None Notebook

This notebook contains material from CBE30338; content is available on Github.

< 2.6 Exothermic Continuous Stirred Tank Reactor | Contents | Tag Index | 2.8 Model Library >

Open in Colab

Download

2.7 Fed-Batch Bioreactor

2.7.1 Model Development

Mass balances for a fed-batch bioreactor are given by

$$\begin{align*} \frac{d(XV)}{dt} & = V r_g(X,S) \\ \frac{d(PV)}{dt} & = V r_P(X,S) \\ \frac{d(SV)}{dt} & = F S_f - \frac{1}{Y_{X/S}}V r_g(X,S) \end{align*}$$

where $X$ is cell concentration, $P$ is product concentration, and $S$ is substrate concentration, all given in units of grams/liter. The reactor is fed with fresh substrate at concentration $S_f$ and flowrate $F(t)$ in liters per hour. The volume (in liters) is therefore changing

$$\frac{dV}{dt} = F(t)$$

Rate $r_g(X,S)$ is the production of fresh cell biomass in units of grams/liter/hr. The cell specific growth is expressed as

$$r_g(X,S) = \mu(S)X$$

where $\mu(S)$ is the cell specific growth rate. In the Monod model, the specific growth rate is a function of substrate concentration given by

$$\mu(S) = \mu_{max}\frac{S}{K_S + S}$$

where $\mu_{max}$ is the maximum specific growth rate, and $K_S$ is the half saturation constant which is the value of $S$ for which $\mu = \frac{1}{2}\mu_{max}$.

For this model, the product is assumed to be a by-product of cell growth

$$r_P(X,S) = Y_{P/X}r_g(X,S)$$

where $Y_{P/X}$ is the product yield coefficient defined as

$$Y_{P/X} = \frac{\mbox{mass of product formed}}{\mbox{mass of new cells formed}}$$

The model further assumes that substrate is consumed is proportion to the mass of new cells formed where $Y_{X/S}$ is the yield coefficient for new cells

$$Y_{P/X} = \frac{\mbox{mass of new cells formed}}{\mbox{mass of substrate consumed}}$$

2.7.1.1 Dilution Effect

One aspect of the fed-batch model is that volume is not constant, therefore the cell, product, and substrate concentrations are subject to a dilution effect. Mathematically, the chain rule of differential calculus provides a means to recast the state of model in terms of the intensive concentration variables $X$, $P$, and $S$, and extensive volume $V$.

$$\begin{align*} \frac{d(XV)}{dt} & = V\frac{dX}{dt} + X\frac{dV}{dt} = V\frac{dX}{dt} + F(t)X \\ \frac{d(PV)}{dt} & = V\frac{dP}{dt} + P\frac{dV}{dt} = V\frac{dP}{dt} + F(t)P \\ \frac{d(SV)}{dt} & = V\frac{dS}{dt} + S\frac{dV}{dt} = V\frac{dS}{dt} + F(t)S \end{align*}$$

Rearranging and substituting into the mass balances gives

$$\begin{align*} \frac{dX}{dt} & = - \frac{F(t)}{V}X + r_g(X,S) \\ \frac{dP}{dt} & = - \frac{F(t)}{V}P + r_P(X,S) \\ \frac{dS}{dt} & = \frac{F(t)}{V}(S_f - S) - \frac{1}{Y_{X/S}}r_g(X,S) \\ \frac{dV}{dt} & = F(t) \end{align*}$$

2.7.2 Python Implementation

2.7.3 Simulation

< 2.6 Exothermic Continuous Stirred Tank Reactor | Contents | Tag Index | 2.8 Model Library >

Open in Colab

Download