB+y+dQkZcJA98sJ/XtpVz+7KxWqrKIWRKRgwWk4ENhbW9FvqfHzzM4RYXF5yWOsjWaXRGqh+obglK6Dd3eNhZ3sTNi3IH2rTjkqVnISo83Novob+uoBaXJQ7jN9+CNb+AdX/TXkaL5gt/9i8HdCYiy2njo301/f6cdQdrud97JddNjyXyswfgwAfazMmhtVC9S4s/GLdiACzWyIy34fNLyhs6yHQGP4Xq9fm5veVqXo2uIOe/t0LtAVjwffC5YfUvYduzmptU+swBsdtgEGTERwb8PBXDH4vJwMNXz+Bbz20J7PvJS9tJjYlkTo7Wsb16bhZpMZHc9uI2zv/LWn64LI+bz8gdUPcah9XEjMy4Ywp1eXx+Dre4qGzsoKrJRXVzR2D9cIuL5g4P1U0umju8NHd4jvFDH2yEgAiTEUeEiSirCUeECYfVRKbdFlh36PujrFonJM5mIc5m0cS93YLdYlSjrSdBSklNi4viWi1wuKiujeLaVn3ZdkzF7sQoK3lJDi6dkc6Y5CjG6qk+nYNQ0M3r81Nc1xaoIdBZT+BgTUugOJgQ2kz/mCQHk9KisZqMmIyaYH9/V1XgvrVZjDgdFjLiIjEbDZiMgqYOD5uKutIax9stnJYew4VTU5mVHc/UjNhBmXk4FVBCXyc5OoKnr5/LTU9v4tonNgCa28Rty8by3bPGDLk9EWYj00bFsqEPrg+vbSsnymrizPFD42LU6b+8q6IpqO/8dP9hvH7J4rH9d3HpDZ2Fmw5UtzAv1xn056w9cJg5OfFYohNg5YPayHhjiZaOMrLnSpvBMCbJwUubS2ls9/Qrfd/nB2vJTYwi8tIHYdxZmpvRl//W7L7iaW0mYgDJ1WsMHKxp6ZfQ31vVTKNbsHPJ4+SU/B4++Z32AkBoefaX/HwALO4iM96mhH4QCCGeAC4AqqWUk/V98cALQDZwCLhCSjnkhQrOPS2VldPSeG1bOQBun5+bnt7Ev2+eF0iycOb4JN6/bTF3vZrPb9/ZyxtfVvCjs/NYNjF5UEWq2WggNSYyUIjwZPj8kpYOL80uD26vH49P4vH5cfv8eLz60ufH7dVG2A1Cm2HQltq6AAxCIARYTUasJgNWs6Fr3WTAatbWTQahRPoA0dThoaJBCx4ubWjXhLye3rO4ro22bp04g9CKU2Y5bSyflHxEEHGm0zYomWPcXj+HalsDfv2dhcEKaloDo++gudXE2ixk6wNofikxCEFZQzsHa7pi96IiTHTeOTGRZsxGgcvjp6ROm6UWAnKcdqZkxHLl7EwmpkYzMS2apKhTI4XpUKCEfjcmpkXzwe2LWbOnmqYODwtGJwxK+qjeMjcnnoc+Okhjm+e4QcLdaXV5eTe/khWTU4bMZzEm0kxmvI2deoGuvrJ6dxWxNjMzswZeHB+PtJgIbBZjoDR2MFQ0tlNQ08rX5nQrshOVrL0GidH6zMnBmpZjRgJ7i8fnZ+OhOi6dobkQMPnSActmdCK6292fzuemQ5omnJqbBrMegdk3wsE12qzJuPMgacKA2NudbKedDYV1/Y7nOAX5J/A34Olu++4EPpBS3ieEuFPfviMEtnHPyslsOlQfiHlpbPdw+SPrePDqGYEBhwSHlYeunsHb+ZX89p093PzMZialRfP9pXksHZ8UFgG0RoMgxmY+6XNBMbS4vD6qGl2UNbRTcVSKTy0rUAfNRwUUW00GMuNtZDltLBidEEjvmRVvIyPOhsU08Peb2+untL6rc9HZ0SioaeFQbVvAjUwIzeXVYTUzPjUKAUi0jmZZQzvl3ZJbCAFmgwGjQRBlNWEyCowGA43tbjw+7fMizZCTEMXEtGgmpkYzITWa8SlRp2Tmo6FEXd2jiDAbOXeIXF9OxtIJyfz1wwO8v7uKy2Zm9Hju8xuKaXZ5uWruyas8DiST06PZUdZ3oe/zS9bsqebMcUP34BRCMDrREVTa0k4+07MaLRg9+FmNOhndORNRFbzQ/7KkgTa3jwWjg5/J6CtxdgtxNjMHa4LvWIHWIcxN0AKyAMiYpb0GkXEpUbS5fZTWt/drNuJUQ0r5iRAi+6jdK4El+vpTwEeESOjHRJp5/LpZXPLQ57R7tJHTFpeX6/+5kZ+dO57rT8/BoI9en3daKssnJvPatnL+8uF+bnlmM0lRVi6ekc7lMzOCKmaoGJ505uevau6gWnetqm7WMgN1F/Q1x6m8Hm+3kBarBZUuGJ1AaoyWDSgtNpL02EiSoqyDMpjQWRisU8iXdBP0FY3tdA+nsBgNGAwgENgtxkDMh0EIqppclHhPHiMmpTZLhk/zp8+MspGbaGdMUhST0rRR+myn/ZTNgBRKlNAPY6ZmxJARF8l/t5b2KPRdXh9//7SAebnxQQvBYJmZFc9bOyopb2gP5HzvDV8U1FLf5mHphKHLZARax+StHZVBVz19b2cliVFWxg9h2sWseBt2i5H88kauYFRQn/HWjkosRgMLhiDtanfGp0Szszz4lKZNHR6+KKjl+oU5QzqN2/n/3VPZpIR+/0mWUlYASCkrhBDH/dELIW4GbgbIzBy8AYsJqdE8e+McvvroF4HgUZ9f8us3d/N2fiX3Xzol4OZnMhq4dGYGK6elsXp3NS9vLuXxTwt59OMCJqVFs2RcIovyEpmRFYc5DEb6FX3D55fU66k9u8R7l4gP7Gt2BTK9dMdmMQaE+/iUaNJiI0mNjdBTfEaQGhM5KH7lUkoa2jyUN2qzBBWNWkejWPflL6ptPSLbDmguNAYhkFJi14NipZRIwOX14/Zov4Wj6on1SILDQm6Cg9xEO7mJdnL09cx4m/o9hBFK6IcxQgiunD2K37+3j/1VzSfMAvHYxwVUNbn4w+XThthCzb0INOF+yYyeZx2688y6IuJsZs6eMHguL8djSkYsz28ooai2jewEe5/eW9+q5ey9bn72kLpzGPRsA9tLg3OR8vklq7aXs3hcYr98/INhyqgYnlhbiMvrw2rq+wPvo701eHyS5b0MSB8oxqVEIQTsLG9i+aSUIf3uUxUp5WPAYwCzZs06cfqWAWBmVjwv3DKPm5/efESA4+aies77y6dcMy+LmxflBoL2TUYDKyansGJyCjXNLl7bVsa7Oyt55OMCHlxzEIfVxPzRTmZkxjElQ8tFPtS/NYUWMFrf5qGu1U1tq4vaFre+7qau1aWtd9vX0ObmeImCoiNMJEVHkBRlZVZWXGA9sNTXHYPkctLi8gaKgnUvDlYREPYdgRmpnjAaBCb91dxxbA2C3mA1GchJ0IR8boKjaz3Roe7xYYIS+mHOVXMyefijg/z23b08ds3MY0Y188sa+cuH+7lwahoL84Z2tBa00TGn3cKavTW9FvoVje28v7uKG8/IGfIcyFMzYgHYVFTfZ6G/ans5Hp/sU4dmoJg2KpYnPz9Eh8fX52u2obCO6mYXF01NGyTrTsyU9Fg8PsnuimamjYrt8/vf+LKcBIeVaaOGdqbKZjExLjmKzUVDHjM6EqkSQqTqo/mpQHWoDQJN7L/+vYXc/PSmI2ad3F4//1hbyDNfFPHVWaO4fmEOOd3aisQoKzeekcuNZ+TS1OHh8wO1fLyvhs8PHub9XVWB83IS7ExOj2F0op1sp53sBDvZTpuqttwLOjw+PRe/h8b247za3EdsN7Rr4r6x3YM8QRcx1mbGabfgtFsZnehgdo5F37Z0E/ARJEVbB+251OHxcbhFmyGo0WcKavQCYRWNHVqQbmN70KL8aHx+ic8vOdahqAujQZAWG0FGrI2MuEgy4rTlqHgb6XGRpEZHqDilYY4S+mGO02Hlu2flcf87e3jys0NcvzAncGx3RRPXPbEBp93K3RdNCol9RoNg+aRkXt9W3msR+shHB5FScvWcrCGw8EjGp0ThtFv4dH/NSeMeuuP3S55bX8z4FC2QaKiZN9rJo58UsPFQHWfk9S1L0X0t46oAABVlSURBVLPri3BYTUM+ewIEUhd+duBwn4V+cW0bq3dX8e0lo0Pi1zknJ56XN5fi8fnVNHT/eB24DrhPX74WWnO6SI+N5JVvLeChjw7ylw/2H3HM7fXzzBdFPPNFEdMzY7lkRgYXTkk9QqhHR5gDI/0ADW3uQJGgHaWNbC2uZ9X28iPEZ6xNS2IQyBnv0JYJ+jLObgmksIw0h39KSiklbp+fDrefDq+PDo+Pdo+PNreP1m759lsDOfd9tLg8tLp8gfz7rW6vnkVIK7Z1PDeZ7kRHmLRg5EjtlRoTSbzdQrzdgtNh6Vq3W4nXY4UGKxas03+/081HE/AdXUK+27KxL34xA4TRIEiNiThCxHcX88lR1rAIMFcMHkroDwNuXpTLluJ67lm1iw2FdczOiaeotpXnNxQTa7Pwr5vmEm8P3SjRRVPTeX5DCW98Wc7ls3r2Id9b2cyz64u5em5WSHyfDQbBorGJfLS3GrfX3+uMBm/lV7CnspkHrhx69yjQXKQsRgNr9tT0SegfqG7hrR0VfGvx6JDkIE6MsjI5PZo1e6r5zpl9S1P71LpDGIXgmnnZg2LbyVgw2snT64rYeKhuSIOvhzNCiOfRAm8ThBClwC/QBP6LQogbgGLg8tBZeCwRZiO3LRvLRVPTuPuNnXy6//Ax52wtbmBrcQP3vLGT6ZlxnDEmgYV5CZyWHnOESIq1WTgjL/GI32iHx0dpfRuFhzXf6UO1rRTXtVPW0MG2kkbqWl3HdR8BLb2iw6oVybJbjTisJiLMRsxGrUiWRS+K1bnduext38Dnk3j9WmpOr0/i8WtLb2DZdax74awOj48Or592t48Or++Eo+jHw2I0aH9LhAm7Rcu/H2ezMCreRpTVREykmejILhEf203Qx0SaiYowD2rH3+vzU9fmpr7VQ63u7lMfcP/RlvVHrfdUKGwwsRgNJEVbSYmOIDkmQlvq1ZVTorXYgdSYCCXkT3GU0B8GGA2Ch66ewYNrDvDE2kLe2akFVl40NZ07zx0f8upw83LjGZvs4NFPCrh4evoJG5V2t4/bX9qGw2ritmVjh9jKLi6amsZ/t5bx4Z4qVkw+eYalDo+PP763j7HJDi6YMvTuL6C5kiwel8iq7eX8z/kTev2g+9PqfVhNBm7oNhM01JwzMYU/vL+Pkrq2XqerLalr47n1RVw4NY2UmOCLm/WHRWMTiTAbeHtHZZ+Efl/+zpGGlPKqExxaOqSGBMGYJAfP3DCXL0saeOTjg7ydX3nMOR6fZENhHRsK6/jD+/uIijAxMyuOSWnRTE6LYVJaDKPiI48YhY8wGxmTFHXCLD0+v6Su1U1Ns4uaFhf1re4jqs12X292eXB5/LS6vLg7c+d7tZz5netun79XwltCwH+7s2iRyaB1HIzH2WezmIi3G4gwG4kwG4k0G4kwd20fvS/SYiTKasKuF9OyW03YrcagYnWCwePz06S79XS6+DQd5Q7UuV7fpgn3TvefcMBpt5CsC/eUmIiAeE/WXykxEcTZzGE/46MIPUroDxPMRgM/PHss3zsrj+YOD5GWoWswT4YQgtuWjePWZzfz8EcH+d7SvGPO6fD4+MG/t7KzvInHr51FXAhnIM7ISyA9NpJHPi7gnEkpJ20o731zNwWHW3n6+jkhTQ126Yx03t9Vxfu7qgKuAj3x9o4K3txewY/OHjsolRJ7yyUzM/jj6n08ve4Q/3P+xJOeL6XkF6/vxCgEP10xbvANPAE2i4nlE1N4dWsZd5w7vleBd+sO1nLNP9bzp69O48IQxEQo+s/UUbE8/PWZFB5u5ZXNpbz+ZfkJi6c1d3j5aG8NH+3tqlwdFWFibHIUWfE2Run50bUiR3YSHJZj2hujQWguPCEesAknvD4/rS4fzS5Pt05Ot46Pvt3c4aGlw0tTR6d49wb894e6evDJMBoE8XYLCQ4rCY6updOhuW05HRYS9fV4u2VQ8ucrTk2U0B9mGA0iLIO5zpmUzMppafzh/X10eH1876w8IsxGpJRsKa7n7jd2sb20kV9cOJGlIfAV747JaOD7S8dwxys7eGlzKVf04G70908KeOaLIm5cmMOiIargeyLOnpBMltPGn1fv4+wJPdcfyC9r5I5XtjMlI4Zvnzl6CK08lvTYSC6ens7T64q4YWHuSUfo//bhAT7cU81dF0zsdaXQweKGhTm8/mU5j318kNuW99zpKGto53vPbyHLaWPJuNDeK4r+k5Ng58fnjOP25WPZXtrIqu3lrD1Qy+6KntPFNnd42VxUf9xAbrNR4LRbSYjqFHrWgODT3FJMOKxmHBHaKHh0RPj56vv8Ups58PpxeX24vH4tPWO37Xa35qPf5vYG/PXb3JrLT5vbS5vbFzin3e2jzeOlzeULiPneZJQJNRajgVibmTibJbCMs5sDYt55hKC3EhtpVkGtipCghL5iQBBC8NvLpmAyGHhwzUGeWHuIMUkODuvZBBIcVh75+sxejUQPBZfPHMV/t5Zx16v5JEVZWTLuyNTejW0e7ntnN89vKOH801K549zxIbK0C5PRwJ0rxvOt57bw6zd3c9cFE487w/DB7ipuf+lLoiLMPHT1jLAIJP3R2WN548ty7nt7N3++cvpxz/H7JQ98sJ8HPtjPJdPTuf707KE18jhMHRXLymlpPPTRQebmOjn9BHUIdpY3cuNTm3B5/Dx680yiBqE0vSI0CCGYOiqWqXoweX2rm/WFtaw7WMu2kga+7EPaW49PUtnUQWVTR59sMAgCPvhW3Te/u09+57pAq1AqEAgBBiEC/vpCiMDxzmwsnS+vX+KXEq9P3ye7jnW6A7k8mogPlT/6YBJn64oLiLVpwbvdBXyszawH9Xbts1nCp/OlUPSEkH2Joukns2bNkps2bRqy71OEhg2Fdazark13R0eYmZfrZOW0tLArc13b4uLqx9ezp7KZ08c4mZPtxGQU7KlsZvWuKlxeHzctyuUny8eFTTCTlJJ7Vu3iyc8OMSsrjhsW5jAxLRqPT7KzvJFXtpTxyb4aJqRG8+jXZ4ZVsac/vb+PBz7Yz5WzR/Hds8aQEafZ5vL6+HhvDQ+uOcCXpY1cOiOD31xyWthMXTe2e7js4c85VNvKj5aN5YpZo0hwWPH4/Owqb+KlzSU8v6EEp93Ck9+czaS0mH59nxBis5RycEv/hjnD6Vnh80sKD7eyp7KJ3RVN7K9qoaS+/aQj/4qBwaTPcjusRqIizERHmoiOMGuvzvXIo9a7HVOCXTFc6e2zQgl9xSlNq8vLU+sO8eLGEg7Van64KdERLBqbwDdPz2FC6tCn0jwZUkpe2VLGfW/v5nCL+4hjCQ4r1y/M5oaFOWETw9GJzy+5/509/GNtIT6/JCnKisVkoLKxA69fkhoTwY+Xj+OSGelh9+BtbPfwoxe28eEeLQW83WIMjG5a9OqpPz1n3IDEniihP3KeFY1tHkrq2yitb6OsoSNQtOlwi5vaFheHW9wn9P8fqTjtFqIjzUTqAbuRnYG8FiORZgM2S1fwrsNq1IN4j7/PbjGFNG5KoQglQyL0hRArgAcAI/C4lPK+ns4fKY23YmTSofuFDnURr2Dx+vxsLqqnuK4Ns9EQKNAT7g++kro23smvZF9VM16/JC02gtnZ8Zw+JiEs3Ix6Yld5E2sP1FDR2EGk2ci4lCgW5SUOaHC5Evqn3rOiM/i0xd2Vb741kHtey0vv8fqPyLLj8vnxeLsy73j9EokECX4pkYDUNpH6tnZYYhBaZh2jQWDU1w16Bp4jjunHO92DLN1chayB9J5d+zrPsZoMARHfmTgi3NslhWK40dtnRdC+FEIII/AgsAwoBTYKIV6XUu4K9jMVilAyXAR+Jyajgbm5TubmOkNtSp8YFW/jpkW5oTYjKCamRYekYJpiZGMyGoixGYixqdgOhUIxsPRn+GwOcEBKWSCldAP/BlYOjFkKhUKhUCgUCoWiP/RH6KcDJd22S/V9RyCEuFkIsUkIsammpubowwqFQqFQKBQKhWIQ6I/QP57D3TEO/1LKx6SUs6SUsxITVW5phUKhUCgUCoViKOiP0C8FulcaygDK+2eOQqFQKBQKhUKhGAj6I/Q3AnlCiBwhhAW4Enh9YMxSKBQKhUKhUCgU/SHorDtSSq8Q4rvAu2jpNZ+QUu4cMMsUCoVCoVAoFApF0PSrVKmU8i3grQGyRaFQKBQKhUKhUAwQ4V2dRqFQKBQKhUKhUARFvyrj9vnLhKgBioJ8ewJweADNGUyGi63DxU5Qtg4WytbBoT+2ZkkpT+kUZX14VgyneyIUqOtzctQ16hl1fXomlNenV8+KIRX6/UEIsWm4lIUfLrYOFztB2TpYKFsHh+Fk63BGXeeeUdfn5Khr1DPq+vTMcLg+ynVHoVAoFAqFQqEYgSihr1AoFAqFQqFQjECGk9B/LNQG9IHhYutwsROUrYOFsnVwGE62DmfUde4ZdX1OjrpGPaOuT8+E/fUZNj76CoVCoVAoFAqFovcMpxF9hUKhUCgUCoVC0UuU0FcoFAqFQqFQKEYgYS/0hRArhBB7hRAHhBB3htqe7gghnhBCVAsh8rvtixdCvC+E2K8v40JpYydCiFFCiDVCiN1CiJ1CiB/o+8POXiFEhBBigxDiS93Wu/X9OUKI9bqtLwghLKG2FUAIYRRCbBVCrNK3w9XOQ0KIHUKIbUKITfq+sPv/AwghYoUQLwsh9uj37PxwtFUIMU6/np2vJiHED8PR1pFGOD8bQsFwauNDyXBpr0PBcGl3Q4UQ4kf6bytfCPG8rlXC/v4Ja6EvhDACDwLnAhOBq4QQE0Nr1RH8E1hx1L47gQ+klHnAB/p2OOAFbpdSTgDmAd/Rr2U42usCzpJSTgWmASuEEPOA+4E/6bbWAzeE0Mbu/ADY3W07XO0EOFNKOa1b3t9w/P8DPAC8I6UcD0xFu75hZ6uUcq9+PacBM4E24L+Eoa0jiWHwbAgFw6mNDyXDqb0eaoZFuxsKhBDpwPeBWVLKyYARuJLhcP9IKcP2BcwH3u22/TPgZ6G26ygbs4H8btt7gVR9PRXYG2obT2D3a8CycLcXsAFbgLlo1edMx7s3QmhfBlrjdxawChDhaKduyyEg4ah9Yff/B6KBQvRkAeFs61H2LQc+Gw62DvfXcHg2hPo1XNr4Ib4mw6a9DsG1GZbt7hBen3SgBIgHTPr9c85wuH/CekSfrgvbSam+L5xJllJWAOjLpBDbcwxCiGxgOrCeMLVXn17dBlQD7wMHgQYppVc/JVzuhT8DPwX8+raT8LQTQALvCSE2CyFu1veF4/8/F6gBntSn2B8XQtgJT1u7cyXwvL4e7rYOd4bjs2HIGA5tfIgYTu31UDNc290hQUpZBvweKAYqgEZgM8Pg/gl3oS+Os0/lA+0HQggH8ArwQyllU6jtORFSSp/U3CEygDnAhOOdNrRWHYkQ4gKgWkq5ufvu45waLvfs6VLKGWjuDt8RQiwKtUEnwATMAB6WUk4HWgnz6WLdL/Mi4KVQ23KKEM6/s5AyXNr4oWYYttdDzbBrd4cSPTZhJZADpAF2tGfp0YTd/RPuQr8UGNVtOwMoD5EtvaVKCJEKoC+rQ2xPACGEGe0B8JyU8j/67rC1F0BK2QB8hOZzGiuEMOmHwuFeOB24SAhxCPg32nTwnwk/OwGQUpbry2o0P/I5hOf/vxQolVKu17dfRnsAhaOtnZwLbJFSVunb4WzrSGA4PhsGneHYxg8hw6q9DgHDsd0dSs4GCqWUNVJKD/AfYAHD4P4Jd6G/EcjTo5otaFPjr4fYppPxOnCdvn4dmp9kyBFCCOAfwG4p5R+7HQo7e4UQiUKIWH09Eu0HthtYA1ymnxZyW6WUP5NSZkgps9HuzQ+llFcTZnYCCCHsQoioznU0f/J8wvD/L6WsBEqEEOP0XUuBXYShrd24ii63HQhvW0cCw/HZMKgMpzY+FAyn9joUDNN2dygpBuYJIWz6b63z+oT9/RP2lXGFEOeh9bqNwBNSyntDbFIAIcTzwBIgAagCfgG8CrwIZKLdGJdLKetCZWMnQoiFwKfADrr8E3+O5sMZVvYKIaYAT6H9zw3Ai1LKe4QQuWgjMfHAVuDrUkpX6CztQgixBPixlPKCcLRTt+m/+qYJ+JeU8l4hhJMw+/8DCCGmAY8DFqAA+Cb6vUD42WpD8xfPlVI26vvC8rqOJML52RAKhlMbH2rCvb0OFcOp3Q0FQkv1/VW0DFdbgRvRfPLD+v4Je6GvUCgUCoVCoVAo+k64u+4oFAqFQqFQKBSKIFBCX6FQKBQKhUKhGIEooa9QKBQKhUKhUIxAlNBXKBQKhUKhUChGIEroKxQKhUKhUCgUIxAl9BUjCqGxVghxbrd9Vwgh3gmlXQqFQqEIL4QQLUdtf0MI8bdQ2aNQDAamk5+iUAwfpJRSCHEr8JIQYg1aju17gRX9+VwhhElK6R0IGxUKhUIx/FHPBcVwQI3oK0YcUsp84A3gDrQiZk9LKQ8KIa4TQmwQQmwTQjwkhDAACCEeE0JsEkLsFEL8X+fnCCFKhRB3CSE+Ay4OyR+jUCgUiiFHCHGhEGK9EGKrEGK1ECJZ3/9L/ZnxHvC0EMIohPidEGKjEGK7EOKWEJuuUByBGtFXjFTuBrYAbmCWEGIymlhfIKX0CiEeQyuD/i/gTillnRDCBKwRQrwspdylf06rlPL0UPwBCoVCoRhUIoUQ27ptxwOv6+trgXn6LPGNwE+B2/VjM4GFUsp2IcTNQKOUcrYQwgp8JoR4T0pZOFR/hELRE0roK0YkUspWIcQLQIuU0iWEOBuYDWwSQgBEAiX66VcJIW5A+z2kAROBTqH/wtBarlAoFIohol1KOa1zQwjxDWCWvpkBvCCESAUsQHfh/rqUsl1fXw5MEUJcpm/HAHlHna9QhAwl9BUjGb/+AhDAE1LKu7qfIITIA34AzJFSNgghngUiup3SOiSWKhQKhSKc+CvwRynl60KIJcAvux3r/lwQwPeklO8OoW0KRa9RPvqKU4XVwBVCiAQAIYRTCJEJRAPNQJM+cnNOCG1UKBQKRXgQA5Tp69f1cN67wLeEEGYAIcRYIYR9sI1TKHqLGtFXnBJIKXcIIe4GVutBuB7gVmATmptOPlAAfBY6KxUKhUIRJvwSLXtbGfAFkHOC8x4HsoEtQvMLrQG+MhQGKhS9QUgpQ22DQqFQKBQKhUKhGGCU645CoVAoFAqFQjECUUJfoVAoFAqFQqEYgSihr1AoFAqFQqFQjECU0FcoFAqFQqFQKEYgSugrFAqFQqFQKBQjECX0FQqFQqFQKBSKEYgS+gqFQqFQKBQKxQjk/wM0VdfhphsgjAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(13, 4))\n", "plt.subplot(1, 2, 1)\n", "plt.plot(t, H, t, L)\n", "plt.title('Hare/Lynx Population Dynamics')\n", "plt.xlabel('Year')\n", "plt.legend(['Hare', 'Lynx'])\n", "\n", "plt.subplot(1, 2, 2)\n", "plt.plot(H, L)\n", "plt.title('Hare/Lynx Phase Plot')\n", "plt.ylabel('Lynx')\n", "plt.xlabel('Hare')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "nbpages": { "level": 4, "link": "[1.4.2.4.5 Step 5: Plot ](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.2.4.5-Step-5:-Plot)", "section": "1.4.2.4.5 Step 5: Plot " } }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 4, "link": "[1.4.2.4.5 Step 5: Plot ](https://jckantor.github.io/CBE30338/01.04-Python-Numeric-Integration-Revisited.html#1.4.2.4.5-Step-5:-Plot)", "section": "1.4.2.4.5 Step 5: Plot " } }, "source": [ "\n", "< [1.3 Python Conditionals and Libraries](https://jckantor.github.io/CBE30338/01.03-Python-Conditionals-and-Libraries.html) | [Contents](toc.html) | [Tag Index](tag_index.html) | [2.0 Process Modeling](https://jckantor.github.io/CBE30338/02.00-Process-Modeling.html) >

\"Open

\"Download\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 2 }