{ "cells": [ { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "IDgcAzI9mKhY", "nbpages": { "level": 0, "link": "[](https://jckantor.github.io/CBE30338/07.06-Path-Planning-for-a-Simple-Car.html)", "section": "" } }, "source": [ "\n", "*This notebook contains material from [CBE30338](https://jckantor.github.io/CBE30338);\n", "content is available [on Github](https://github.com/jckantor/CBE30338.git).*\n" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "7nwy5pUhmKhZ", "nbpages": { "level": 0, "link": "[](https://jckantor.github.io/CBE30338/07.06-Path-Planning-for-a-Simple-Car.html)", "section": "" } }, "source": [ "\n", "< [7.5 First Order System in Pyomo](https://jckantor.github.io/CBE30338/07.05-First-Order-System-in-Pyomo.html) | [Contents](toc.html) | [Tag Index](tag_index.html) | [7.7 Transient Heat Transfer in Various Geometries](https://jckantor.github.io/CBE30338/07.07-Transient-Heat-Transfer-in-Various-Geometries.html) >

\"Open

\"Download\"" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "TOVhPSfimKha", "nbpages": { "level": 1, "link": "[7.6 Path Planning for a Simple Car](https://jckantor.github.io/CBE30338/07.06-Path-Planning-for-a-Simple-Car.html#7.6-Path-Planning-for-a-Simple-Car)", "section": "7.6 Path Planning for a Simple Car" } }, "source": [ "# 7.6 Path Planning for a Simple Car" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "BayF7dSpnyaO", "nbpages": { "level": 2, "link": "[7.6.1 Required Installations](https://jckantor.github.io/CBE30338/07.06-Path-Planning-for-a-Simple-Car.html#7.6.1-Required-Installations)", "section": "7.6.1 Required Installations" } }, "source": [ "## 7.6.1 Required Installations\n", "\n", "If run on Google Colab, it is necessary to install any needed solvers for each Colab session. The following cell tests if the notebook is run on Google Colab, then installs Pyomo and Ipopt if not already installed." ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "SCT5AdNQmcx5", "nbpages": { "level": 2, "link": "[7.6.1 Required Installations](https://jckantor.github.io/CBE30338/07.06-Path-Planning-for-a-Simple-Car.html#7.6.1-Required-Installations)", "section": "7.6.1 Required Installations" } }, "outputs": [], "source": [ "try:\n", " import google.colab\n", " try:\n", " from pyomo.environ import *\n", " except:\n", " !pip install -q pyomo\n", " if not 'ipopt_executable' in vars():\n", " !wget -N -q \"https://ampl.com/dl/open/ipopt/ipopt-linux64.zip\"\n", " !unzip -o -q ipopt-linux64\n", " ipopt_executable = '/content/ipopt'\n", "except:\n", " pass" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "vA9fZ0KepTrI", "nbpages": { "level": 2, "link": "[7.6.2 Kinematic Model](https://jckantor.github.io/CBE30338/07.06-Path-Planning-for-a-Simple-Car.html#7.6.2-Kinematic-Model)", "section": "7.6.2 Kinematic Model" } }, "source": [ "## 7.6.2 Kinematic Model" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "9iuaeJGupKcg", "nbpages": { "level": 2, "link": "[7.6.2 Kinematic Model](https://jckantor.github.io/CBE30338/07.06-Path-Planning-for-a-Simple-Car.html#7.6.2-Kinematic-Model)", "section": "7.6.2 Kinematic Model" } }, "source": [ "\n", "The following equations describe a simple model of a car\n", "\n", "\\begin{align}\n", "\\frac{dx}{dt} & = v \\cos(\\theta) \\\\\n", "\\frac{dy}{dt} & = v \\sin(\\theta) \\\\\n", "\\frac{d\\theta}{dt} & = \\frac{v}{L}\\tan(\\phi) \\\\\n", "\\end{align}\n", "\n", "where $x$ and $y$ denote the position of the center of the rear axle, $\\theta$ is the angle of the car axis to the horizontal, $v$ is velocity, and $\\phi$ is the angle of the front steering wheels to the car axis. The length $L$ is the distance from the center of the rear axle to the center of the front axle.\n", "\n", "The velocity $v$ is controlled by acceleration of the car, the position of the wheels is controlled by the rate limited steering input $v$.\n", "\n", "\\begin{align}\n", "\\frac{dv}{dt} & = a \\\\\n", "\\frac{d\\phi}{dt} & = u\n", "\\end{align}\n", "\n", "The state of the car is determined by the value of the five state variables $x$, $y$, $\\theta$, $v$, and $\\phi$.\n", "\n", "The path planning problem is to find find values of the manipulable variables $a(t)$ and $u(t)$ on a time interval $0 \\leq t \\leq t_f$ to drive the car from an initial condition $\\left[x(0), y(0), \\theta(0), v(0), \\phi(0)\\right]$ to a specified final condition $\\left[x(t_f), y(t_f), \\theta(t_f), v(t_f), \\phi(t_f)\\right]$ that minimizes an objective function:\n", "\n", "\\begin{align}\n", "J = \\min \\int_0^{t_f} \\left( \\phi(t)^2 + \\alpha a(t)^2 + \\beta u(t)^2\\right)\\,dt\n", "\\end{align}\n", "\n", "and which satisfy operational constraints\n", "\n", "\\begin{align*}\n", "| u | & \\leq u_{max}\n", "\\end{align*}\n" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "FLQpW-FnmKhb", "nbpages": { "level": 2, "link": "[7.6.3 Pyomo Model](https://jckantor.github.io/CBE30338/07.06-Path-Planning-for-a-Simple-Car.html#7.6.3-Pyomo-Model)", "section": "7.6.3 Pyomo Model" } }, "source": [ "## 7.6.3 Pyomo Model" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 510 }, "colab_type": "code", "executionInfo": { "elapsed": 5724, "status": "ok", "timestamp": 1554483576630, "user": { "displayName": "Jeffrey Kantor", "photoUrl": "https://lh5.googleusercontent.com/-8zK5aAW5RMQ/AAAAAAAAAAI/AAAAAAAAKB0/kssUQyz8DTQ/s64/photo.jpg", "userId": "09038942003589296665" }, "user_tz": 240 }, "id": "q3J2uYaCmKhc", "nbpages": { "level": 2, "link": "[7.6.3 Pyomo Model](https://jckantor.github.io/CBE30338/07.06-Path-Planning-for-a-Simple-Car.html#7.6.3-Pyomo-Model)", "section": "7.6.3 Pyomo Model" }, "outputId": "481ba5f6-974b-4eaf-9ea8-175275d81613" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "# ==========================================================\n", "# = Solver Results =\n", "# ==========================================================\n", "# ----------------------------------------------------------\n", "# Problem Information\n", "# ----------------------------------------------------------\n", "Problem: \n", "- Lower bound: -inf\n", " Upper bound: inf\n", " Number of objectives: 1\n", " Number of constraints: 449\n", " Number of variables: 444\n", " Sense: unknown\n", "# ----------------------------------------------------------\n", "# Solver Information\n", "# ----------------------------------------------------------\n", "Solver: \n", "- Status: ok\n", " Message: Ipopt 3.12.8\\x3a Optimal Solution Found\n", " Termination condition: optimal\n", " Id: 0\n", " Error rc: 0\n", " Time: 1.1693551540374756\n", "# ----------------------------------------------------------\n", "# Solution Information\n", "# ----------------------------------------------------------\n", "Solution: \n", "- number of solutions: 0\n", " number of solutions displayed: 0\n" ] } ], "source": [ "from pyomo.environ import *\n", "from pyomo.dae import *\n", "\n", "L = 2\n", "tf = 50\n", "\n", "# create a model object\n", "m = ConcreteModel()\n", "\n", "# define the independent variable\n", "m.t = ContinuousSet(bounds=(0, tf))\n", "\n", "# define control inputs\n", "m.a = Var(m.t)\n", "m.u = Var(m.t, domain=Reals, bounds=(-0.1,0.1))\n", "\n", "# define the dependent variables\n", "m.x = Var(m.t)\n", "m.y = Var(m.t)\n", "m.theta = Var(m.t)\n", "m.v = Var(m.t)\n", "m.phi = Var(m.t, domain=Reals, bounds=(-0.5,0.5))\n", "\n", "m.xdot = DerivativeVar(m.x)\n", "m.ydot = DerivativeVar(m.y)\n", "m.thetadot = DerivativeVar(m.theta)\n", "m.vdot = DerivativeVar(m.v)\n", "m.phidot = DerivativeVar(m.phi)\n", "\n", "# define the differential equation as a constraint\n", "m.ode_x = Constraint(m.t, rule=lambda m, t: m.xdot[t] == m.v[t]*cos(m.theta[t]))\n", "m.ode_y = Constraint(m.t, rule=lambda m, t: m.ydot[t] == m.v[t]*sin(m.theta[t]))\n", "m.ode_t = Constraint(m.t, rule=lambda m, t: m.thetadot[t] == m.v[t]*tan(m.phi[t])/L)\n", "m.ode_u = Constraint(m.t, rule=lambda m, t: m.vdot[t] == m.a[t])\n", "m.ode_p = Constraint(m.t, rule=lambda m, t: m.phidot[t] == m.u[t])\n", "\n", "# path constraints\n", "m.path_x1 = Constraint(m.t, rule=lambda m, t: m.x[t] >= 0)\n", "m.path_y1 = Constraint(m.t, rule=lambda m, t: m.y[t] >= 0)\n", "\n", "# initial conditions\n", "m.ic = ConstraintList()\n", "m.ic.add(m.x[0]==0)\n", "m.ic.add(m.y[0]==0)\n", "m.ic.add(m.theta[0]==0)\n", "m.ic.add(m.v[0]==0)\n", "m.ic.add(m.phi[0]==0)\n", "\n", "# final conditions\n", "m.fc = ConstraintList()\n", "m.fc.add(m.x[tf]==0)\n", "m.fc.add(m.y[tf]==20)\n", "m.fc.add(m.theta[tf]==0)\n", "m.fc.add(m.v[tf]==0)\n", "m.fc.add(m.phi[tf]==0)\n", "\n", "# define the optimization objective\n", "m.integral = Integral(m.t, wrt=m.t, rule=lambda m, t: 0.2*m.phi[t]**2 + m.a[t]**2 + m.u[t]**2)\n", "m.obj = Objective(expr=m.integral)\n", "\n", "# transform and solve\n", "TransformationFactory('dae.collocation').apply_to(m, wrt=m.t, nfe=3, ncp=12, method='BACKWARD')\n", "SolverFactory('ipopt', executable=ipopt_executable).solve(m).write()" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "z4Johp-WmKhj", "nbpages": { "level": 2, "link": "[7.6.4 Accessing Solution Data](https://jckantor.github.io/CBE30338/07.06-Path-Planning-for-a-Simple-Car.html#7.6.4-Accessing-Solution-Data)", "section": "7.6.4 Accessing Solution Data" } }, "source": [ "## 7.6.4 Accessing Solution Data" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "ewbm1c5CmKhk", "nbpages": { "level": 2, "link": "[7.6.4 Accessing Solution Data](https://jckantor.github.io/CBE30338/07.06-Path-Planning-for-a-Simple-Car.html#7.6.4-Accessing-Solution-Data)", "section": "7.6.4 Accessing Solution Data" } }, "outputs": [], "source": [ "# access the results\n", "t= [t for t in m.t]\n", "\n", "a = [m.a[t]() for t in m.t]\n", "u = [m.u[t]() for t in m.t]\n", "\n", "x = [m.x[t]() for t in m.t]\n", "y = [m.y[t]() for t in m.t]\n", "theta = [m.theta[t]() for t in m.t]\n", "v = [m.v[t]() for t in m.t]\n", "phi = [m.phi[t]() for t in m.t]" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "1818dGFhmKhn", "nbpages": { "level": 2, "link": "[7.6.5 Visualizing Car Path](https://jckantor.github.io/CBE30338/07.06-Path-Planning-for-a-Simple-Car.html#7.6.5-Visualizing-Car-Path)", "section": "7.6.5 Visualizing Car Path" } }, "source": [ "## 7.6.5 Visualizing Car Path" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 660 }, "colab_type": "code", "executionInfo": { "elapsed": 6545, "status": "ok", "timestamp": 1554483577467, "user": { "displayName": "Jeffrey Kantor", "photoUrl": "https://lh5.googleusercontent.com/-8zK5aAW5RMQ/AAAAAAAAAAI/AAAAAAAAKB0/kssUQyz8DTQ/s64/photo.jpg", "userId": "09038942003589296665" }, "user_tz": 240 }, "id": "pjlY0m-QmKho", "nbpages": { "level": 2, "link": "[7.6.5 Visualizing Car Path](https://jckantor.github.io/CBE30338/07.06-Path-Planning-for-a-Simple-Car.html#7.6.5-Visualizing-Car-Path)", "section": "7.6.5 Visualizing Car Path" }, "outputId": "d93b7750-edf8-481f-9d2f-462eeb132889", "scrolled": false }, "outputs": [ { "data": { "text/plain": [ "(-0.7475794562067691,\n", " 21.812257339073334,\n", " -1.3839156648530575,\n", " 21.175921130427046)" ] }, "execution_count": 4, "metadata": { "tags": [] }, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAI/CAYAAACf7mYiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4FNXixvF3dje9A0kEkQ4iHaQ3\nBbFgxfLzKkqxXbCgiA0LiqIoiqh4VQTBhgVFRRAQFASVJoJSRECk1wQI6SHZ7P7+ACOdEHb3bPl+\nnofnzs7Mbl44D96XM2dnLLfb7RYAAEAIsZkOAAAA4GsUIAAAEHIoQAAAIORQgAAAQMihAAEAgJBD\nAQIAACHH4Ysfkp6e7ZHPSUqKVkZGnkc+C/6JMQ5ujG/wY4yDW6CNb3Jy3HGPBdQMkMNhNx0BXsYY\nBzfGN/gxxsEtmMY3oAoQAACAJ1CAAABAyKEAAQCAkEMBAgAAIYcCBAAAQg4FCAAAhBwKEAAACDkU\nIAAAEHIoQAAAIORQgAAAQMihAAEAgJBDAQIAACGHAgQAAEIOBQgAAIQcChAAAAg5FCAAABByKEAA\nACDkUIAAAEDIoQABAICQQwECAAAhhwIEAABCjsN0gNLatGmj9u4Nl8sVrqKiIuXl5SgpqZyioqIV\nFRV13PdlZWVq69atcrvdKleunKKiohQXFy+73e7D9AAAwJ8ERAFKSYk/7rHIyEh99tkktW7d9pTe\nJ0l33NFXzz334nGPb9y4QSNHjpBl2XTZZZerY8dOcjgC4o8MAACcQKn+3/zFF1/UkiVL5HQ61adP\nHzVs2FAPP/ywiouLlZycrJdeeknh4eHeznpMKSmpio2NK9N79+zZfcLjt97aQytXLpckffjhu2rX\nroO++mpqmX4WAADwHyddA7Rw4UL99ddfmjBhgt555x0NHTpUI0eOVPfu3fXxxx+ratWqmjhxoldD\npqVllWyfd14nbdu2R5Jkt9v1668r1KBBw+O+79D3HioxMVGjRo074c+9//4HD3tdu3adUmRN05Yt\nm096HgAAMOekM0AtWrRQo0aNJEnx8fHKz8/XokWL9PTTT0uSOnXqpHHjxql79+5eC7lx44aS7blz\nf1CTJudIkoqLi1WnTlXVq9dAMTHRkixZlmRZlizLOvgO6+gPlBQbG6v9+/crPDz8kHMPd8UV3Uq2\nK1aspBdffOWEOTdv3qTmzf8tYxdf3FVPPfWsatWqXYrfJQAA8JWTFiC73a7o6GhJ0sSJE9WxY0f9\n/PPPJZe8ypcvr/T0dK+GvO++uyRJ/ST1kqT0NF0vqZukm/ZlSPN/0nOS0iU9LalI0neS3pb0jqSb\nJe2U9ODB7SJJW7duVY2zkuWy2RQVHaPo6AOLqaMPbv/z6x/ly1c4ac6kpKTDXs+YMV0tW7ZRv379\nT+v3DwAAPKvUK3q///57TZw4UePGjdNFF11Ust/tdp/0vUlJ0XI4yv6tq8WLF0mSXj/46x8jDv76\nh13SVZLCJTkl5Up6VFLYIefkSqotqaPdrtWWpX5Op67IyVZxTrYGSCqW1FnSVkm/6MAfUJSkevXq\nKjn5xGuNkpPjtGnTJlWtWlWSNGPGDHXo0OGE31Ir+b2MGKEHHnhAlStX1qxZs1SnzskvtwWrk/05\nI7AxvsGPMQ5uwTK+pSpAP/30k0aNGqV33nlHcXFxio6OVkFBgSIjI7Vr1y6lpKSc8P0ZGXmnFbJF\ni1ZasGDecY+3adNOX389/bjHD/022FcH//f5Z1/Qn7f1UVFRkfLz85SXlaWXc3Pl3L5Nkct+k23H\ndqUnp+rOF5/TO5IaLFyk/J63KGf4a4od0E+u5BS5KlZSQe/bZNu4Qe6YWLkrVNAnn/y7HurJJwfr\n9ddHqVq16if9PT766KOSDsxMnX322Xriiad17733n/R9wSY5OU7p6dmmY8BLGN/gxxgHt0Ab3xOV\ntZMWoOzsbL344ot67733lJiYKElq27atZsyYoauuukozZ85Uhw4dPJf2GE5UfiSpV69bj7n/+uu7\nac6c2cc89uijDykxMUnXXnu9wsISFB+fcODA2XWlThdIkhJyshU9/Rt1WrFMn744Qp07Xyi53cq/\nva/sO7bJ2r1bsixFfvm5wn5ZKGvPHr3/xwrdJilR0meLFui881rr4ou7ql69Bqpfv4Hq12+oihUr\nHbXuaOrU73ThheeVvM7I2Fu6PxwAAHDKTlqApk2bpoyMDPXv/+86lhdeeEFPPPGEJkyYoEqVKqlb\nt24n+ATv27Bh/TH3O53OE77v44/H69prrz/msbS0NLVo0VD5+fmSpBtuuFYffjhBF1/cVcX1G6i4\nfoOSc/MeeKRk+8+UeO2SdI0OrD96Mj9fayZ9qV8mfantB89JSkpSvXoNVK9efdWv31D16zdQjRo1\nSz5j0aLfVb16jZP+vgEAQNlY7tIs4jlNpztd5na7tXDhfOXk7JXL5VBERIT27Nktm82mmjVrqVGj\nJsd977p16zRo0COaNes7hYeHq23bdurS5WLl5eXplltuV0JC4jHfl5+frx49btCPP/5Qsu+xx55U\n//4PHvN8SSosLFTlyocvlm7YsLGGtGmnulMmKS83V/fIrflZx/5q/j+O99X9UBBo06s4NYxv8GOM\ng1ugje+JLoEFRAH6h6k/+MzMfdq9O101ax7/6+xffvm5+va9reS1ZVlq1aqNRo58q2QNkG3nDrmi\nolQ4+i3Zp32jRVWqaKLNpl/+Wqu1a9eUvJcCFDh/uXBqGN/gxxgHt0Ab39NaAwQpISHxuDNF/yhX\nrvxhr91ut4YOfemwBdCuMypKksIfelS27j10weRJ6tDxfNk3b9LkcWN039zZuuHOfp7/DQAAgMNQ\ngDzk/PM7a/v2vZo06Qt9881kde7cRfUPWSd0JNeZlZV/5z0qKirSB599or1zZ2uqpL1RUbJt2yp3\nbKzcJyldAACgbLgEZtiSJYvVtesFh+1bPvQl1Z34qVzJKcodOOiwBdfBLhjHGP9ifIMfYxzcAm18\nT3QJ7KTPAoN3NWvWXKNHv3vYvt/OrKx93/6g3CeHyFUhWZEfvKv43jcpYtIXUm6uoaQAAAQPZoD8\nSFFRkdLT0455nyD76j8VMekLFXU8X7LZZO3ercILLpRKcZfpQBLsYxzqGN/gxxgHt0AbX2aAAkRY\nWJgqVTrzmA9nLa57jvIGPqGitu3lSk5W2O9LlXRpF4XN/k5Wxl5p/34DiQEACEwUoABUXLO2cp8Y\nrIzZP6uow/kK+2WRki7upLh7+sj+56pSf05KSrxSUuJ17713luqZbgAABAsKUCCzLCksTIUXd1XG\nD/OU3/s2uSMiFPHl54rtf7fCZn8vFRWd9GM+/fQj1alTVVu2bPZBaAAAzKMABQvLkrN5S7lq1NT+\nbteq4IabFf79DIV/P1P2P1Yq7Mc5UnHxYW8ZM+a9ku3MzH2aNm2KbzMDAGAIBSgY2Wxytm6j3KEv\nqbDrZZLdrohvvlZS5/YKnzldys/Xhr/XqV+/OyVJZ51VRa+/Pkq33vpfw8EBAPANClAIKK57jnJe\nfEUZs35SYdsOCv9pjmLat9BzBfmKlbRly2Z9/PGHCgsLMx0VAACfoACFEodDio1VZofz1aS4WMsl\n/XOLxYUL52v58t9NpgMAwGcoQCEkPT1dNWqcqapVU+WU9L6khZK+lNTW7VaXLh11++299Ndfa4/7\nGYsXL9LSpb/6KDEAAN5BAQohI0eOUE7O4TewcjgcGtOoicZVSFZvh0OTJ3+lDh1aqn//u4/6VlhO\nTrYuu+xCXXJJZ6WkxCs7O3SfWg8ACGwUoBAyePCzijriztE//bRI73//o5J+XaGB4z/TvdfdIIdl\n6eOPP1SbNs30+OMPKy0tTZIUG3v4HTVr1qx8VKECACAQUIBCiN1u16ZNu7Rw4W8l+844o9KBjeho\nlevcRc82b6Gdrdvq5iuvVlFRkcaMGaWWLRtp6NBnlJm576jP/KccAQAQSChAIahGjZpKS8tSWlqW\nYmJiDjtWcOsdst1yu8Zm7tPsWT/rkksuVV5enl59dbhq165Sct6XX36jP/74WzVq1PR1fAAAThsF\nCEcpvPJqZX7wqRpFReqTvvdo2rTv1b59x8POad++o5KTkw0lBADg9FCAcGxRUXLHxilm6DNq/+cq\nPfbYkyWHDr2EBgBAIHKYDgD/5Uo9Q9MHPKzMW27SQ/n5kqT+/R/kshcAIOBRgHBCRQ6HeubnK07S\neEk7Y2NNRwIA4LRxCQwn1LHj+Zow4StlS5oo6cJhz8m+fp3pWAAAnBYKEE6qU6cLtG7dFsXe3Etb\nnnpWKtgv5eaajgUAQJlxCQylEh+foBEjXpckFUuKv7WHCtt3VMGtd5gNBgBAGTADhDLJenOMwpb+\nqugXh5qOAgDAKWMGCGUTGans10fJSkuTfeUKuc48U+6kcqZTAQBQKswAoewsS+7UVNl3blfC/3WT\n/QRPkQcAwJ9QgHDaCrtcrOyRbynmqcckl8t0HAAATooCBI8orldfWR99LvvqPxX5zijJ7TYdCQCA\n46IAwXMsS8U1a8mxYrliH+wvFRWZTgQAwDFRgOBZERHKefUNOevVl213OpfEAAB+iQIEz7MsFdz2\nX7kSk5R4VVfZ16w2nQgAgMNQgOA9UVHKHv6a4u66Q2E//2g6DQAAJShA8Kris+sq87NJKq5WXbYN\n61kcDQDwCxQgeJ27fHm5Kp+lqHFjFHv/PVJhoelIAIAQRwGCz+Q+M1TF9Rso9tGHTEcBAIQ4HoUB\n37Es5d9xp1RYqLC5P8iVnKLievVNpwIAhCBmgOB74eFyVTpTcffeqfAZ002nAQCEIAoQjCiuXUeZ\nn09S+MxvuWEiAMDnKEAwxp1UTjkvvyb7hvWKve8uaf9+05EAACGCAgTjiuucLWfjpkq4vpuUlmY6\nDgAgBLAIGn6h4NY7VFz3HIXb7bL2Zcodn2A6EgAgiDEDBL9R1La9FB+vhP9co/CpU0zHAQAEMQoQ\n/EtYmDI//UJRH4xTxMQJxz3N6XT6MBQAINhQgOB33AmJyvzocxVeePGBZ4jl5x92/I03RqpSpXI6\n++yqhhICAAIdBQj+yeGQOyFR9k0blXh9N9l27Sw5lJiYKEnKyMjQ008PMpUQABDAKEDwawU39VTu\nwCcUPXyYNm7coCuuuFgDBvQrOf7GG69p69YtBhMCAAIR3wKD3ytq10FF7TpofPMGqrx5sxYd3G9Z\nltxut7Zu3arKlc8ymhEAEFgoQPBrU6dOUXh4mFauXKH3Nm/WN5I2SfpVkt1u12+/rVJq6hmGUwIA\nAg0FCH6ruLhYt9xy02H7+km6XgcKULNmzSk/AIAyYQ0Q/Jbdbj9qX1jzlnpCUrKk6OhouVwun+cC\nAAQ+ChD82rZte0q2mzZtpmnTvtfSL6dokt2uOXNm69VXhxtMBwAIVBQg+LWwsDD9+usKXXPNdXrk\nkSckSWe2P08p53XSVZKGDXtOM2dONxsSABBwKEDwe1WqVNWoUePUuXOXkn1Jr/xPPS67Um63W3fe\neYfWrfvLYEIAQKChACEguSpWUscXX9GD7ToqOztLvXrdqOzsLNOxAAABggKEgGXZbHo2Y48a1T1H\nf/21Vnff/d+SRdGZmft07bVX6JFHBhhOCQDwRxQgBCx3+fJyXn6Vvr6imxISEvXtt9M0fPgLkqQ9\ne/bop5/m6t1339GwYc8ZTgoA8DcUIAS0/L53K+GCC/X22+Nks9k0fPgLmj59akkRkqSXXx6m3Nxc\ngykBAP6GAoSA5o6NkzshQZfu3KHHHx8sSerV60ZNnDjhsPOWL//dQDoAgL+iACHgbbXZZf3vVfW+\nqtth+1NTz9C8eb/qmWeGqkWLVobSAQD8EY/CQMDr3fdWNVn3l85q3qhk34ABD2vgwAP3Dapdu46p\naAAAP0UBQsA799wWeve3pYqSVKtmLX38yReqVq266VgAAD/GJTAEvMcfH6xiSbUlPZdfQPkBAJwU\nBQgBLyYmRkOGPK/fJbW2JNumjaYjAQD8HAUIQaFPn7u1fUeG4ke8rohvp5qOAwDwc6wBQtCw2+0q\n6nSBijqcJ2vvHrnLlTcdCQDgp5gBQtBxLP9dcff3Mx0DAODHKEAIOs5mzSW3S44li01HAQD4KQoQ\nglLuwEGy7dxpOgYAwE9RgBCUiuvVl7NxE9lXLDcdBQDghyhACF5FRYob+IDkdptOAgDwMxQgBC1X\n9Rpy1mug8GnfmI4CAPAzfA0eQS33wYGy7d1jOgYAwM8wA4Sg5k5NlVWQr/BvJpuOAgDwIxQgBL3i\natUV8/Iwaf9+01EAAH6CAoSg504qp/1XdlPkpx+ZjgIA8BOsAUJIyOt7j2RZB74RZlmm4wAADGMG\nCKEhKkph839S1MgRppMAAPwABQgho6hdR0VO+lJWxl7TUQAAhlGAEDoiIpTX926Fz/rOdBIAgGGs\nAUJI2f+f7tL+/bKyMuWOTzAdBwBgCDNACDnhs79XzLODTccAABhEAULIKbzkUjlWrpBtw3rTUQAA\nhlCAEHosS7mDnpZ921bTSQAAhlCAEJKK2rST64yKsq9fZzoKAMAAChBClrUvQzGDnzAdAwBgAAUI\nIcvZvKUkS45fFpmOAgDwMb4Gj5CW8/RzPBoDAEIQM0AIaa7qNWTfuEFh834yHQUA4EMUIIS84uo1\nFPPc0wcelAoACAkUIIQ8V9VqcjZspPAZ001HAQD4CGuAAEm5g56WOyLywCwQa4IAIOgxAwRIcsfG\nKeLLzxXx6UemowAAfIACBBxUeHFXRY9+S9q/33QUAICXUYCAg9yJSSq49nqFLZxvOgoAwMtYAwQc\nIv+e+6TcXCkvT4qONh0HAOAlzAABR4icOEHRb71uOgYAwIsoQMARCm68WRHfTJa1d4/pKAAAL6EA\nAUcKD1fuI4/LvnWL6SQAAC+hAAHHUHjJpZJlybZzh+koAAAvoAABx2HbskXRw4eZjgEA8AIKEHAc\nhV0vk2PNn7Kt/9t0FACAh1GAgOOxLGUPG3HU1+GzsjK1bdtWQ6EAAJ5AAQJOoLhefYUtWiD7yhUl\n+2688To1bVpPixYtNJgMAHA6KEDASWwNC9Oqay9XpUrldP75bbV48SJJ0m239TCcDABQVhQg4Bhe\nf/1VpaTE6+eff1SXRx/SrowMNXU6tWrVypJz0tJ2GUwIADgdPAoDOIYhQ56UJF1zzeWSpNskZR08\nZlk2ud0uhYeHy+12y7IsMyEBAGXGDBBwDJ07dznsdaak/x3cbt26jb755jt9+OEEyg8ABCgKEHAM\nY8d+WLI9ZcoMNWnSTE0lxdlsGj78NbVs2UqdOl1gLiAA4LRQgIBjiImJ0dtvj1OfPnfp3HNbaObM\nOdqUmKgGLpe2bNlsOh4A4DSVqgCtXbtWXbp00fjx4yVJAwcO1BVXXKEePXqoR48emjNnjjczAkZc\nffV1GjLkBTkcB5bK/XX9jVohaerUyWaDAQBO20kXQefl5WnIkCFq06bNYfsHDBigTp06eS0Y4G86\nXXqlNox+S5OnTdGwYSNKihEAIPCcdAYoPDxcY8aMUUpKii/yAH6rzrnNdX94uPbs2aOFC+ebjgMA\nOA0nLUAOh0ORkZFH7R8/frx69uyp+++/X3v37vVKOMCfWBERiksqpyhJ33zztek4AIDTYLndbndp\nTnz99deVlJSkm2++WQsWLFBiYqLOOeccjR49Wjt37tSTTz553Pc6ncVyOOweCw2Ysnr0aJ3bp48S\nKlbU1q1bZbPxPQIACERlWsRw6Hqgzp07a/DgwSc8PyMjryw/5ijJyXFKT8/2yGfBP/n7GFc4t606\np6Tqmx07NH36bLVs2cp0pIDi7+OL08cYB7dAG9/k5LjjHivTP1/79eunLVu2SJIWLVqk2rVrly0Z\nEGDsGXv1aGKSJGnKlEmSJKfTqfffH6e///7LZDQAwCk46QzQypUrNWzYMG3btk0Oh0MzZszQzTff\nrP79+ysqKkrR0dF6/vnnfZEVMM5Zt57quVySpGnTpuiZZ4bqxx9/0EMP9ZckpaVlnejtAAA/Ueo1\nQKfDU9NlgTb1hlPnz2O8fv06JSYmqeJXX6jOKy9pV9ounXNOPf3556qSc1atWq8KFSoYTOnf/Hl8\n4RmMcXALtPH1+CUwINTs25eh9u1b6sorL9EXhfvlOvgk+EPLjyS99dbrJuIBAE4RBQgohaioaDmd\nTq1du0YLnnpc1x9yrFq16iU3RWzcuImZgACAU8KtbIFSiIiIKNleIum95i3V992PlJqaKkkqKirS\n33+vU9265xhKCAA4FcwAAaWUlHTg21/ro6JUo33HkvIjSWFhYZQfAAggFCCglBYu/E3nnFNf3/4w\nX/n9+ktOp+lIAIAyogABpZSUVE5z5y5QjRo1FTP4CTl+X2o6EgCgjChAQBk4GzWRY9nvpmMAAMqI\nAgSUgbPZubJl7jMdAwBQRnwLDCgDZ8PGcjZsbDoGAKCMmAECyijh+m5SQYHpGACAMqAAAWVUXPks\nOVatNB0DAFAGFCCgjJyNmshxxKMwAACBgTVAQBkV9Ogt2e2mYwAAyoAZIKCsLEtx995pOgUAoAwo\nQEBZ2Wyyr10t5eebTgIAOEUUIOA0OOs1YCE0AAQg1gABpyH30SfljoszHQMAcIqYAQJOh9utyE8/\nMp0CAHCKKEDAaXDHxyvykw9NxwAAnCIKEHA6IiMP/C93hAaAgEIBAk5TztCXTEcAAJwiChBwmtxJ\nSXIsX2Y6BgDgFFCAgNNk7dunyE/Hm44BADgFFCDgNHEvIAAIPBQg4HRFRiq/9+2mUwAATgEFCPAA\nZ8tWsnbtMh0DAFBKFCDAA8Lm/KCIb6eajgEAKCUKEOABzsZN5Fj2m+kYAIBSogABHuCs10DFVauZ\njgEAKCUKEOAJUVEquOFmqajIdBIAQClQgAAPiRn6tBx/rDAdAwBQChQgwEOcjZrIsex30zEAAKVA\nAQI8xNmipayCfNMxAACl4DAdAAgWzkZN5GzQyHQMAEApMAMEeFDilZdI+/ebjgEAOAkKEOBBxTVq\nyrF6lekYAICToAABHlTUpJnsf68zHQMAcBKsAQI8qOCW2yXLMh0DAHASzAABnuRyKe6/vU2nAACc\nBAUI8CS7XfaNG1gIDQB+jgIEeFhx3XoshAYAP8caIMDDcoY8L3dsnOkYAIATYAYI8DArN1dR40ab\njgEAOAEKEOBhrsQkRXz5uekYAIAToAABnhYdLTmLpcJC00kAAMdBAQK8IPuV/5mOAAA4AQoQ4A12\nu8KW/lrycseO7dqyZbPBQACAQ1GAAA+56qquGjv2bUmSlZ2tiImflRxr3Liuzj23gfLy8kzFAwAc\ngq/BAx6wfPnvWrBgnhYsmKdNmzbp9/k/65Xlv6vth+8qMTHxsPNat25rMCkAQKIAAR5RoUJyyfao\nUQfW/7wsye12KyMjo+RYbm6Or6MBAI6BS2CAB1SqdOZR+3ZICj9in2XxVw4A/AH/NQY87NdfV6hh\nw0Z6UFLqwX1NmjTTU089qzZt2pmMBgA4iEtggIfMnj1Pf/21RlWqVNULL7ysXZddqERJldu002uv\nvalq1aqbjggAOIgCBHhIgwYN1aBBQ0lS06bnaqBlKd/t1vTPv1Z4+JEXwwAAJnEJDPACh8Ohn1JS\ntU3Srl07TccBAByBAgR4SZ8wh/4jaceOHaajAACOQAECvMRWroKSJO3cud10FADAEShAgJdYFSup\nWAcegwEA8C8UIMBL9jVvoZHiEhgA+CMKEOAldewOjZC0Y8c201EAAEegAAFeUr5yZdUWM0AA4I8o\nQIAHud1u7d27R5JUoXYdJenfNUBr167Reee11rffTjOYEAAgUYAAjxoz5i3VrVtdP/44RylVqukq\nSZs2bdSzzw5W+/Yt9Oefq9Sz5w2GUwIAKECAB82b97Mk6brrrlTDRmfr3oP7R44cYS4UAOAoFCDA\ngxYtml+ynZubo8sNZgEAHB8FCPCg6tVrlmyvXbtJDZu3VNrmNKWlZWn9+u1q1KiJHnnkcYMJAQAS\nD0MFPOqNN95W69bN9PLLI5WYmKTcQU9LtgP/zoiNjdX33/9oOCEAQKIAAR5Vo0YtpaVl/bvD7ZaV\nnS13+fLmQgEAjkIBArwoYsokuR1hclKAAMCvsAYI8CJXQoJsmRmmYwAAjsAMEOBFRW07yJVUznQM\nAMARKECAFzmbNpP2F5qOAQA4ApfAAC8K+3Guot4fazoGAOAIFCDAi9yJibL27TMdAwBwBAoQ4EWu\n1DPkLscaIADwNxQgwIuKa9VW3v0PmY4BADgCBQjwppwcxXe/znQKAMARKECAN8XEyJaWZjoFAOAI\nFCDAmyxLcrtNpwAAHIECBHjZvhk/mI4AADgCBQjwsphnnpScTtMxAACHoAABXub48w9ZWZmmYwAA\nDkEBArzMlcDNEAHA31CAAC/Le/gxuVLPMB0DAHAIChDgZbY9u2XftcN0DADAIShAgJc5Fi+SY8Vy\n0zEAAIegAAFe5mYNEAD4HYfpAECwK2rRSlZBvukYAIBDMAMEeJmrcmW5EpNMxwAAHIICBHiZ/e91\nin5jpOkYAIBDUIAAL3MlJMrKZA0QAPgTChDgZe7y5VVcq5bpGACAQ1CAAC9zJyQq76HHTMcAAByC\nAgT4QOLFnUxHAAAcggIE+ILbbToBAOAQFCDAB9wxMZQgAPAj3AgR8IHMyd+ajgAAOAQzQIAPxDw7\nWLYd203HAAAcRAECfMCWtkvWnj2mYwAADqIAAT7gSkiUjZshAoDfYA0Q4AN59/Q/sBAaAOAXmAEC\nvGDnzh0aOfIV7duXIUmyb9kkx6o/JEmrV/+plJR43Xnn7SYjAkBIs9xu7383Nz092yOfk5wc57HP\ngn8KljG+5JJOWrp0iSIjI3XffQ8of8wohWXs1ZTadZSXl6etW7dIktLSsgwn9a1gGV8cH2Mc3AJt\nfJOT4457jEtggBcsXbpEklRQUKBhw57TpZLaSFq7do3RXACAAyhAgA8sk3Tkd8AiIiJMRAEAiDVA\ngFc8/PCBh59ec83/qU2bdsqW5Dx4rEWLVjrzzMq64447jeUDgFDHDBDgBfff/5DOP7+zGjVqou3b\nt6nv+W00IC9PQ+s31BtvjFYNWH1vAAAgAElEQVTVqtVkWZbpmAAQspgBArzAbrerefOWCg8PV7Vq\n1VWjURPFSho06GlVq1ad8gMAhlGAAB8ojovXfEl5eXmmowAARAECfMKKi9PbkvLzKUAA4A8oQIAP\nxMTE6HsxAwQA/qJUBWjt2rXq0qWLxo8fL0nasWOHevTooe7du+u+++5TYWGhV0MCgS4qKkoSM0AA\n4C9OWoDy8vI0ZMgQtWnTpmTfyJEj1b17d3388ceqWrWqJk6c6NWQQKCLiorWDkn5+fmmowAAVIoC\nFB4erjFjxiglJaVk36JFi3TBBRdIkjp16qQFCxZ4LyEQBKKjo3WFuAQGAP7ipAXI4XAoMjLysH35\n+fkKDw+XJJUvX17p6eneSQcEiaioKH0uqSA3x3QUAIA8cCPE0jxLNSkpWg6H/XR/lKQTP9gMwSFY\nxtjpdMrlcik8PFwpKeVUQZKjMF/JyXH67bffNHbsWL3++ushd0+gYBlfHB9jHNyCZXzLVICio6NV\nUFCgyMhI7dq167DLY8eSkeGZaf9AewotTl0wjfHll1+k3bvTNW/eryoutilXUv7uDKWnZ6tZs2aS\npKpVa6l379vMBvWhYBpfHBtjHNwCbXxPVNbK9DX4tm3basaMGZKkmTNnqkOHDmVLBgSxX35ZqPXr\n/9ZFF52vu+/+r3pJem/aFKWkxJecM3XqZHMBASCEnXQGaOXKlRo2bJi2bdsmh8OhGTNmaPjw4Ro4\ncKAmTJigSpUqqVu3br7ICgSkFSuWSZIukzRH0uZDjrF+DgDMOGkBatCggT788MOj9r/77rteCQQE\nm0GDnlGrVm1U53+v6OZWbeRq006XXNJZktSwYSPD6QAgNPE0eMBLRo58S4sX/6J77rlPlmUppvbZ\nSq7XQEXNmmv27HkaPPgJPf/8S6ZjAkBIstyl+RrXafLUgqlAW3yFUxfMY2z/Y6Xc5crJVbGS6SjG\nBPP44gDGOLgF2vh6fBE0gDIID5fFozAAwC9wCQzwkbCF86XiYhXXqGU6CgCEPGaAAB9xR0fL4lEY\nAOAXmAECfMRZp65sSUmmYwAARAECfKa4dp2QXgANAP6ES2CAjzhWLlfMS0NNxwAAiAIE+Iw7OkZW\nbq7pGAAAUYAAn3EnJMhVvoLpGAAAUYAAn3GdWVm5Tz9nOgYAQBQgwHcKChTf8wbTKQAAogABvhMR\nIdv27aZTAABEAQJ8x7JMJwAAHEQBAnxo36RppiMAAEQBAnwqZsSLpiMAAEQBAnwqbO4PktttOgYA\nhDwKEOBLERHS/v2mUwBAyKMAAT6U88xQyW43HQMAQh4FCPAh274MWfl5pmMAQMijAAE+FPHF57Lt\n2FHy2s16IAAwggIEeNFbb/1PDRvWKSk67ugYWXkHHog6efJXql69kubP/9lkRAAISZbbB/8ETU/P\n9sjnJCfHeeyz4J+CbYxTUuIlSeee21w1a9aWbeoULcrLVfFZVbR58yZJUoUKyVq16m+TMX0m2MYX\nR2OMg1ugjW9yctxxjzl8mAMIWUuW/KolS35ViqQiSRkHy48k5efnG8sFAKGKS2CAD90g6Yoj9l19\n9bUmogBASGMGCPCBvn3v0bJlv2n3gnk64+C+pk3PVUREhK6++jqj2QAgFFGAAC9av36bpk+fquuu\n+482bdqo+1s3VaTLpebNW+rNN8eoWrXqpiMCQEiiAAFeFBsbp//7vxskSdWqVdeWymdp3uZNWvTG\naMoPABjEGiDAh+pERmmCpOzsLNNRACCkUYAAH3InJSlVUmZmpukoABDSKECAD4UlJipaUlYWM0AA\nYBIFCPCh+IREtRSXwADANAoQ4EPx8fF6U1Jmxl7TUQAgpFGAAB+Kj49XHUlFu9NNRwGAkEYBAnwo\nPj5RuyW50ilAAGASBQjwsoKCgpLnfcXHx+tRSZuLiyVJy5f/rpEjR6j44GsAgG9wI0TAy7p166q0\ntDT98ssyxcfH6yxJ0Tt3Kj09XV26dJQkRUREqE+fu80GBYAQYrndbre3f0h6erZHPic5Oc5jnwX/\nFIxjnJISL0lKTk5Renqa+knKlPTBIedUqJCsVav+NhHPp4JxfHE4xji4Bdr4JifHHfcYl8AAH0lP\nT5Mk7ZZU4Yhjubk5Ps8DAKGMAgT4yN1336eFC3/T4Gnf64EvpigtLUs9evSWJN133wNmwwFAiGEN\nEOBln302Sd98M1kPP/yYoqKipJRU2TesV7GkYcNGqHfv29SgQSPTMQEgpDADBHjZ+ed31vDhrx4o\nP5JsGXsVM/wFSZLD4VDDho1lWZbJiAAQcihAgI+5ypWXxZ2gAcAoChDga9HRcjZvWfJy/fq/NXv2\ndwYDAUDoYQ0Q4APjx7+v8uUrqGvXy7Rx00Y9+ssCza1UTi1atNKCBfMkSQsX/qYaNWoaTgoAoYEC\nBHhZTk62BgzoJ0m64YabNHnyJP2Yl6sWUkn5kaQ5c2ZTgADARyhAgJfFxMSWbH/66UeSpAxJSZIO\nXQlUXOz0aS4ACGWsAQK87Fjf8FqjAwVIkqKjYyRJ5csfeXtEAIC3MAME+EB0dIzy8nK1aNHv2rJl\nk6677ipJUps27fTww49r8eKFuvDCiw2nBIDQwQwQ4AMrV/6l6dNnq3r1Gmra9FzdKOmG8HBNmjRN\nhYX7NXToM7rzzttNxwSAkEEBAnzgvffGqmvXznr77TeUnp4ul6QqhYXq0KGl7r77v5KkmTO/NRsS\nAEIIT4OHXwnWMf7nifD/6CDpGkn3H3FeWlqWryIZEazji38xxsEt0Mb3RE+DZw0QYMAiScsPbluW\nJR/8OwQAcAgugQE+MHDgEyXb557bXIWS+h983apVG1166RXq3fs2I9kAIBQxAwT4wL33DlBGRoYu\nvPBiValSVeef31ZX5eXqtcREjRz5lqpVq246IgCEFAoQ4AMOh0NDhjxf8rpt2/bK+36GaleqTPkB\nAAO4BAYYULlyZT0kaQ9PhQcAIyhAgAHVq9dQvqTYzEzTUQAgJFGAAB9xOp3atWunJKlOnbPVUlK7\n/HxJ0sKF83XhhedpxYrlJ/gEAICnUIAAH3nkkQfUuHFd/f33X6pd+2xtknSW26XBg5/QlVdeomXL\nftMFF7Q3HRMAQgKLoAEf+fnnuXK5XGrT5lxZlqWKkmIkffnmSNPRACDkMAME+MiGDetLtt1ut7ZL\n+tNcHAAIaRQgwEcaNGhUsr1p0y517Xq5xkt65533tXbtJqWmpio5OYW7QgOAD1CAAB/54INPJEl9\n+tylqKgoxcbGqkjS3Xf0Vq9e3bVr1y6lp6fpnXdGmQ0KACGAAgT4SOXKZ0mS3n77TV177ZX64ovP\n9J2kOLdbCxbMKznv008/NpQQAEIHi6ABHykqKirZ/umnOZKkQZLsR5z3z1flAQDewwwQ4CNhYWFH\n7btR0r1H7MvOzvJJHgAIZRQgwIBy5cpp0KCntdpmU2NJ9es30Dnn1JMkVa9e02w4AAgBFCDAh+64\no6/CwsI1der36tfvfsW3aqNUSYMGPaOZM+fqlVf+p1mzfjIdEwCCHgUI8KHnnntRW7akqWbNWpKk\nyjVqqqukjRs3KCIiQjfd1FN2+5GrggAAnkYBAnzMZvv3r1316jX0tKT9S381FwgAQhAFCDCoWrXq\nypYUuXqV6SgAEFIoQIBB1apV1zJJ5bduMR0FAEIKBQgwqFq16poraWBeHo/AAAAfogABBsXHJyi2\nXDk9WFDADRABwIcoQIBh1avXUFNJ239bajoKAIQMChBgWNWq1bVcUv7CA88Dy8vLU3p6utlQABDk\nKECAAXv27NG+fRmSDqwD+p+kpa5iSdKll3ZR/fo1tWHDeoMJASC4UYAAH3O73erSpYMuvPA8FRUV\nyWazaa+kNW+/pZSUeK1atVKSNHToM2aDAkAQs9w++OpJenq2Rz4nOTnOY58F/xQqY5ySEn/Y6zBJ\n8yS1POK8tLTgejBqqIxvKGOMg1ugjW9yctxxjzEDBBiWmnqGig5uJ0bHlOyvUqWqmUAAEAIoQIAB\n/zzv6z//6a4VK9YqLS1LdT74VGtX/qWNG3eqX7/79dFHnxtOCQDBy2E6ABCKli79Q++9945uu61v\nyT5no8ay79qh6Jq1NWjQ0wbTAUDwYwYIMKBixUp69NEnlZKSUrLPvnaNIj94z1woAAghFCDATzjr\nNZDjj5WmYwBASKAAAX7CnZKiotZtTMcAgJBAAQL8SH6v26T8fNMxACDoUYAAPxL95kiFLZhnOgYA\nBD0KEOBHnPXqsw4IAHyAAgT4EWfjptLBZ4IBALyH+wABfqS4ztnKr1XbdAwACHrMAAF+JvGqrtL+\n/aZjAEBQowABfqa4ajXZ166RJP3111r16tVdq1f/aTgVAAQXLoEBfiAnJ0exsbHauHGD5v2yUAsm\nTtCWVm0UFhamH3+co+nTvwm6J8MDgEkUIMCwr76aqD59btVjjz2pL774TGs2bjhwgK/DA4DXcAkM\nMOzVV1+WJA0d+ozWrFmtSEnvH+O8ffsyfJoLAIIZBQgw7MYbbzrsdYGkKpJSJbVu3VY9etyiKlWq\nKSIi0kQ8AAhKFCDAsNtv71uyPXPmXNWv31BfSro2PFwjR76ll19+TYsXL1NUVJS5kAAQZFgDBBjm\ncDg0duwHWr36TzVu3ETffjtb9WueqdzCQvVPTJQkWZZlOCUABBdmgAA/cMUV3fTQQ4/KsixFRETo\nnKbn6iVJK2Z9ZzoaAAQlChDgh1q2bK0tkoo+n2A6CgAEJQoQ4IdatWqtLyRVWbLYdBQACEoUIMAP\ntWjRSpslXVWQr/08FgMAPI4CBPihpKRyOvvsumq2f7/S//eq6TgAEHQoQICfatmyjdZKivniM9NR\nACDoUIAAP9WqVWttkORKT5eVuc90HAAIKhQgwE+1atVGknSZJbni4pWRsVcpKfF6+eVhhpMBQOCj\nAAF+qkqVqkpNPUNp+/bJ2f9uTZnytSRp2LDnDCcDgMBHAQL8yKZNG1WvXg2NHDlCBQUFcrlcypG0\n9dOP9MyD95WcN2/eT+ZCAkAQoAABfiQrK0u7d+/Ws88OVq1alZWeniZJmiLpikPOe/bZpwykA4Dg\nQQEC/Ej9+g1KtouKilS7dh1J0h+du6j7xCm6+eZekqQaNWoZyQcAwYKHoQJ+xGb7998k1apV17x5\nv5a8jnl2sFo+M1TPPfciT4YHgNNUphmgRYsWqXXr1urRo4d69OihIUOGeDoXELI+/PDA87+GDRtx\n2H53WJjCv59J+QEADyjzDFDLli01cuRIT2YBIOnii7sqLS3rqP37r7xaMS89r/3drjWQCgCCC2uA\ngABRXPcc5Qx53nQMAAgKZS5A69atU9++fXXjjTdq3rx5nswE4FgsS/Y1qxX2wyzTSQAg4Flut9t9\nqm/atWuXlixZoq5du2rLli3q2bOnZs6cqfDw8GOe73QWy+Gwn3ZYIOT9/rs0bJj0ySemkwBAQCvT\nGqDU1FRdeumlkqQqVaqoQoUK2rVrl84666xjnp+RkVf2hIdITo5Tenq2Rz4L/okxPolKNZS4cpX2\nbU6TAnAxNOMb/Bjj4BZo45ucHHfcY2W6BDZ58mSNHTtWkpSenq49e/YoNTW1bOkAlJ5lKevd8dJx\nZlsBAKVTpgLUuXNnLV68WN27d9ddd92lwYMHH/fyFwDPcickKOrN103HAICAVqZLYLGxsRo1apSn\nswAoBXdCoiK/+Ez5/71TiogwHQcAAhJfgwcCjWWp8PzOCp8723QSAAhYPAoDCEB5d/aTwsNMxwCA\ngMUMEBCA3KmpinpvrFRYaDoKAAQkChAQoKy9exT281zTMQAgIFGAgAC1//Juipg8yXQMAAhIrAEC\nApSzRUvlx8aajgEAAYkZICBQ2Wyy7U6XY8li00kAIOBQgIBAFhamyI/Hm04BAAGHAgQEsKJWbRT2\n6yLJ6TQdBQACCgUICGR2u7JfHyW53aaTAEBAoQABAa74zLMUMXGC6RgAEFAoQECAcyckKHrU/6Ti\nYtNRACBgUICAQOdwqOjcFgpbvEiStGLFMqWkxOv223sZDgYA/osCBASBvHsHqLhadUnS4sW/SJIm\nT/5KOTk5JmMBgN+iAAFBYL2kdy+/WBVTE/TUU4+X7H/ttZfNhQIAP0YBAgJUSkq8UlLiNXfuD2rZ\nsrHKbd6oNm639u8vKDln2bLfDCYEAP/FozCAAPd//3eVJGmkpFcldZLkcDh0ww03qVmz5iajAYDf\nogABQWKZpL4Ht1u0aKURI143GQcA/BqXwIAA9eefG0q2R49+Vy1atNIaSe9JGtDrNlOxACAgUICA\nAFW+fHn17HmrJOnCCy/R1Knf6dZb79A0SeVeGmo2HAD4OQoQEMCGD39VaWlZiomJkST997936nNJ\nezas1961a8yGAwA/RgECgkiNGrV00cVddb3LpYkfvsdDUgHgOChAQJDp0+duSZLjw3flGPWG4TQA\n4J8oQECQadeug+rXb6jBeXlyjn1bth3bTUcCAL9DAQKCjGVZ6tPnLhVIuj8sTMrLMx0JAPwOBQgI\nQldffZ2Sk1P00cYNWjH7O4XN+0nz5/+sypUraPv2babjAYBxFCAgCEVEROjWW++QJI2ZMV0xTz6m\n/3S7VIWFhWrS5BzD6QDAPAoQEKR69bpNERER+vjHOfpI0j2HHJszZ7apWADgFyhAQBBxOp16/vln\n9P33MxQbG6vCwkJJ0u0rlukt/fsX/vrruxnLCAD+gGeBAUFk166deuWV4ZIkm80mt9stSSqWVDUy\nSt/UrKmaf6xUUlKSwZQAYB4zQEAQOfPMyiXbLpdLjRo10UsvvaqNG3dq7uZdqti4qfaN/VBr1mwy\nmBIAzKMAAUFm+PDXSra/+WamevW6VdHR0ZKk3EHPyLFymaloAOA3uAQGBJmePW/Rjz/OUWHhftls\nh/8bx12+vPIeflxh835SUbsOhhICgHkUICAIvfPO+8c/aFmKHvaccp4fruL6DXwXCgD8CJfAgFBj\nsyln6EuKfewhyeUynQYAjKAAASGouEFD5T4+2HQMADCGAgSEKGfLVop55klZe/aYjgIAPkcBAkJY\nUbNzFfPsU6ZjAIDPUYCAEFZ4RTfZdqfLtm2r6SgA4FMUICCUWZay3v9E7rg4yek0nQYAfIYCBIQ6\nm02R741V1DujTCcBAJ+hAAFQ/n/vUsTnE2Tbvs10FADwCQoQACkyUrnPDJVt107TSQDAJyhAACRJ\nRe06yB0VLcfCBaajAIDXUYAAlHAnJCj28YelggLTUQDAqyhAAEq4KlbS/v/7j6LfeO3kJwNAAONh\nqAAOk3973wN3h3a7JcsyHQcAvIIZIACHczgkm03xt/U8UIIAIAhRgAAcxZ2cLFdiosKnTDIdBQC8\nggIE4Jhynxis8Lk/mI4BAF5BAQJwTO5y5ZUz/DXZ/1hpOgoAeBwFCMDxud2Kffxh2VcsN50EADyK\nAgTg+Gw25Tz34oF7A7lcptMAgMdQgACcUHH9Bsrv118qKjIdBQA8hgIE4KQKL7xEUaPfkrV7d8m+\n335boilTvjaYCgDKjgIEoFSKq1VTzLNPlbzu2fNG3XZbD11ySSeDqQCgbChAAEql8PKrZNu1U/a1\na+R2u5WWtkuStHTpEs2f/7PhdABwaihAAErHsrRi8HO6ckA/nZmaIPchd4keOPABg8EA4NTxLDAA\npXZHv75q9/tSdZT0vKRatWrr0kuvUKVKZ5qOBgCnhAIE4IRWrlyhu+66XZZl059//qFVkj6V9Kik\nlzZu0BNPDDYbEADKgAIE4IRWr16l1av/LHldKOn/JHWQlBQertysLMXEx5uKBwBlwhogACd07bXX\nH/a6ceOmshwOLYiI1MV5edrWoaVceXmG0gFA2VCAAJyQZVn6+++tJa8HDXpa27fv1axZP+nruHh9\nsGO7Ms9rLRUXG0wJAKeGAgTgpOLi4rVp0y59/fV0tW/fUZJUp87ZGj16nN6x2XTRpo2aPnGCbDt3\nGE4KAKVDAQJQKlFRUWrTpp1stn//s3HBBRfpqaee1SZJbz14n8Kvvlz2tWvMhQSAUqIAATgtffve\nrRtvvFkL9+/XlVmZirqjt6zMfZKk3NxcrV+/znBCADgaBQjAabEsSy+++IpatmytOelp6hIZoYIi\np8J+nKMHHrhXrVs3U7VqFU3HBIDDUIAAnLaIiAi9++5Hqlz5LM3/bameGPiAoke8pLNmfitJysvL\nVb16NQ2nBIB/UYAAeERycrI++OBTRUfH6P3JX6nW2tVqn5OtugeP796drg0bNhjNCAD/oAAB8JgG\nDRrqzTfHSJK27E7X/0naKGlsnbrqdkU3nXHGGSbjAUAJChCA05aTk6NBgx7Vjz/O0YwZ00r2W5al\nDdv36j/drtGnLpeiLMtgSgD4FwUIwGlbteoPvf32G7ruuiv1ySfjFRUVpdGj39WuXZmyOxzKe3Cg\nCjt3kebONR0VACRRgAB4QIsWLdWoUZOS192791C3btcedk5Bj97SRRcp9oH7ZNu+zccJAeBwFCAA\np82yLM2Y8UPJ6+LjPRbDslRw/Y1KuOl62des9lE6ADgaT4MH4BF2u13bt+/V3Lmz1aTJucc9z9mq\ntbJGjZV9/d8qrnO2xLogAAYwAwTAYxwOhy644CKVL1/+hOcVn11XhV0vU+yD/RX+7bQTngsA3kAB\nAmBM7qDBinr7DUWOf990FAAhhgIEwBh3YpIyP56o4uo1pJwcye02HQlAiKAAATArKkpF7Too6v1x\nin3oful4C6gBwIMoQAD8Qv5d/eSqVElxd97GTBAAr+NbYAD8g2Upb8DDsm3cIGvPHslhlzsxyXQq\nAEGKGSAAfsVVrbocq1cp4T9Xc8NEAF5DAQLgd4rad1TOs8MUf8tN0v79puMACEIUIAB+ydmilfZ9\nNU1WdrYcv/5iOg6AIEMBAuC/oqNlOYsU+8QjCp8+1XQaAEGEAgTAr7nOqKjMCV8p6r13ZNu103Qc\nAEGCAgTA77kTEpX56ZdyR0Qo8p1RR31NfsCAfrrllpuP/xBWADgCBQhAYLAsuePi5fhr7VE3TBw/\n/n1NnTpZFSsmaf36vw2GBBAoKEAAAofdrpwXXparcmU5lv9esrt9+44l261bN9WaNatNpAMQQLgR\nIoDAYlnK6/+g5HRKt/fSTdu26Oclv5Ycjo2NU0FBvsGAAAIBM0AAApPDoWFrV+vZJb+q8sFdLVu2\n1rp1W9S4cVOj0QD4P2aAAASsV9au0c+SzpYULmnN4kWyLMtwKgCBgBkgIEi43W717HmDUlLiS37N\nnv2dx39OQUGBCgoKPP65p2LWrJl65ZWX5HK5tEjSLEkNJM11uzWhTTNt+Wut0XwA/B8FCPAz69ev\nU6VK5ZSSEq+qVVPVv//dKioqOun7Fi6cr2+/nXbYvhtuuNaj2X75ZZGqVElRlSopSkmJV716NTVr\n1sxSvXfLls3q3bu3eve+SV9++blyc3PLnOPGG6/T888PKXntcDi0us7Z6pqQoC3r/9Z1XTpo6rOD\n5SosLPPPABDcKECAn3nvvXFyOp2SpPz8fH3yyXilpe066ftat26rJk0OX/sya9bPHs0WGxt72Ovd\nu9O1bVvpHljav/89ev/99zVt2hT17XubWrVqIvcR9/MprT597jrs9dy5C/Xzz4s1a8FvWnvVNdqQ\nn691I0do39nVlDVu9FH3DVq8eJEmTPi4zD8fQOCjAAEn4HK5fH655957B6hTpwtKXs+f/6vOPLPy\nCd5xgGVZmjlzbsnrSy65TA0bNvJotnr16istLUuJiYmSpEWLflfPnreU6r333TfgsNfnndepVO9b\nuHCBHnjgXk2fPlX7Dz4YdciQFzR58rcl5+TkZEuSKlSooDFj3tPYsR/o7QoVdH5ujt4b9KjGjRsj\n+y8LS86/7LIL1a9fX6WmJmjcuDGlygEguFhuH/wTKD092yOfk5wc57HPgn/yhzH+7rtvddNN1x+2\nb/Tod9Wtm2cvJ53I0qVLdMklBwpC06bN1L//g4qJiVVWVpays7OUlZWpzMzMg9uH/srUsmW/SZIa\nNmysWbN+8ni2jRs3qGXLxpKkOnXO1oABD6tWrdqKjY1VTEycYmJiFBMTc8zFyKmpCSWzLmlpWaX6\neSkp8Ye9vvHGm/Xaa2+WvC4uLpbdbj/qfbt379Zjjz2oSZO+VJSkr5KT1bp6TbmeGaoaN1yjffv2\nlZz76adfqHPnC0uVByfmD3+H4T2BNr7JyXHHPca3wBD0CgoKtG3bFqWkpCouLv6k57/yyvCj9pUv\nX8Eb0Q73/+3deVxUVf/A8c8Mi8AgsoMbi4CK5L6i5pZruWRpKppLprYv/rTFJ9vdtXIpd61MCzMf\nNfd8yiUj9zRRUVHZVHbZQZi5vz8GR0cQ0CAc5vt+vXjJPXPP3HPv8Q7fOfcsigIqFZan/uKX115g\nPLAC8D1xnLOjQlAD64BaQE/AATgOXABeRt+cewk4CXwG+KamYP/uJDJnzMV28SIszp8DnY7sNyZh\nGX6aals3g6Ijb+BgtF7eaObMAJ2OgqbNyH5tIg7PDkGl06HY2JL+zTrs356IRcQ5LP8+ST2gE9Dp\nfARXXxjLEiAO8AOuAvGAlX117O3t7/ipbgh+XF3Lfj2HDAkhNHSdYTsq6orR68UFPwAODg4MHjyU\nVq3a8sUXc+mdmEibjAzeXb4Eixs3CATOFu5rZ6cpc3mEEFWDtACJh0p51vHy5Yv5z3/eNmx7eXlz\n5MipUodJ5+XlsWbNaqZMeQuAbdt+oXXrtg9eEK0WdVIiip0dqpQUrPf9hvr6NQoaBlLQqg0Oo0NA\nq0MbUJ+MJSvRvD+FeUu/JFZRWA60BzyB+g0DuVSzNu42NgRotdjY2ZFb1wsLT098k5OxtbfH2sOT\nL/b+StyPPzD4mWGMGvM8BS1bYxF5AVV2NopKjda3HqqcHNSpKaBWoXN2QbGxRZ2YAGo1iq0dirMz\nqsREUKtBrUJxdoHMTELao6QAABs4SURBVFQo1PP3IlOnxQHwBmoDSkADlKxMnklJxvXmTf7U6VgB\n7ACS0AdlbwPDgRzArUkzPtn5a+H7l/wk/sqVy/To0Zm0tBvUr9+ANWtC8fWtV+plX7x4ER98MMWw\nbWlpaehb5Q8sBZr2GwAfTUdXp+59Vqq4F/mcrtpMrX6lBUiYpd9/N37807//wDLNEWNtbc1TTw02\nBEAHDuwrPgBSFFQJCVjEX0N14wb5nbpgs3oFluGnUcdfI3PWZ1TbEEq1nzejc3Mj57WJ6Byd9K0s\njZtS0KAhOs+a3Nj+P7C8fStmfTydHSdPEBZ2EICDQHBwBxZv3lFq2bOzs8n4eTN/AH+s/x77Hr0Y\n0LI1Wr8A46JrNGjvaoXReXkb7+Pubvzm9vYogFdgIOHhp0kDTgGa4A5svqtsrQsKeC4rk8z0dBzj\nYmmXEM+PNRzZFjIIn/x8hjg4QH4+mrkzsdr7K6hUZM6ahyorC+sD+9B6epLftj3aen7MmPAcOWn6\nx1Xnz0fw/PMj2bRpe6mteZ06dTHavhX8AFwEfnh+Ai2690S5dhVVWho6N/ei5yyEqLKkBUg8VMqz\njgsKCli3bg2TJr1Os2bNjToI5+TkEBMTTVTUZaKjo4iKiiIq6grR0VHEXLlMVlYmHkBT4LGGgTw3\nbwGKoxOaj6eiTkwgv0Ursj6ajsPIoeg8a6Kr60X2xLew/DMMrK30aR6ecI/HM6VZuXIp77472bD9\n3/9up0OHjqXmGzt2JD//vMko7dKlq0VGbz2o9957m2XLFhulHThwmAYNGpaa98aNVJ55ZgB//fUX\n3377A717P377RZ0OFAV1YgIWZ05jcf06BQH1UZyd2de+FTUVhaPAG8BHwN9AtJMzNAzE3z8AP78A\n/Pz88ff3x8vLBysrKwB69Ohs6BN1p9q163DixBn27fuNwYMH0AP4wsaGy40eIejrtWg8az7wNTJ3\n8jldtZla/UoLkDBLlpaWNGoUBMBff50gKLAejdzdyUtI4M/kJIYDvuj71KwGPga6Azrg/2ztsMrJ\nJhhwd3RC0dijrV1HvxCnuwcU/oFN//4no2MWtAv+x+WOiYk2Cn4Adu7cWqYAaODAQVy9GsuxwrWx\nXFxcyi34Afj665VF0lJTU0rNl5iYSMuWQYYRdSNHDmXlym/p1+9J/Q6Fj8F0njXRedbkzlmP3vav\nz4ULEYD+A+tYtWo8otUSnJrCG2EHeTPsIOnAYWAcgIUFtX188fcPKDb4AVi9ei0AGRn6D/JfgKa5\nuYw+fpQRTRrQ1cmZ0YtXUM3RkR9+WMuYMeMIDGxU6nkKIUyHBECiwuzfv5eQkEHcLJyMbtOm7bRv\nX/of8QemKKiSksDKElVKCjY/rYfVK5gEfAtsT04iMTmJv4Cjlpa4OzqiuHuS4OXN2y1a4OztS5KP\nL15ePvzo7My6dWt4881XGFSnLr0LAymdnV3Flb9Q7dp1GDx4KD/++AMAgYGNePnl18uUt2/f/vTt\n27/CyhYTk8i2bT/zxx8HKCgooFmzFrRr177UfA4ODnTq1IXdu28PXb90KbLUfJmZGWRlZRq2Wwd3\n4N35X+Hl5U1cXCyhFy8QFXGWnKNHqHPuDJ7Z2bwcG0OPyIvERF4kElAAOysrwvPz0RW+z2uvvcj+\n/X/St29/nntuHKtWLacAfadzgDqpKTQeP4bP82/ydU6OIfBbsyaUXr36lO1iCSEeavIITFSIGzdS\nqV/fuE/JmDHPM2vWZyXmK7WOtVqwsMDy+FEsT/+NxZXL5Iwei/Uvu7BZ+y2KiwvZL7+O1s8fy1Mn\n6fr8SM5rtdyac9jCwoLDh09Ss2YtLC3vHf9fu3aV4cOf4fTpU4Z8p09fxMXFpUznL4rn5lad2Ngk\nkpOTqFWrdqn7d+nSnjNnThu2P/10JuPHv1RCDv3jzUuRF4k/dpgxk9+kCzAKCAA+AcILf1cFd8S9\nYUM2bAglIyMDX996REdHodVqWbHiG9oHNeHSrE/ot2kjfdB36O7V+wkSEq5z/Pgx6tSpy82bN5k/\n/0s0mupcuxbHwIGDHvTSVBnyOV21mVr9lvQITCZCFCVKSkqiffuWhrWlBg0aQHx86bMS16jhyPPP\nTzBK++ij6WU7aEEBFufOYr1zO9U2bwTAYexIHLt1xLFPN8jPx+J8BBQUcLNjJxRnZ3LHjufGr7+T\n9uNm8rt0Q1fXi5tP9MOmTTvuXHChTZt21K3rVWLwAxAaus4Q/IB+rpmMjLLNWyNKVq1atTIFPwDd\nunU32t6xY1upeWxtbWkU9AhN+z7JTQsLdqpUDAVaApvQf+h1BCaF/Y796hVUz8hgDKC6fAmtVgvA\nnDkzSMq/SdOFS7EBegGXa9biw46dOH78GACxsTEkJMQzbNgg+vfvxYQJz+Hu7sA336xCp9MVVzQh\nxENEWoBEie7uRKpSqdi27RdatWpTpvw+Pp5kZ2cDxhPfqVJTsLhyGZ27B6obN7Bd9hUWVy5j3asH\nSc+MxP69t9H6+FIQ1Jib/QagSk5GcXaG+1zpe9Cg/uzfv9corSwT8KWmprBt28/cuHEDjUZDr159\nyvxHW9zbg97DaWk3OHbsKG3bBqPRlD5nz/z585g27aMi6RYWFrRp04733vuQhIQEnntuBK6Kwgj0\n8xpFoO8LNhD9AqvX78ibdPRvLM+dYcmhMP678AsOlXD8BQsWM3To8Ps5xSpDPqerNlOr35JagCQA\nEiW6ePECnTu3MyzGea85cbRaLVevxhlGUkVfuURaRAQrd2ylLxAMTBzwFNlvTcFq/29U2/YzWh9f\nckOeRetTD4ursWh9fHH1q1OudXz3LMJQ9hmIRfn7t+7hHTu2MWrUsCLpTZo0Y/fuvagLO13Xq1fb\nsIzGLQ7Ai+g7xEcBzwO9gSPW1XD29sYqLo5Ps7NQoZ/b6O515xs0aMiaNaH4+PiW92mZBPmcrtpM\nrX4lAKqC8vLyWLJkEYsWzUelgiVLVhV5XFBerly5TNeuHcjKysTXtx7jx79IVlY2UVcuc/3KJWqf\nj6BGUiKKTscC4FegBvoZgQei/0OiAr774xhabx/DCKrilHcdHz16mM2bNxIU1Jhevfrg5ORcbu8t\n7t+/eQ8risLatWuYOPEVo/SLF2NQqVT07NmFyMiL98xfp05dEhPi4eZNPgQ6AzHAECAIfaCUBbjY\n2HAlN5fLhfmC75oXSVEUXnppHD/9tB6AmjVrsWfPAdzc3MrtXB8m8jldtZla/UoA9BDLzMzk9OlT\n5OXlYW1tTfPmLbGxsSk136hRIezYsdWwbWlpSVxccpkm+rsfqoQE3h/yJDfCT/MX+sBmGuAMbAQW\nApOBSOC6kxOJ/vXx9vLGy9sHHx9fNBoNY8eOpEYNRy5ciC71eFWxjsVtlVW/Wq2W3bt30qhREN7e\nPiQmJhIU5HfP/du2DWbIkGH85z9vk5OTw9q1G4iMPM/096eQi34W6WDgd/TLk8xGHxz9H3BVrebs\n2UuGYFtRFDw8ahQ5xh9/HMPfP6BIuqmTe7hqM7X6lXmA/kUFBQWldrC9pbgP4YkTJ/POO1NLzduj\nRy+jAGjhwiX3F/zk54OlJVa/70d9NQ51UhI5L7+G5qOpWB3cDzqFjMUrsDx9ioZnwolGv5zB38Bg\nYPCEl/H29uZLbx+8vHwYXtcLu2KGiKekJAP6PhweHjX46aef6dixU9nLKUQ5sLCwoE+fJwzbbm5u\nHD8ezhtvvML+/b8V2f+ppwYzceJrhu23336TsLDjfP75HHJTU5mAvjN1I+A0kIY+IHoKcNHp+Kmh\nL6dbtWHY+x/Ttm0wW7bspH//3kbH2Lp1C9Onf0RQUGM2bdpGjRqOFXDmQoh7MYkWoMzMTPbu/ZX0\n9CSysvJo1aoNtWrVxsPDE9B/u9u+fSv5+Tfx9w+gTp26ODvrhysfOXKIc+fOcvbsGezsbGnatDm9\nez9hmCn2yJFDrF//A6dO/cWFCxFotTr69HmCxx7rweDBQ0st27lzZ+nUybhPTN++A1i1ak2pee8e\nKm5ra8umTdtp3rxlma7LnDkzmDNnBnBXB+OMdBQLS9SJCVgfPID6ahwFQY0paNAQh/FjQFEoaNaC\nzHnz0Xz6ITpXV7S163Cz7wBUN1JRqjsYLc0wYEAfw7IMULSJ/14SExNp06ap0Twud5f1bqb27ULc\nn4e5fuPj41m27CseeaQx7dq1Z+rUd9my5b+G1/38/Et8ZNYAeEylYqWicB1wBB4Hkm1tiVKric/S\nj0e0sbElOjq+yH3Vp09fduzYip9fAJs3b8Pd3bNiTrSCPcx1LP45U6vfCnkENn36dE6ePIlKpWLK\nlCk0adLknvv+04tVXEdWlUrFxo1b6dDh0SKvazT2/P13BPXqFT9qp3v3nqxbt4Hz5yPo2LF1sftY\nWFgQGRlXbKvGnYrrbPnss2OYN29+ifluuXLlMr17dyMlJZn69Rvw3XfrDZ0ndTodaWk3SE5O1v8k\nJZIVG01ebAwRgNWG9bglJ1EH6H/2Mrarl2O9fSuKgwNZ774PdrZYHgpDV6sOBY2C9Gs9Kcp9L88Q\nGXmR4OAWd6XFlroWU3Z2NmPGDOe33/4H6Otl585fS1w2wdRuLnF/TK1+8/Pz+f7777CysuL110ue\nf2jDhi106PAoJ04cY+ear9Ft3UzHjAz2A1+i7yzdEVB7eHLqVASXL0fSrt3t+8rBwYH09NtfDnx8\n6jFp0ju4urpWWP++imBqdSzuj6nVb7kHQIcPH2blypUsXbqUyMhIpkyZQmho6D33r4gAqHXrtnz1\n1XK8vX2K9IcZNGgIixYtxdOz+CbladNmMW7ci2RlZfHYYx2LnZF23bof6d69V5nKFxcXS/Pm+mny\nlyxZyVNPDS5TPrjduqICXIGGGnusPT1JTU1lcGoKtRSFSPR9DA4CKcA54FX0ze15QCzwS2wSWFuX\n+bj3o2XLR4iJMe6/M3v254wePbbcj2VqN5e4P6Zcv4cO/Um/fj1L3Ofu1s3o6Ghat27MY4rCl4AW\n2A9gYcFCjT3h6WkA/P77EXQ6XZHW5Dt1796TtWt/LPd+fuXNlOtYlM7U6rfc+wCFhYXRvbv+G4mf\nnx9paWlkZmaW65pDdzp8+CRt2jQ1SisoKOBW7PbNN+tYu/Zb3nzzFVQqFXFxsURHR5GQkE5ycjKB\ngbeHo/r7BzBu3IsAaDQa/vzzhCHAGjPmeVavXoFKpWLhwi/w96+Pt7cPeXl55OXlkpur/zcvL4/c\n3Fxyc3PIy8vjZk4WNdB3EM6PjUWVmYFV2EFUGRkotnbc7PMEdvNmoU5KRJWRQcb8r9BM/xir/Xv5\n8uQJxqMfVTIMiM3KZF3kRaKBfUCKrR05ri4EuXvwrosrLoU/H7i44uTkxBtvvKy/Hmp1hXXomjr1\nI8aPH2PYfuONSYwa9VwFHU2Ih1Pbtu2MApyCggI2b97ISy+NQ1EUunXrgaIoRgGKl5cXjo5O7ElN\noQFgAdgAEVotE9LT+BpYpVazaO4Mfj961Oh4L774KosXLzRs79mzm927d8pSHEKUkwdqAZo6dSqd\nO3c2BEEhISFMmzYNX9/i5734p9Hi3c/Ky8ISKADsgWqAFZAI1NVo6N+xE2qtjhSbaig6LRe2b8MK\nwM2dI4kJPI5+iKsWWAO8B3ijD3DGoV+Rul/hcSYX7vsq+o6QDBxMp09mYLtqKYq9A1pvH272G4DV\n/r0oNrYo1aujbdAQ8vLA2poBT/U1OrfAwCAWLVpiCHSqVat2z3O8c3TJiy++ysSJk02+I6WpfbsQ\n98ec6vfq1TjatWtuWAAWwNvbh8WLVzBr1jTC9v1GDyAQmFP4eifgQOHvbdsGc/78OVJTUwEICXmW\nTz+dib39vb/RPgzMqY7NkanVb4WPAisthnJyssPS8v76ndzpyBH9nKuvAiPRzykzG/08M18U7rMH\n/To/+9Evfngd6At8DngB+eiDl25ZWbTbtYN8YDmQA4wufP1wUiIn0HdmTC98f4C9Vlaoq1Ujr1o1\nXDQa1tvYsMnWFhsbG2xsbMi1saH7rl0AbB83BtcgP5g32/gknu5Hcb777lvatGlDcrJ+tNT69T/w\nyCOPlHpNkpOTadHidv+BxYsXsnjxwlLrwhSU9B9WmD5zqd+0NEuj4AcgKuoKtWq5EhQUyL59v1F7\n/HiGTZhA9VatmKEovAicAZKBQ4fCDPlGjBjBmjXfFjlGcnIyzZs3JyYmBoA5c+YwadKkCjyrsjGX\nOjZXVaV+HygAcnd3JykpybCdkJBQ4qReqanZD3IYg9at2xIWdpCF6OeducXR0Yl3C2cl3r9/L3l5\nudwaP2Vra0egjy9zdVoiIs4Z8iQPeIrk7j1Rq9UMV6tRqVS88IK+L4tXXS8yo6OYUbhv27bBXN+8\nwzBrbEmGDx/ML7/sIjk5476i408+mW4IfgAaN27MgQOHS+woDJCcnIFOZxzszJ0736Qi8+KY2rcL\ncX/MqX5r1PDg4MGjdOjQyii9WbNmht+7detF3boBONauw6uxMfd8r82btzBo0BAmTXoXP7/bU2fE\nx6cagh+AyZMnM3nyZMLDIyttokVzqmNzZGr1W+6LoXbo0IFdhS0e4eHhuLu7V1j/H4D5878qkta8\neUt2797L2rXrWbt2PUOHhhheCw7uwL59YezbF8auXXuN8rVrF8yQISEMHjyUp59+hieffJqAgPoA\nRlPX16/fgAULFpcp+Fm69Et++UV/PZ59dghPP92/zOf2/fffFUkry2zFLi4uHD8eTkJCuuFn5Mgx\npeYTQvx7AgLqG92jS5asNHp96NCnad68EbF3BT+NGzfBz+/2JIkZGen89NN6goOb06iRH2+9NZH4\n+Ot4eHjQv//AIsctabi+EELvgYfBz507l6NHj6JSqfjggw9o2PDeLRYVMQoMMLSUPPFED8NjslvO\nnLnEqFFDOXLkcLF5ExLSSUlJpmvXDly7drXYfX7+eTdt27YrsWz5+fkEBNQ1LPh55/uXhaIonDhx\nDFdXN+rUqVumgKsqM7VvF+L+SP3qF9odPXp4if0aP/xwGvPmzSIjI52ZM+fy99+n2LFjKykpKUb7\n1apVm6tX44zS9u4No1GjoAope1lIHVdtpla/FdIH6GF4zpyRoQ8yIiMvFHktP/8m+fkFJeZXq9X3\n7GTs7e1DYGBgqWWwsrJi27Y9RESc5fz5CNzc3AgJGVmG0uupVCpatGhV+o5CiCrBycnZaCLR4iZT\n/fDD/xh+P3QojKVLV/P554s4d+4s8+bN5H//20NmZkaR4Gfjxq2VGvwIYUpMYiZonU5HdHQUipJL\nbGwCtWvXwcXFxWjEU1JSEgUF+VhZWePg4GCY6TkrK4vs7GyuXbuKra0N1as74OlZ8x+VR1QcU/t2\nIe6P1G/Jjhw5RGJiIlu2bGTjxg2G9IiIK0UejR85coixY0dy/fo1Q1pZW54rktRx1WZq9Wvya4Gp\n1Wp8fHxxc6uOr2/xF97V1bXYdI1Gg0ajqbIrLwshqo7WhYM6Hn+8L3PmfMG0aR/x6KNdigQ/iqLQ\nuHFTmjdvaZgEdurUj//18gphykwiABJCCHNTvboDM2fOK/a1pUu/5P33pxilPfNM6WsXCiFuM+8e\nt0IIYYK8vHyKpA0c+ETRHYUQ9yQBkBBCmJjHH+/L5cvX6NHj9nqFtrYlL9wshDAmj8CEEMIEaTQa\n1q79EQCtVmv2U2gIcb8kABJCCBNnYfHgSw0JYa7kK4MQQgghzI4EQEIIIYQwOxIACSGEEMLsSAAk\nhBBCCLMjAZAQQgghzI4EQEIIIYQwOxIACSGEEMLsSAAkhBBCCLMjAZAQQgghzI4EQEIIIYQwOxIA\nCSGEEMLsSAAkhBBCCLMjAZAQQgghzI4EQEIIIYQwOxIACSGEEMLsSAAkhBBCCLMjAZAQQgghzI4E\nQEIIIYQwOxIACSGEEMLsSAAkhBBCCLMjAZAQQgghzI4EQEIIIYQwOypFUZTKLoQQQgghxL9JWoCE\nEEIIYXYkABJCCCGE2ZEASAghhBBmRwIgIYQQQpgdCYCEEEIIYXYkABJCCCGE2bGs7AKU1fTp0zl5\n8iQqlYopU6bQpEmTyi6SKEeHDh3i9ddfJyAgAID69eszderUSi6VKA/nz5/npZdeYvTo0YwYMYJr\n167x1ltvodVqcXNzY86cOVhbW1d2McUDurt+33nnHcLDw3F0dARg7NixdOnSpXILKR7Y7NmzOXbs\nGAUFBUyYMIHGjRtXmfvXJAKgw4cPExUVRWhoKJGRkUyZMoXQ0NDKLpYoZ23atGHBggWVXQxRjrKz\ns/nkk08IDg42pC1YsICQkBD69OnDZ599xoYNGwgJCanEUooHVVz9AkycOJGuXbtWUqlEefnzzz+5\ncOECoaGhpKamMnDgQIKDg6vM/WsSj8DCwsLo3r07AH5+fqSlpZGZmVnJpRJClMba2prly5fj7u5u\nSDt06BCPPfYYAF27diUsLKyyiif+oeLqV1QdrVu3Zv78+QA4ODiQk5NTpe5fkwiAkpKScHJyMmw7\nOzuTmJhYiSUSFeHixYu88MILDBs2jIMHD1Z2cUQ5sLS0xMbGxigtJyfH0GTu4uIi97IJK65+Ab77\n7jtGjhzJm2++SUpKSiWUTJQHCwsL7OzsANiwYQOdOnWqUvevSTwCu5us3lH1+Pj48Morr9CnTx9i\nYmIYOXIku3fvNtlny6Js5F6uegYMGICjoyOBgYEsW7aMRYsW8f7771d2scQ/sGfPHjZs2MCqVavo\n2bOnId3U71+TaAFyd3cnKSnJsJ2QkICbm1sllkiUNw8PDx5//HFUKhVeXl64uroSHx9f2cUSFcDO\nzo7c3FwA4uPj5fFJFRMcHExgYCAA3bp14/z585VcIvFPHDhwgCVLlrB8+XKqV69epe5fkwiAOnTo\nwK5duwAIDw/H3d0de3v7Si6VKE9btmxh5cqVACQmJpKcnIyHh0cll0pUhPbt2xvu5927d/Poo49W\ncolEeXr11VeJiYkB9P29bo3sFKYnIyOD2bNns3TpUsOovqp0/5rMavBz587l6NGjqFQqPvjgAxo2\nbFjZRRLlKDMzk0mTJpGenk5+fj6vvPIKnTt3ruxiiX/o9OnTzJo1i7i4OCwtLfHw8GDu3Lm88847\n5OXlUatWLWbMmIGVlVVlF1U8gOLqd8SIESxbtgxbW1vs7OyYMWMGLi4ulV1U8QBCQ0NZuHAhvr6+\nhrSZM2fy3nvvVYn712QCICGEEEKI8mISj8CEEEIIIcqTBEBCCCGEMDsSAAkhhBDC7EgAJIQQQgiz\nIwGQEEIIIcyOBEBCCCGEMDsSAAkhhBDC7EgAJIQQQgiz8/8oviumDsJHrQAAAABJRU5ErkJggg==\n", "text/plain": [ "

" ] }, "metadata": { "tags": [] }, "output_type": "display_data" } ], "source": [ "% matplotlib inline\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "sns.set()\n", "\n", "scl=0.3\n", "\n", "def draw_car(x=0, y=0, theta=0, phi=0):\n", " R = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]])\n", " car = np.array([[0.2, 0.5], [-0.2, 0.5], [0, 0.5], [0, -0.5],\n", " [0.2, -0.5], [-0.2, -0.5], [0, -0.5], [0, 0], [L, 0], [L, 0.5],\n", " [L + 0.2*np.cos(phi), 0.5 + 0.2*np.sin(phi)],\n", " [L - 0.2*np.cos(phi), 0.5 - 0.2*np.sin(phi)], [L, 0.5],[L, -0.5],\n", " [L + 0.2*np.cos(phi), -0.5 + 0.2*np.sin(phi)],\n", " [L - 0.2*np.cos(phi), -0.5 - 0.2*np.sin(phi)]])\n", " carz= scl*R.dot(car.T)\n", " plt.plot(x + carz[0], y + carz[1], 'k', lw=2)\n", " plt.plot(x, y, 'k.', ms=10)\n", " \n", "plt.figure(figsize=(10,10))\n", "for xs,ys,ts,ps in zip(x,y,theta,phi): \n", " draw_car(xs, ys, ts, scl*ps)\n", "plt.plot(x, y, 'r--', lw=0.8)\n", "plt.axis('square')" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 500 }, "colab_type": "code", "executionInfo": { "elapsed": 6867, "status": "ok", "timestamp": 1554483577799, "user": { "displayName": "Jeffrey Kantor", "photoUrl": "https://lh5.googleusercontent.com/-8zK5aAW5RMQ/AAAAAAAAAAI/AAAAAAAAKB0/kssUQyz8DTQ/s64/photo.jpg", "userId": "09038942003589296665" }, "user_tz": 240 }, "id": "xxybmvuLmKhs", "nbpages": { "level": 2, "link": "[7.6.5 Visualizing Car Path](https://jckantor.github.io/CBE30338/07.06-Path-Planning-for-a-Simple-Car.html#7.6.5-Visualizing-Car-Path)", "section": "7.6.5 Visualizing Car Path" }, "outputId": "9fb70ac9-9e46-4152-f814-430cad961d6d" }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 5, "metadata": { "tags": [] }, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlcAAAHSCAYAAADBru5yAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd0lNeZ+PHvdJUZ9VEZ9S6hQhUg\nBKIaDDZgY4PtxM46yZ5syibZbJJfst7EdrK2N3Gc7mTjbLxp7gU3YhuD6SAhqoQKEuptNOplVKa+\nvz9GyMbGGNRmJN3PORxJU973MnfKM/c+97kySZIkBEEQBEEQhEkhd3cDBEEQBEEQZhMRXAmCIAiC\nIEwiEVwJgiAIgiBMIhFcCYIgCIIgTCIRXAmCIAiCIEwiEVwJgiAIgiBMIqW7G3BZR8fAlJ8jMNCH\nnp6hKT+PcGNEv3ge0SeeSfSL5xF94pmmo1/0et0nXjenRq6USoW7myBchegXzyP6xDOJfvE8ok88\nk7v7ZU4FV4IgCIIgCFNNBFeCIAiCIAiTyGNyrgRBEARBmNskScLucDJsdWC1OgjQaVAqZt44kAiu\nBEEQBEGYdJIk0Wgy02AaYMTqYMRiZ9hqZ9jiYMRqZ8TqYNjy8b8dzg+2PFYqZETqtcSG6YgL1xEb\nriNKr0Wl9OyASwRXgiAIgiBMmj6zhYIyE8dLjbR0DF7ztjLAS6PAS63Ez1dNWKA3XmoFXholKqUc\nU/cQTe1mGtoGOFLsuo9CLiNS7zsabPmRFOlPdKh26v9jN2DOBVeHz7dQUGYiIcKPlOgAkqL80Xqr\n3N0sQRAEQZixbHYnxdWdHL9g5EJtN05JQiGXsThFT1ZiML5eKrw1Crw1SlfwpFbirVGgVimQy2TX\nPLbd4aS1c5D6tgEa2gaobxugqd1Mo8kMxUYAvveZhaTGBE7Hf/W6zLngqqC0jarmPqqaenm3qBGA\nSL0vKVEBpEQHkBYTgL9W4+ZWCoIgCIJnkySJBtMAx0vaKCxvY3DEDkBsuI6VWREsmxc2KYMXSoWc\nmDAdMWE6mO+6zO5wYuwaorCsjXdONlJr7BfBlTvZHE6UCjn/tjObqqZeLjX3UdPSR0vHIAfPtSCX\nyVieEcYtubFEBPu6u7mCIAiC4FHGpv0uGGnpdE37+fmq2bQ0mrzMCKKmYYpOqZATHapFqYjgnZON\nGDs9q5Dr3Auu7E7USjnz4oKYFxcEuCLghrYBqpp7OXGhjROlbRSUtrEkLZRbV8R53FyuIAiCIEyn\ny9N+xy4YKR2d9lMqZCxJ1ZOXFUFmQhAK+fQnmesDvFHIZRi7rp3bNd3mZHD10VUGSoWcxEh/EiP9\n2bQ0hnNVHbx1op5TF9s5dbGdBUkhbM2LIz7Cz02tFgRBEITpJUkS9W0DHLtgpKjcNDbtFx+hY0Xm\n5E37TYRSISc00JvWriEkSUL2Kflb02XuBVeOjwdXHyaXyVicGsqiFD0Xart463g956s7OV/dSWZ8\nELeuiCMlOmAaWywIgiAI08dmd3LwbDNHSoy0jk77+fuquXlZDHmZ4UTqPWs2xxDsi7FriL5BKwEe\nkjM954Iru92Jj9enR9oymYzsxBCyEoK52NDDWyfqKa3rprSum9ToALbmxZEeG+gxUbIgCIIgTFRZ\nfTfP7K3E1DPsmvZLC2VlVjgZ8e6Z9rseESE+UAXGzkERXLnLp41cfZRMJiM9Loj0uCAuNfey50QD\nF2q7qHzhPIkGP25dEUd2YrAIsgRBEIQZq89s4YUD1ZwsNyGTwYYlUWzLi3f7tN/1uLz4rLVriPTR\nXGp3m3vB1VVyrq5XclQA39oVQH1bP28dr+fcpU5+/UoJSVH+3LUuiUSD/yS3VhAEQRCmjtMpcfBc\nC7uP1DBscRAf4cfnNqUSG65zd9Oum2E0uPKkpPY5FVw5nRJ2h4RqgvsUxYX78fU7smluN/Pa0VrO\nXerk0b+dYWl6KHeuTiQkwHuSWiwIgiAIU6PO2M/f91ZS3zaAj0bJfZtSWT3fgFw+s2ZiwoN8ADB2\neU45hjkVXNkdTgCUk7QnUVSolq/fkU1lYw8vHqimqKKds1UdbFgSza25sdeV2yUIgiAI02loxM5r\nR2o5cLYZCcjNCGPXumT8fdXubtq4aNQKgv28aBUjV+5htbuCq4mOXH1UakwgP/inJRSVm3j1cA3v\nnmzkWImRbXlxrFkYOSN39BYEQRBmF0mSKKpo54X3L9E3aCU8yIf7NqZ4TJ7SRESE+FBa283QiB0f\nL/eHNu5vwTSy2RwAU7KbtquyeziLU/XsO93MPwrqeW7/Jd4/08zOtUksTA4RSe+CIAiCW5i6h/j7\ne5WU1/egUsq5PT+Bm5fGTMnnoTsYgn0pre3G2DVIYqT785/nVHA1NnI1hU8mlVLBluWxrMyO4M1j\ndRw618qTuy+QEh3AXeuSRCFSQRAEYdrY7A7+UdDA24UN2B0SWQnBfHZjCqGzLDc4ItiVd9Uqgqvp\nZ7NP3cjVR/n5qLl3YyrrF0fx8sEazld38l9/Pc3yjDB25CcQ4j+7ntiCIAiCZymt6+KZ96po7xkm\nQKvmMxtSWJyqn5WzKBFjKwY9I6l9jgVXownt05gDFRHsyzfuzOZigyvpvbDMxOmLHWzMiWbL8liP\nmBsWBEEQZo+eAQsvHrhEUUU7MhlszIlm+8p4vDWz9/PGEDIaXHV6RlL77H2kr8I6hTlXnyYtNpAf\n3r+Ek2UmXj1Sw9uFDRwtaWX7ynjy5xtE0rsgCIIwIU6nxIGzzew+UsuI1UGCwVWzKiZs5tSsGi+t\ntwqdj0qMXLnDVK0WvF5ymYzczMtJ7038o6CBZ96rciW9r0lifpKo9C4IgiDcuDpjP3/bW0nDaM2q\nz21KJX+BAfkc+kyJCPblUnPvWAqQO82p4Mpmm/qE9uuhVim4JTeOVdkG3jhWx+Hzrfzm1RLSYgK4\na13yjKqMKwiCILjPsMXOq4drOHi2ZbRmVTh3rUvCb4bWrJoIQ7APVU29tHUPY4gIcGtbxh1cPfbY\nYxQXFyOTyXjggQfIzs4eu85isfDggw9y6dIldu/ePSkNnQyXo1lPmYLz81Vz36bLSe/VFNd08aO/\nnCI3I5w7VicQ5Ofl7iYKgiAIHqq4upO/7a2kZ8BCRLAP925MJT020N3NcpsID9oGZ1zBVVFREQ0N\nDbz44ovU1NTwwAMP8OKLL45d//jjj5Oens6lS5cmraGTYTpKMYyHIcSXb+6cT0V9Ny8erKagrI3T\nle1jSe+zOQlREARBuDH9Q1Ze2H+JwnITCrmMbXlx3JIb53GfbdMtImS0HIMHJLWP61O7oKCADRs2\nAJCYmEhfXx9msxmtVgvAt771LXp7e3nzzTcnr6WTYDpLMYxHelwQD96fQ0FpG7uP1PKPggaOFrey\nfVUC+fMjUMg9s92CIAjC1JMkiZMVJp7bdwnzsI34CB2f35xOVKjW3U3zCAYPKscwruCqs7OTjIyM\nsb+DgoLo6OgYC660Wi29vb2T08JJZPWQnKtrkctk5GVFsCQtlPdONfF2YQN/31vJ/tNN7FybxPxE\nkfQuCIIw13T3j/D3vZUU13ShVsq5a10SNy2JnnGbLE+lQJ0GjVoxc6cFP0qSpAkfIzDQB6VSMQmt\n+WS2ix0ABAf5otd7ftL4F7YHcPvaZJ57r5L3Cuv5zSslZCeF8IWtGSRGuTdZb7LNhP6Ya0SfeCbR\nL55nKvvE6ZTYW1jPn/eUM2yxk50Uwtd3LSB8dJRGuFJ0mI4GYz8Oh9Otr5VxBVehoaF0dnaO/d3e\n3o5er59QQ3p6pn4Y7/K04NCghY6OgSk/32TZtTqBvHmhvHyohpLqTr71y8OsyAzn9vzZkfSu1+tm\nVH/MBaJPPJPoF88zlX3S1j3EX965SFVTL94aJfdvTmNVdgQyp1M8Dz6B3s+L6qZeTN1DqJj4wM81\nz3WN4G1c82N5eXns3bsXgLKyMkJDQ8emBD2Zpya0X49IvZZ/2zmfb9+9gEi9luOlbTzwx0J2H6lh\n2GJ3d/MEQRCESeJwOnm7sIEHny6iqqmXhckhPPLPy8ifbxBpIZ/CMJrU3mRyb/A5rpGrRYsWkZGR\nwd13341MJuOhhx5i9+7d6HQ6brrpJr7xjW/Q1tZGXV0d9913H7t27WLr1q2T3fYbNlah3UNKMYxH\nRlwQD38+hxOlbew+UsOeEw0cOd/KbasSWCWS3gVBEGa0RtMAf377Ig2mAfx81dx70+zdD3AqXC7H\n0NRuJiHMfYM+4865+s53vnPF32lpaWO//+Y3vxl/i6aQbQaPXH2YXC5jZXYEOWmh7D3VyDuFjfxt\nbyX7zzSza20iWQki6V0QBGEmsdkdvHm8nncKG3FKEnlZ4dy1Lhmtt8rdTZtR4sJ1KOQyHE6nW9sx\npwoo2dy8/c1k06gVbMuLZ/V8A68dreNoSSu/ermE9NhAdq1NEpXeBUEQZoCqpl7+/M5FTN1DBPt5\n8U+bU8mMD3Z3s2akID8vHv/KChLjgunuMrutHXMquHLnxs1TyV+r4f7NaWxYEsVLB6spre3mR385\nxfKMMHbkJxDi7+3uJgqCIAgfMWyx88ro1jUyYMPiKHasTsBLPac+middoE6Dws0lKuZUD86WacFP\nEqXX8u+7FlBW383LB6spLDNx+mI7GxZHc8uKWHy9xPCyIAiCJyipcW1d093v2rrm81vSSYr0d3ez\nhEkyp4Ir6+W9BWdpcHVZRlwQ6ffncLLcxO7DNbxb1MjRklZuyY1j/eKoWRtcCoIgeLqBISvPv3+J\nwjLX1jVbV8Rx6wqxdc2NkCQJi8PKiGOEYfsIMmSE+4a6u1lXmFPB1WzLuboWuUxGbkY4S1L1vH+m\nhT0n6nnpYDUHzjazIz+BpfPCkIukd0EQhGkhSRIny008t9+1dU1cuI7Pb0knWmxdM0aSJPqtA7Sa\n22gZNNI22I7ZNsiI3RVEDdtHXL87RnBKVyasfyX782SGpLup5R83t4KrGbD9zWRTKRXcvCyGldkR\n7DlRz4GzzfzxrXL2FjWxa20i6XFB7m6iIAjCrCVJEmX13bx6uJaGtgHUSjm71iZxU07UnC6dM2If\nwThoGg2k2mg1G2kdbGPQdvWC4hqFGm+lNzqNjlCFHm+VF94KL5RyJSfbznC0pVAEV+5itTuQgdsT\n3dxB663i7vXJrF8cxWtHaiksN/GzF86TlRDMzrWJROnFtydBEITJVN3cx6uHa6hscu21uzQ9lB35\nCYQG+ri5ZdPHKTlpG2yndbCNVnMbrYNGWs1tdI30XHE7GTKCvYNI8o/HoA3HoI3A4BuGn1qHl9IL\nueyTA1HjoImyrov0WvoI0HhG3tocC66cqJTyOV0DSh/gzZe2ZbBxaTQvHajmQm0XpXVd5GVFcPuq\nBAJ1Gnc3UZhlbE47ZquZAZsZs3WQAasZlUJFlNZAiHfQNd80BWEmamo3s/twDcU1XQBkJwazIz+B\nmLC5Ux6nbbCdQuNpTradod96ZbV0nUpLamCSK4jyjSBSG064bxgahXpc51phyOGFymZOGs+wKW7d\nZDR/wuZUcGUfDa4EiAv347v3LORCbRcvH6zhWImRonITG5dGs3lZLN6aOfXUEG6Aw+nAbHMFSR/9\neeVlZgasg4w4Rj7xWBqFmkitgWidgSit61+EbxgqhVjZKsw8pu4hXj9WR1G5CQlIifJnx+pEUqID\n3N20aTFsH+GsqZgC42nq+hsA8FZ6syx8MVE6AwbfcCK1EejUkztTsiRsAa9e2kOB8RQbY9d6xADK\nnPoEtdocKOdAMvv1kslkZCeGkBkfzPELRl47WsueEw0cOtfK9pXxrF5gEI/XHOZwOqjtq6eks5yG\n/ubRYMnMkH34U+8rl8nRqXwJ9g5Ep9KiVfuO/dSqfBlxWGgeaKXZ3EpdXwO1ffVX3DfcJ5SoDwVc\nUToDvqq5M5UizCzd/SO8daKeo8VGnJJETJiWO1Ynkhkf5BEf9FPJKTmp7q2lwHiac+0XsDltyJCR\nHpRCbsQSskMypvzLkrfSm4WhWRS1naW6t5bkwMQpPd/1mFvBlRi5uiq5XMaq+QaWzgtj36km3i5s\n4Nl9Vew73cSdqxPFvlZziNVhpaK7iqraS5xqKR5LLpUhQ6vyxV/jR5TW4AqW1Fq0KtdPV+CkRafy\nRavW4v0pORJXntOGcbBtLNhqGmilxdxK62AbRZwdu12gJmAs4Lo80hXkFSiem4LbDAxZefPNUvYc\nq8PucBIe5MOO/AQWpepn/WrsruEeTradptB4hq6RbgBCvIPJjVjCsvDFBHpN72jdiogcitrOcsJ4\nSgRX081md+Ajprs+kUal4NYVceTPN/DW8XoOnW/h96+XkmjwY+fapDkztD3XDFjNlHZWUNxZxsXu\nS9icNgD81TpWRi4nOySDlMBEVPKpee2oFSpi/aKJ9Yseu8wpOekY7qJ5oIVms3Es8LrQWc6FzvKx\n23krva4Y3coMTker9p2SdgrCZcMWO3uLGnnvVBMjVgfBfhq2rYxnRWb4rF4BaHXYKOkopcB4msqe\naiQk1HIVy8OXsDxiCUkB8W77spMUkIDeO5hz7SXsTN4OuDe/bU5FGja7E5XP7H3iTxY/XzWf3ZjC\nhiVRvHq4htOVHfzk2bMsSAphx+oEsbJwFmgf6qSks4ySjnJq++qRkAAI9w0jO2Qea5KXonMEui3Z\nXC6TE+ajJ8xHz+KwBWOX91kGaDa30nJ5lMvcQnVvHZd6awFQyZUsDV/MuuiVhPuGuaXtwuxltTk4\ncLaFtwsbMA/b8PNRcd+WdJYkhczaWRFJkmgcaOaE8RRnTOcZtrtyKBP848iNyGFRaBZeSi83t9KV\n5pIbkcObte9y2nSeWMNGt7ZnTgVXVpuYFrwRYUE+fPX2LKpb+nj5YDXnqzspru5keUY4t62KRx8g\n9iycKS6/QZZ0lFHcWYZx0AS4pvvi/WOZr88gO2QeoT56APTBOjo6Bq51SLfw1+jw16SSEZw6dtmI\n3ULrYBs1vXUcbSnkeOtJjreeZF5wKuuiV5EWmCymDoUJsTucHLtg5K3j9fQMWPDWKLk9P4GblkQR\nHRnoka+ViRqwmilqO0uB8dTY+4W/2o9Vsbksj1hC2Oh7hSdZFrGYt2r3UmAs4o6FIriaFk5Jwu5w\nigTtcUiK9Of7n13EhdouXjlUS0FZG0UVJtYsiOTWvDj8fce3fFaYeq3mNo62FFLSWUavpQ8ApVxJ\nVkg62SEZZIak46ee2cvDvZQaEvxjSfCPZX1MPiWd5RxoPEJ5VyXlXZUYfMNZG72KnLAFYhWicEOc\nkkRRhYnXj9bR3jOMWiln8/IYNi+LRes9O59LVoeNfQ0H2dd4CJvTjkKmYKE+i1xDDmmBySjkCnc3\n8RMFaPzJCE6jtKuC+p5mfHFfzas5E1zZZ/mmzVNtbGVhQrDrzeZIHe+fbebYBSM35URx89JYfLzm\nzNPJo0mSRGVPNe83HqG8uxIAX6UPy8IXk63PID0oZdz1ZDydXCZngT6TBfpMGvqbONB0lLPtJTx7\n8WXerHmHVVG55EfmTvpScGF2kSSJ4poudh+upbnDjEIuY+2iSLauiCNAOztrAUqSRElnGa9eeouu\nkR781X7cFLuGnLCFMyqPcYUhh9KuCk61nGdN2Gq3tUMmSZLktrN/yFQPqw6O2Pj6r46yMDmEr9+R\nPaXnmgvsDidHS4y8eayOvkErvl5KtuTGsn5RFGrVjX2z0es9cwpqprE77ZwxFfN+0xFazEYAEv3j\nWR+TT2Zw2g1945xNfdIz0svh5hMcaz3JsH0YpVxJTthC1kWvwqANd3fzbshs6hdPNGyxc7LcxKHz\nLTSazMiA3Mxwtq2MJ/QT0iBmQ5+Yhjp4pepNyrsrkcvkrI/O5+a4dR6RS3WjnJKTg03HWJW8GLVl\naoNCvf6TR/3nTHDVZ7bwrSePszQ9lC9vz5zSc80lFpuD988083ZBA0MWO4E6Ddvy4liZHXHdq2Zm\nw5uTOw3ZhjjWcpJDzcfps/Yjl8lZqM9ifUz+FSvwbsRs7JMRu4WTbWc42HSUjmFX5ey0wGTWxawi\nPShlRlSKn4394gnq2/o5fL6VwnITFqsDuUzGopQQtq+MJ/JTFvDM5D6xOKy8W/8+7zcewSE5SAtM\nZmfKdsJ9Q93dtAmbjn4RwRXQ2TvM//tDAckLepGCGlDL1WgUatQKNWqFaux3X6UPEb5hGLThhHgH\nz4g3XE8wOGLjncJG9p9uwmp3Ehboze35CSxJC/3Uei8z+c3JnTqHuzjQdIwC4ymsDisahZo8wzLW\nRK0k2DtwQseezX3ilJyUdlZwoOno2CrDcJ9Q1kavZGn4YtQenJc1m/tluo1YL49StdLQ5npMg/00\nrJpvYFW24bq3ApuJfSJJEmfbS9hdvYdeSx+BmgDuTN7KfH3mrFn8IYKrUVP9IBi7BvnP/z1JYE4h\nI7Je5DI5Tsl5zfuo5KqxQCvSd3QjSW34jE8Ankq9ZgtvHa/nSHErDqerUvGdqxPJuEal4pn45uRO\ntX0NvN94hOKOUiQkAjT+rI1eSZ5hKd7KyVnBOVf6pHGgmYNNxzhtOo9TcqJV+bIycjn5kSvw13je\n63yu9MtUamgb4PD5FgpGR6lkMpifGMKahQYy44ORy28suJhpfWIcNPFS1RtU9VSjlCnYELuGTbFr\nUc+yPEwRXI2a6geh0TTAw385ifeSfSQExPLtxV/F7rRjdVixOKyun04r/ZYBjIMmWkZ37zYNtmOX\nHFccS6vyxaCNGAu40oKSCPKa2EjBbNPeM8TrR+s4ObrHVlpMAHesTiQx8uOrN2bam5O71PbV81bt\ne1T1VAMQrTWwPmY1i0KzJ30Fz1zrk15LH0eaCzjWUsigfQiFTMGSsAWsi15FlM7g7uaNmWv9Mlks\nVgcnK0wcPt9CndH1+AXqNOTPN7AqO4Igv/HnFs2UPhm2j/B23T4ONR/HKTnJDE7jjuRthPqEuLtp\nU0IEV6Om+kGoae3jsZcP4ZV1nJWGZdyTdsd13c/hdNA+3Emr2UiruY2WwTZazW1j5f4vM/iGkxGc\nRmZIOvF+MR69XHU6NZoG2H2klpLR3eEXJodwe/6VhUhnypuTuzT2N/NW3V7Ku1wr/9KDUtgYu4bk\ngMQpG8Kfq31idVhH87KOYRrqACAlIJGb49aTGpTk5tbN3X4Zr0bTAIfPt1JQ1sbI6ChVdkIwqxdG\nkp1w46NUV+PpfSJJEqdM53it+h/0WwcI8QrizpRtZIXMc3fTppQIrkZN9YNQ2djDE3v/gTqxhJ0p\n21kTlTeh443YRzAOmmjob6as+yJVPTXYnXYAfJTezAtOJSM4jXnBqWhVM2cZ61SpaurllcM1VDf3\nja3AuW1lPCEB3h7/5uQuLWYj/6h9j+LOMgCSAxLYmnAziQFxU37uud4nTslJeVclB5qOUjk6Upge\nlMJtiVvcOpI11/vlelhsDooqTBw+30ptaz/gGqValR1B/nzDhEaprsaT+6R5oJWXql6npq8elVzF\npth1bIjJnxP13kRwNWqqH4TS2i5+c+JlVIZavrnwX0iZ5I0dLQ4rVT3VlHZWUNp1caxg4+UK2Jmj\no1oG3/BZkzB4oyRJoqSmi1c/VDtmzcJI/mlrBvYRm7ub5zG6hnt4o+ZtzraXICER7xfL1oRN0zpy\n4skfGNOtob+J12veoaqnGhkycsIXcmv8pgkvGhgP0S+frLndzKHzLRSUmRi22JEBWYnBrF5gIDsx\neMr2/PPEPhmyDbGn7j2ONBcgIbFAn8mOpK1uec66iwiuRk31g3CuqoOnLvwFRWAHP1n54JQWEZQk\nidbBtrFAq66vYWzvtkBNABnBqWSGpJMamDTrkgivh1OSKCo38drRWjp6R1CrFKxfFMnm5bO36vHV\nOCUnQ7ZhfFTeY6tSTYPt/PrcU/RZB4jWGrg1YRMZwWnTHpB74geGO0mSRHl3FW/UvE2L2YhSpmB1\nVB6b4tbhq/KZtnaIfrlSd/8IRRXtnCw30WByPS4BWjWrsg2smh9BiP/Ub9HlSX3ilJwUGk/zRs07\nmG2DhPno2Zm8nfTgFHc3bdrN2ODqscceo7i4GJlMxgMPPEB29geFOU+cOMEvfvELFAoF+fn5fO1r\nX/vU4031g1BUYeLPdb/H21vGL9Y+PKXn+iizbZDyrkrKui5S3lXJkH0YcG1DkhKYSFZwOlkh8wj0\nCpjWdrnb5UKkbxc20NU3gpdawU1Lotm0NBofr9kbZPWM9FJoPE2B8RRdIz3IkOGr8sFPraPP0s+g\nfYjbk25hfXS+20Y5PekDw5M4JSen2s7xVu1eeiy9eCu92Bi7ljVRK6elhIPoF+gfsnL6oiugutTs\nmiFQyGVkxAeRP9/A/KSpG6W6Gk/pk4b+Jl6sep2G/ibUCjVb4jawNnolSvnc3DljRgZXRUVFPP30\n0zz11FPU1NTwwAMP8OKLL45dv2XLFp5++mnCwsK49957+fGPf0xS0rWnNKb6QThU0sDLnb8jTBXN\ng6u+PqXnuhaH00FdfyNlXRcp7aygdbBt7LoYXRTZIRlk6+fNqelD/wAfXtlXyT8K6ukfsuGjUbJp\nWQwbFkfhrZkdbwwOp4MLXRWcaC2ivKsSCQm1XEVyYCIjdgsDtgEGrIM4JAe3J24hP2qFW9vrKR8Y\nnsrmsHG45QR76w8wZB8mQOPPrfEbWRaxeEpr483VfhkasXO2qoOiChPl9T04JQkZkBoTwNL0MBan\n6tH5uGcWwN19MmA181btu5xoPYWExJKwBdyedAsBGvftq+cJ3B1cjeuTq6CggA0bNgCQmJhIX18f\nZrMZrVZLU1MT/v7+REREALB69WoKCgo+Nbiaat3WTgACVe5ddqqQK0gKiCcpIJ7tiZvpHunhQmcF\nJR1lVPXW0DjQzJ66vYR4BZGtzyA7JIPEgLhZXcxUrVJwU040+fMNHDjbzNuFDbx2pJZ9p5rYsjyW\ntYsi0dzgljqeon2ogxOtpyhsO82A1QxArF80eRFLWRQ2H++PbC8hSdKcCapnMpVCxYaY1ayIWMp7\nDQc51HyMZy6+zIGmo2xP3OyWqdzZxmJzUFzdSVFFOyU1XdgdrrqE8RE6lqWHkZMedt2FPmcjm8PG\nweZj7K0/wIjDQoRvGLtSbpsnhNIrAAAgAElEQVT0fGJhfMYVXHV2dpKRkTH2d1BQEB0dHWi1Wjo6\nOggKCrriuqampom3dIJ6rK5SAMEqvZtbcqUgr0BWR61gddQKhmzDlHVdpKSzjLKuixxoOsqBpqNo\nVb5kBqeTrZ9HelDKrM3T0qgVbF4ey5qFkew71cTeU428dLCavUWN3Loijvz5hhmx8bbNYeNcxwVO\ntBaNVQD3UXqzJiqPFYalRGojPvG+4gN5ZvFReXNb0hZWR61gT917nDSe4X9K/kxyQALbE7cQ7x/j\n7ibOKHaHk7K6bk5WmDh3qROL1VVjMDLEl6XzwliWHkpo4PTluHkiSZI413GB16vfpmukG1+VD3cl\n3kaeYZkoAeRBJmXOZTJy4gMDfVAqp+6JsXH+AupOVLMjZxX6YM+rvOyiI9YQyhbysTlslLVXUdRS\nzJmWEgrbTlPYdhq1QkV2WDo5kfNZbMjCz8tT/y835qPDq1+MCmTXpjReO1TNW0dreXZfFXtPNXH3\nTSmsz4lBqfC8IKt7qJf3ag6zv+YY/RbXKFVmaCrrEvJYGrXAo7dVuZprDXkLV9Kj49+jv0hj7808\nd+ENzrZe4IkzT7I8ahH3ZG8nQjd5e7XNtn5xOCXKajs5cq6FEyWtDAy5Vg6HBfmQvzCS/IVRxEX4\nubmV1zZdfVLb3cBfz79CRUc1CrmCW1PWc0fGFnzVczvg/CTufK2MK+fqt7/9LXq9nrvvvhuA9evX\n88Ybb6DVamlububb3/72WA7Wk08+SUBAAPfee+81jzkdc9bunhsfL6fkpHGgmeKOMko6y2kbNAGu\nMg8J/nFk6+eRHZIxYyvtflq/9A9ZeaewgQNnW7DZnegDvNiWF09uRvikFAGcCEmSqOtv4FDTcc51\nXMApOfFRerPCsJSVhuXofYLd2r7xmqmvFU9xqaeG12repqG/CblMzkrDMjbHb5jw1lmzpV+ckkR1\ncx+nKto5XdlO36AVAH9fNTnpoSybF0ZChN+MGMmdjj7ptfTxZs27nGw7A8D8kAxuS9pCqI9nzcR4\nEnfnXI0ruDp79iy//e1v+fOf/0xZWRmPPPIIzz///Nj1t9xyC0899RTh4eHcddddPPHEE8THx1/z\nmCK4un7tQx2UdJZT3FF2RZmHCN8w5odkkBmSTowuasYMEV9vv/QMWHi7oIFD51twOCUign3YvjL+\nujaHnmw2p52zpmIONR+jcaAFcFXpXxOdR07Ywhk/dTtbXivudHn65q2ad2kf7kSjULM+ZjXro/Px\nUo4vV8gT+qWp3UxEsM8Njx5LkkSdcYCiChOnLrbTM2ABQOutYnGqnqXpYaRGB7j9C9ONmso+sTqs\n7G88zL6GQ1idNiK1EdyZvJWUQPfvFuDpZmRwBfDEE09w+vRpZDIZDz30EOXl5eh0Om666SZOnTrF\nE088AcDGjRv54he/+KnHE8HV+AxYzVzoLKeks4yL3ZewjVaJ91Z6kxqYRHpQMulBKQR7B33Kkdzn\nRvulq2+Et07Uc6zEiFOSiNJruX1VPAuSQ6b8m26vpY9jLYUcaznJgM2MDBnZ+gzWROWRHJAwI75p\nX4/Z+FpxF4fTwfHWIt6u38eA1YxOpWVL/AZWGJbe8DJ5d/dLYVkbf3yrnG15cdy2KuFTby9JEo0m\nM0UXTZyqaKezbwQAH42SRSl6lqaHkhYb6JHT/NdrKvrEKTk5bTrPGzXv0GvpQ6fWsi3hZpZHLJnV\ni5sm04wNriabCK4mzuKwUtFdRUVXJRXdVXSN9IxdF+odQlpQCulBySQHJn5slZo7jbdf2nuGePN4\nPQVlbUgSxIXruD0/gcz4oEkNciRJor6/kUPNxznbXoJTcuKt9CbPsJT8yFyPDlzHa7a/VtxhxG7h\n/aYj7G88jNVhRafWstKwnJWRy6572bw7+2VgyMp//u9JzMM2AnUafvaVFVcdZZIkiZbOQYoq2jlV\nYcLU46rrp1ErWJgcwtL0MDLigmbE4pTrMdl9UttXzyuX3qKhvwmlXMm66FVsil2Llwe9Z88EIrga\nJYKrySVJEh3DXVzsrqKi+xJVPdWMOFzD8HKZnHi/WNKDUkgPTiZGF+XWb0MT7Rdj1yBvHKujqKId\ngKQof+5el0yCYWJJsDannXPtJRxqOk7DgGvFa4RvGGui8sgJX4Rmhk/9Xctceq1Mt37rAPsbDnPC\neIph+zBymZyF+izyo1aQ6B93zS8G7uyXp/eUc7y0jQCtml6zlX+/az6Z8a6cwssjVKcr2zlT2UFb\n9xAAapWc+YkhLE0PJSshGPUMLalyLZPVJ5e3vTrTXgzA4tD5bE/cPCu/vE0HEVyNEsHV1LpcvPRy\nsNXQ3zSWq+Wj9CY1KJn0oGTSAlOmff+pyeqXpnYzrx+t5dylTmTAmoWR3LE64bqrvZttg9T3NVLX\n10BtfyMN/Y1YHFZkyMgKmceaqDxSAhNnzdTftczl18p0sTisnGo7y+HmE2PFhKO0BlZHrWBJ2IKr\n5u25q1/K67t54oXzxIT5kLSoiwP7ZeQkxnDTkmjOVLkCqstTfmqlnKyEYHLSQ5mfGIJGPfsCqg+b\naJ+M2EfY23CQA01HsTvtxPpFc2fyVhL84yavkXOQCK5GieBqeg3ahqjsqeZidxXlXVX0WHrHrgvz\n0X8whRiQMOXD0ZPdL5WNPfxtbyXGriH8fNXcvS6JZfPCrgiKnJIT46CJ2r4G6voaqOtvoH2o84rj\nhPuEkhGcRn5ULiHeM3PV33iJ18r0kSSJ6t5aDjefoLiz7IoVp6sicwn50MiFO/rFanPw4NNFdPQN\ns3WrjH1t76DuSabv0gfFKr3UCuYnhbA4RU9WQvCsD6g+bLx9cnkfwDdr32XAaiZA48/2xM0sCVsg\n8qomgQiuRongyn0kSaJ9uJOK7ioudldR1VODxeFaGi2XyUnwjyUtMIUwXz2BGn8CNP74qXWTthpx\nKvrF7nCyt6iRN4/XY7M7SYnzZeVyL3qdbdT1NVLf3zg2TQrgpfAizi+aeP9Y1z+/aHymcUNeTyNe\nK+7RM9LrWjDRehKzbRAZMjJD0lgdlUdaYDKhoX7T3i+vHq7hHwUNbFoaTZ3ubZoGWohQx9FXsoD0\n2EAWp+qZN4tyqG7UeF4rVT3VvHppD83mVtRyFTfFrmFDzOoZv8rYk7g7uJodG7cJEyKTyQjz0RPm\no2dNVB52p526vg+mEGt666nurbviPnKZHD+1bizYCvBy/XT9HeC6TOPnlnIQTslJ+3A7ATEmlvgY\nKTPV0KTs5/naD24T5qNngV8s8f4xxPvHEuEbJr4tCm4X6BXA1sSbuTl+A2dNxRxuOcGFzgoudFYQ\n5qNnS+paMnSZ07IgRZIkSuu6efdkI8F+XixZoOHIeVfZkWFZDz/7qnv3v5yJ2oc6eL36bYo7ywBY\nFr6YbYk3z/l9AGcjMXIlfCqzbZCa3jq6R3rpsfTSO9JHr+Xyv34ckuOq95MhQ6fWfhB0jQVgruAr\n0MsfP7UfwSG+tJi6sDqsWEb/uX63XPH3h6+3OCyuv51WLHYrVufly2wM2YawOm1j7dAo1AQpw2lv\n8WKoS0ewMpzPbcgiI14kin4S8VrxHPX9jRxuPsFZUzF2yYFGoWZZ+BJWR+US7hs26eez2R0UlpnY\nf6aZpnbXTgPf2jWfctsRjrQU4KXwYsQxwhP5P8Jb6T3p559prvVakSSJ1sE2Sjpc5XIaB5oBSPSP\n447krcT6RU9nU+cUd49cieBKmBCn5MRsG6R3pI+e0YCrZ6R3LPi6fJl9tP7WVFEr1GjkajQKNRql\nhiitwTUq5ReLQRuOXCZn2GLnjWN17DvdhCTBsnlh3L0uCX/t3N389ZOI14rnGbCaOd93nnerDtNr\n6QMgLTCZ3IglpAWloFX7Tuj4PQMWDp5r5tC5VszDNuQyGYtS9WzMiSYm3JsHjj+CWq5mYWgWh5qP\n8+3FXxVJ13z8teJwOqjpq6eks4ySjnK6RroB12h/ckACKyOXs1CfNScWxriTu4MrMS0oTMjl6UE/\ntY4Yoq56G0mSGLQNjQZao4HXaDDWZ+nH20sDDrkrOFKqUV8OkhRqV9Ck0Iz+/PBlH1yukiuva0rP\nW6Pk7vXJ5GaE87e9lZwsN1FS08mO/ETWLoyccZWhhblFp9ayY95mVgTnUtJZzuHm41zsucTFnkvI\nkBGtiyRttGhwgn/sdRcorWntY//pZk5fbMfhlPD1UrJ5eQzrFkYR7O+afjxpPMOwfYTVcXkEe7lG\nfI1mkwiuRo3YLVR0V1HSWUZZ50UG7a5SFF4KDYtCs8kOySAjOHVO53HONSK4EqacTCZDq/ZFq/Yl\nWmf42PXTPUoSG67jP+9bzOHiVl45VMOz+6o4fsHIP92cRmy4+zb6bO8Z4n/3lHP/5nQiQyY2CiHM\nXgq5goWhWSwMzaLV3MaFznIququo7WugcaCZ9xoOolaoSQ5IcNWyC0omzCf0ipESu8PJmcoO9p1u\nora1H4DIEF/WL4kiNyMczUfqUR1vLQIgNyIHs801VXi5fMRc1Wfp50JnORcrqrhgujg2Oh+g8WdV\nWC7ZIfNIDkxEdYNV+IXZQfS6MCfJ5TLWLoxkUYqeFw9corDMxI//eor1i6K4PT8Bb830vzROlpuo\naemntLZLBFfCdTFowzFow9kUt44Ru4Xq3trRVb+XKOu6SFnXRcD1gZ8WlEyCNoGOFi1Hz3TRM2BB\nBixICmH9kijmxQZedarKNNhOTV8daYHJhHgHoVW5npvG0Q3k5wpJkmgbaqeko4ySznLq+xvHrjP4\nhpOtzyA7ZB4xuigx5SeI4EqY2/x91XxpawYrsyL4+3tV7D/TzKnKdu5Zn0xOWui0vknWjI4gmIdt\nn3JLQfg4L6WGzJB0MkPSAVdZh4ruS6O17C5RaDxNIacBkGL9SPKKY0ViGvPCDIR4B3zic/2E8RQA\nKww5Y+cJ9gqcEyNXTslJbV/DaEBVRsdwF/BB/lS2PoM1KTnIh8XWNMKVRHAlCMC8uCB+/IWlvHOy\ngT0nGvjDG2UcKzFy78YUQgOnPk/CKUnUtLiSlAeGRHAlTFygVwChUgrnL3nRUxUO3v1oQ3vxD++n\n17eNFqmEl+tKoM61otbgG0GkLoIobQSRWgMG33CUcgUnjWfwVfmQrc8cO3aEbzilXRW8U/c+Eb6h\nhPro0XsHo1Jc324InkSSJIbtwwxYzQzYBl0/rWYa+pso7arAbBsEXItmFuizyA6ZR2ZIOr6j+VN6\nrY6OYbH4Q7iSCK4EYZRKKWdbXjzL5oXxzN5KSuu6+eHTRWxdEcfNy2JQKqauDpape4jBEVfOxqAY\nuRImwOF0craqk/eKGsdGQ2PCdGxamkFOWihKhZwRu4W6vgaaza00m1tpMRtpGGiirr9h7DgyZPhr\n/BiwmVkXveqK3KHkwARKuyrYU7f3itsHeQUQ6qMnxDsYH6U3XkoNXgoNXkqv0Z8avBReeCk1aBRe\neCs1qOSqSR8htjisY0GS2Wb+0O8fBE8DNjPm0YDKKTmvehw/tY48wzKyQ+aRGpg0I4NHwT1EcCUI\nHxEW6MO/37WAoop2nn//EruP1FJYbuJzm1JJiQ6YknNWj45aAQyI4EoYh2GLnaMlRvafbhrb529B\nUgiblkaTEn3ltJ+XUkN6cArpwSljl9kcNoxDJloGjLSYjWNBl1quYmXk8ivOtT46n6yQebQPdWAa\n6qB9qIP2oU7ahzqo6K66oXbLZXI0Cg0KmRy5TI4MGTKZ7CO/y5Ahd/1++TJkyGSXL5PjkByYbYOY\nreYr6tx9Ei+FBq1aS6xXEDq1Fp3aF51Ki1atRafyRe8TQrQuUhQXFsZFBFeCcBUymYxl88LISgji\nlcO1HD7Xwk+ePcuq7Ah2rk1C6z2532BrPhRciZwr4UZ09Y2w/0wTR4pbGbY4UCvlrF0YyU050YQH\nXf+UtkqhIkYXRYzug5IqkiThlJwf22nhw7s6ZH3kOCP2EbpGehi2jzBiH8HisDBitzDisDBiHxn9\naWHE8cHvFocFh9OBhOt8kiRd8fvHLvvY7STkMhlalZZw39DRAEmLdjRgcgVP2rHftSpfMQolTCkR\nXAnCNfh4qfjcplTyMsP567uVHC0xcr66k7vWJZGbET5p0xk1Lf1oVAr8fFWYh6yTckxhduvqG+G1\no7UUlplwShL+vmpuXhbLmgUGdD6Ts0edTCZDIbuxLay8lF5EaiMm5fyCMFOJ4EoQrkNipD8P3r+E\nfaebeONYHX/aU8HxC23ctyn1hkYHrmZoxEZr5yCpMQHYHRK1ff1IkiSWcwtXNWyx83ZhA++dasJm\ndxKp92VTTgzL5oXN2c2TBcHTiOBKEK6TUiFn87JYclJDeWZfFSU1XTz49EluyY1jy/LYcX+w1bb2\nI+EK4Fo6BnFKEsMWOz5eYtpC+IDD6eSdE3U8804F/UM2AnUaduQnkJsZjlwE4oLgUURwJQg3KCTA\nm2/emc2Zyg6e21/FG8fqODma8J4WG3jDx7uczJ4U6U+f2TUlODBsE8GVALjyni7UdvHSwRpaOwfR\nqBTcviqejUtjPlZJXRAEzyCCK0EYB5lMxpK0UDLig9h9pJYDZ5p5/Plz5GWGs2td0g3lvFxeLp8Y\n6U9lUy8A5iEbYTcepwmzTKNpgJcOVlNe34NMBpuWx3Lzkiix2bggeDgRXAnCBHhrlHz2phRWZIbz\n13cvcry0jeKaLnauTWRlVsSn5k05JYna1j7CgnzQeqvQja5CFOUY5raeAQuvHa3leIkRCciMD2LX\n2iQWZkRM6z6cgiCMjwiuBGESxEf48cN/WsL7p5t57Wgdf377IoVlJu7fnIY+wPsT79faOciwxcGi\nFD+AsRIPZlGlfU6yWB28W9TIOycbsNqcRIb4smtdElkJwe5umiAIN0AEV4IwSRRyORuXxrAkLZS/\n7a0cTXgv4s41iaxdFHnVpOPL9a0SI/0B0PqMBldi5GpOcToljpcaee1ILb1mK36+au5ZH8/K7AgU\ncrECUBBmGhFcCcIkC/Lz4pt3ZlNYbuK5fVU8u6+KUxUmPr8lnbCPlG0YS2Y3jAZX3iK4mmvK67t5\n6UA1je1m1Eo5t66IY/OyGLw14u1ZEGYq8eoVhCkgk8nIzQhnXmwgz7xXxZmqDh78vyJuX5XAxpxo\n5HLXKFZNSz/eGgWGEF/gw8GVKCQ627V2DvLSwWpKaroAWJEZzo78BIL8vNzcMkEQJmpc4802m41v\nf/vb3HPPPdx77700NTV97DZ9fX188Ytf5Bvf+MaEG+lu+/a9y+rVy+jt7Z3wsYzGVr74xfsmdIzB\nQTNFRYUA/P3vf6G0tGTC7RKmhr9Ww9d2ZPHV2zLxUit46WA1jz1zhpbOQczDNtq6h0iI8BsLti6v\nMhwQOVezlnnYxt/fq+TBp4soqekiNTqAB+9fwj/fOk8EVoIwS4wruNqzZw9+fn48//zzfPnLX+bn\nP//5x27z0EMPsXjx4gk30BPs27eXyMgoDh3a7+6mAFBZeXEsuLrvvvvJzMx2c4uET7MkLZRH/nkZ\ny+eFUdvaz4/+XMRf37kIfJBvBeCjUSKTiWnB2cjplDh4roX/eKqAg2db0Ad68/UdWfy/zywkLtzP\n3c0TBGESjWtasKCggNtuuw2AFStW8MADD3zsNo888ghlZWVcvHhxYi10s/7+PioqyviP/3iQ5577\nG7fddidVVRf5+c9/ilwuIzNzPl/72jevelldXS2//OXjyGQyfHx8eOCBh684dnHxOZ566ncolUpC\nQ8P43vd+wIULxbzwwjMMDQ3xr//6Lc6dO8OhQ+/jdDrJzc3jC1/4Er/4xeMMDQ0SHR1DaWkJa9as\nZ9myXB5//FFaW1uwWq388z9/maVLl3PXXbexffsOjh8/itVq5de//j0+Pr7ueTDnOJ2Pmi9tyyAn\n3ZXwfqaqA3AVD71MLpfh66USwdUsU93cxzP7Kmk0mfFSK7hrXRLrF0ehVIhkdUGYjcYVXHV2dhIU\nFASAXC5HJpNhtVpRqz8onKjVaienhaNeOlDNqYvtEzqGQiHD4ZDG/s5JC2XXuqRr3ufAgf2sWLGS\nZcty+elPH6Gjo51f/eoJvvvdB0hKSua//utB2tqMn3DZz/judx8gOjqG3btfZvful9i4cfPYsX/1\nq5/x61//D35+/vz+97/m4MH9hIToqamp5vnnd6NWqzl37gy///2fkMvl7Nq1nbvu+gyf+cx91NbW\nsH37jrEpwX373kWtVvPkk3+ks7ODf/3Xf+GFF3bjcDiIiYnjM5/5HA899B+cPn2K/Pw1E3ochYlZ\nmKwnNTqAlw7WYOwaJDkq4IrrdT4iuJot+swWXjlUw/HSNsCVV7VzTaIoAioIs9ynBlcvv/wyL7/8\n8hWXFRcXX/G3JElMVGCgD0rlJ2/l4O2jRqGY+P5ZHz6Gt48avV53zdsfPryfr371q4SHB7Bly2ZO\nnjxCc3MjubmLAPjNb34JcNXLKirK+OUvfwKA1WolKyuLoCBflEo5MpmFlpZmHn74PwAYGhrCYAgj\nICCWefPSiYx01bUJCfHnW9/6Ckqlkr6+XpRKBzqdFz6jbffyUuHv701p6VlWr16JXq9Dr9fh4+OF\nSuVAoZCzfv0q/Px0xMZGI5fbP/X/7A6e2Kap9t3PBV318gCdF6buIYKDtWO5WO4wF/tkstgdTvYc\nq+P59y4yNGInweDPv+zIYl78xOtViX7xPKJPPJM7++VTg6udO3eyc+fOKy77/ve/T0dHB2lpadhs\nNiRJumLUajx6eoauef3W5TFsXR4zoXPo9bqPVTe+VrXj9nYTxcXFPPLIY8hkMkZGRtDptIDsKvf7\n+GUajRc///nvrqjSbTS2Yrc76euzEBwcwi9+8fsr7nP27GkkyXWstjYjTz/9f/zf/z2Lj48P9923\ni+7uQQYGRhgastLRMcDIiI2+vmGGh2309Q2NtWF4eITu7iEcDic9PcNYLDKGhqz09w97XIXnq/XL\nXOalkuOU4PDpBjIn4cN4PESfjF9FQw/P7quitXMQXy8l921MYfWCSOTyq71v3BjRL55H9Ilnmo5+\nuVbwNq4J/7y8PN59910ADh48yLJly8bXMg+3f/9ebr99J3/96/P85S/P8fzzr9Lf309sbBxlZaUA\n/Pd//5j6+jri4uI/dllSUjKFhSfGjnX6dNHYsf38XAmsdXW1ALzyygtUV1+64vy9vb0EBgbi4+ND\nZeVF2trasNlsyGQyHA7HFbdNT5/H2bOnATCZ2pDL5eh04tvUTJSXFYFCLuOXLxXz5vE6nM6JjwwL\nU6+7f4T/eb2Unz1/DmPnIKsXGHjsS8tZuyjKrSOQgiBMv3HlXG3ZsoUTJ05wzz33oFar+clPXFNf\nf/zjH8nJySE7O5v777+f/v5+TCYT9913H1/96lfJzc2d1MZPtf379/KDH/xo7G+ZTMbmzbfidDp5\n8knX1F9GRhZxcfF885vf4Ykn/vtjlz3++KM8++xfUas1PPzwIwwODo4d7/vff5DHHvsRKpWKkBA9\n27btuKKsQnJyCt7ePnzlK18gK2sB27fv4Oc//ynf/Oa/84c//Ba9PnTstuvXb+TcuTN8/ev/gt1u\n47vf/fgiA2FmWJSi5/ufXcQf3ijl9aN1VDX18qWtGfj5Tmx0WJgaNruT90418taJeqw2JwkGP+7d\nmCJWAArCHCaTJiNhahJMx7CqGL71TKJfrs48bOPpPeUU13Thr1Xz5W0ZpMYETsu5RZ9cn5KaLp7b\nX0V7zzA6HxU71ySxIiv8qlsdTQbRL55H9Ilncve0oKjQLggeSuut4ut3ZrO3qJFXD9Xy+PPnuG1V\nArfkxk7Zh7dwfdp7h3lh/yXOV3cil8nYsCSK21bG4+OlcnfTBEHwACK4EgQPJpfJ2LwsluTIAP7n\njVJeO1JLVWMP925M/dg+hcLUs9gcvFPYwNuFjdgdTlKjA/jsTSlEhU5u6RlBEGY2EVwJwgyQFOXP\nj76wlD/tKaekposf/Okk+QsMbMuLx1/kYk05SZI4W9XBC+9foqvfQoBWzV3rklmaHnrFamBBEAQQ\nwZUgzBhabxXfvDObM5UdvHq4hoNnWzhxoY1NS6PZtDQGb414OU8FY9cgz+2roqy+B4VcxublMWxd\nEYeXWjzegiBcnXh3EIQZRCaTsSQtlAXJIRwtMfLGsTrePF7PwXMtbMuLZ/UCg9hSZZK0dg7yj4IG\nTpabcEoSmfFB3LMhmYhgsX2UIAjXJoIrQZiBlAo5axdGkpsRxnunmnjnZCPP7qti36kmdqxOYEla\nqEh6H6eGtgH2FNRztrIDCYgM8eX2/AQWJoeIKUBBEK6LCK4+xauvvsTevW+jVquxWEb40pe+Rk7O\nMqqrL6FWq4mJiR33sQsLT2A0tnL77XeO6/5GYys/+MH3ePrpv4+7DR928OB+1q7dMCnHEqaHl1rJ\ntrx41iyIZM8J1wjWH94oI+5kIzvXJJIed/UtdoSPq2rqZU9BPaW13QDEheu4dUUcC5JDRKAqCMIN\nEcHVNRiNrbz11uv86U9/Q6lU0tTUyE9/+gg5Ocs4fPgAaWnzJhRcLV++YhJbO3HPPPNXEVzNUH6+\naj5zUwoblkTx2tE6Tpab+NkL58mMD+LONYnEhIlq/VcjSRJl9d3sOdFAVVMvACnRAdy6IpaMuCAx\nUiUIwriI4OoazGYzVqsFm82GUqkkOjqGJ5/8IzU11bzxxm4OHz5AYGAgNpuNp576HUqlktDQML73\nvR+gUql46qnfUVJyHqfTwY4du7jpppt59NGHUSpV9Pf3kpeXT21tDXfcsYtHH30YgyGS6upLpKSk\n8v3v/5Dq6ks8+uhDaLU60tLm0dvbw3/+58NXbeujjz5MSIieysoKTKY2HnzwEfz8/PjhD79PdHQM\nTU2NpKXN4zvf+T6PPvowa9asJy9vFcePH+XQofeJj0+gurqKBx74Lo899rPpfaCFSRMa6MO/bMvg\n5qUxvHyomtK6bsrqutk3IEgAACAASURBVMmID2LVfAMLkkJQKUVOllOSOH+pkz0n6qlvcxUazEoI\n5pbcWFKiA9zcOkEQZroZE1ztrt7DufYLEzqGQi7D8aF92haGZrEj6dZPvH1ycgrp6Rns3LmN3Nw8\nli/PY/XqtSQmJrFsWS5r1qxn3rxMPv/5z/DrX/8Pfn7+/P73v+bgwf2EhYVjMrXxu9/9f/buO7yt\n8mz8+Pdo2ZYsecryHtm2EyfOHhAIe7WUUmZDCpRVCJSrlMIvXW/fvlBKgTILYVMoZZUCpYVSSoCQ\nPe3YzrDjDG9b3pJsa53fH3JETKYT25Lt+3NdviSdc3R027cl337OM57D7XZz/fWLWbjwdCCwruA9\n9/ycf/3rH8HX2rlzO7/5zf3ExcVzySUX0NnZyUsvPcu1197Iaact4pe/vJfIyMijfn9ut5tHHnmS\n9957h48//ieXX34VFRW7uO++B0lKsnHjjT+gvHzXYZ979dVL+MtfXpHCaoTISjbz0ysLKd3Twvtf\n7aFkTwsle1qIjtIzLz+ZU6emkG4dfXMz+fx+1m9v5F9r9lFjd6IAMyZauWheNlnJ0ronhBgYw6a4\nCpVf/jKwCPP69Wt4/fU/89577/D4488E97e0NFNdXcWyZXcD0N3dTUxMLI2NDZSWbmPp0psAUFU/\ndrsdgLy8/ENeJy0tg4SERAASE604nQ727dtLQcFUAE45ZWGfhZ8PZ+rUQgCsVhtlZaUAZGRkYrMl\nB193//59J/yzEMNPfk48+Tnx1NqdrCyuZXVJPf/ZWMV/NlYxJtXCqQUpzM61jfhpHDxeP6tL6vho\n7X4a27rQKArz8pO5cF4WqYky+k8IMbCGzSfqd8dddNRWpuPR37WGVFXF7XaTnZ1DdnYOl156Bd//\n/vdoaKgPHqPTBRZdfvLJZ/s89803/8JFF13MNddcd8h5dbpDl8jQarWHvLaqqihK4BLO8fT9OPgc\nB5aMPHjpSFUNnOfgc3m93mOeVwx/qYkmrjhjPJeeNpaiCjsri+vYVtlMZW0Hf/1vObMmJXFqQSrj\n02NGVD+jHo+PL7fW8vH6/bR29qDTKpxemMZ5czJJio0KdXhCiBFKOl8cxYcfvs+DD94XLFCcTgd+\nv5+4uDgURcHn82GxWADYs6cSgHfeeYOKinLy8iazatVK/H4/PT09/PGPD/b79dPS0tmxowwIjCw8\nETU11djtdvx+P2VlJWRn52A0mmhuDrSiFRdvDR7r94fFGt5iEOm0GmZMTOLOy6byhx/N55KFY7AY\nDazaVs8Df9nMz59bx0dr99Ha2R3qUE+Kq9vLh6v3cvefVvPX/5bj7PZwzqwMfn/LfJacO1EKKyHE\noBo2LVehcMEF32Lfvr3cdNMPiIoy4vV6ufPOu4mIiGTq1EIeffQPGI1G7r33V9x//2/Q6wOtWN/+\n9ncxGAwUFs7g5puvA1QuueSyfr/+kiU/5Pe//y1vvfU6OTljcDgc/T5HZmYWzz77FHv2VDJlSgFj\nxozlvPMu4De/+QWff/4Z48dPCB47YcJEbrxxCc899+d+v44YfuItkXxrfjYXzsti575WVhbXsXFn\nE29/vpt3v6ykYGwCp05NZcqYeLSa4fF/WKfLzX82VvHfTTV09XiJitBx0fxszp6ZjtkoywQJIYaG\noh583SiE+nO57kT197JgqJWUbCMyMpJx48bz6qsvoaoqS5Zcf9zPH+h5sAbLcMvLSObs9rC2tIE1\nZQ1U1rQDEBttYHaujZwUC5m2aGxxRjSa8Lh06PH6qGt2UdPkpKK2nVXb6nB7/JiNes6ZlcGiwnSM\nkSPnf0h5r4QfyUl4Goq8WK1HHgQzcj51RiCDQc8DD/yWiIgIIiIi+Z//+b9QhyRGOFOknjNnpHPl\nebls3FbLl8W1rC1t4JMNVcFjDDoN6UnRZCZFk5EUTYbNTLrVNKhr7Xl9fhpaXNTYndQ0OQO3dieN\nrS4O/vcwzhzBpadlsnBqKhF67ZFPKIQQg0harkTISV7Cz8E5cXt8VNZ2UNXoYH9jJ1UNDmrszj7T\nmihAUryRzKRoMm3RZCSZybRFE2My9KuDvN+v0tjWRU2TI1hI1dqd1Le4+rwegClSR2qiiTRrNGmJ\nJtISTYxNixnR83jJeyX8SE7Ck7RcCSHCmkGvZVJWHJOy4oLbvD4/tXZnoOBqcFDV2ElVo4MNOxrZ\nsKMxeJzFqCfDZibjQEuXzUxyfBSKotDc3t1bQAUKqdomJ7XNLrw+f5/XjzBoyU429ymkUhNNxEb3\nr3ATQoihIsWVEKLfdFoNmTYzmTYzC6YEtqmqSktHT7B1a3+jg/0NnZT2zhJ/gF6nQaMo9Hh8fc5p\n0GlIswZaoIK3idHEWyKkiBJCDCtSXAkhBoSiKCTERJIQE0nheGtwu6vb03tJ0UFVo4OqBgc+v3pQ\nARUophJjosKmo7wQQpwMKa6EEIPKGKlnYmYcEzPjjn2wEEKMACO356cQQgghRAhIcSWEEEIIMYCk\nuBJCCCGEGEBSXAkhhBBCDKCwmURUCCGEEGIkkJYrIYQQQogBJMWVEEIIIcQAkuJKCCGEEGIASXEl\nhBBCCDGApLgSQgghhBhAUlwJIYQQQgygUbO24P33309RURGKorBs2TIKCgpCHdKotWvXLm699Vau\nvfZaFi9eTF1dHT/72c/w+XxYrVb+8Ic/YDAYQh3mqPLggw+yadMmvF4vN998M1OmTJGchFhXVxf3\n3nsvzc3N9PT0cOuttzJp0iTJSxjo7u7moosu4tZbb2XevHmSkxBbt24dP/7xjxk/fjwAEyZM4IYb\nbghpXkZFy9X69evZt28fb775Jvfddx/33XdfqEMatVwuF7/97W+ZN29ecNvjjz/O1Vdfzeuvv05W\nVhbvvPNOCCMcfdauXUt5eTlvvvkmzz//PPfff7/kJAysWLGCyZMn89prr/Hoo4/ywAMPSF7CxNNP\nP01MTAwgn1/hYvbs2bz66qu8+uqr/PKXvwx5XkZFcbVmzRrOOussAMaOHUt7ezsOhyPEUY1OBoOB\n5557jqSkpOC2devWceaZZwKwaNEi1qxZE6rwRqVZs2bx2GOPAWCxWOjq6pKchIELLriAG2+8EYC6\nujpsNpvkJQzs3r2biooKTj/9dEA+v8JVqPMyKooru91OXFxc8HF8fDxNTU0hjGj00ul0REZG9tnW\n1dUVbK5NSEiQ3AwxrVaL0WgE4J133mHhwoWSkzBy5ZVX8tOf/pRly5ZJXsLA73//e+69997gY8lJ\neKioqOCWW27hqquuYtWqVSHPy6jpc3UwWfEnfEluQufTTz/lnXfe4cUXX+Scc84JbpechNYbb7zB\n9u3bufvuu/vkQvIy9N577z2mTZtGRkbGYfdLTkIjOzubpUuXcv7551NVVcWSJUvw+XzB/aHIy6go\nrpKSkrDb7cHHjY2NWK3WEEYkDmY0Gunu7iYyMpKGhoY+lwzF0Fi5ciXPPPMMzz//PGazWXISBkpK\nSkhISCAlJYXc3Fx8Ph8mk0nyEkKff/45VVVVfP7559TX12MwGOS9EgZsNhsXXHABAJmZmSQmJrJt\n27aQ5mVUXBZcsGAB//73vwEoLS0lKSmJ6OjoEEclDpg/f34wP5988gmnnnpqiCMaXTo7O3nwwQdZ\nvnw5sbGxgOQkHGzcuJEXX3wRCHRtcLlckpcQe/TRR/nb3/7GW2+9xWWXXcatt94qOQkDH3zwAS+8\n8AIATU1NNDc3893vfjekeVHUUdKO+dBDD7Fx40YUReHXv/41kyZNCnVIo1JJSQm///3vqampQafT\nYbPZeOihh7j33nvp6ekhNTWV3/3ud+j1+lCHOmq8+eabPPHEE+Tk5AS3PfDAA/ziF7+QnIRQd3c3\nP//5z6mrq6O7u5ulS5cyefJk7rnnHslLGHjiiSdIS0vjlFNOkZyEmMPh4Kc//SkdHR14PB6WLl1K\nbm5uSPMyaoorIYQQQoihMCouCwohhBBCDBUproQQQgghBpAUV0IIIYQQA0iKKyGEEEKIASTFlRBC\nCCHEAJLiSgghhBBiAElxJYQQQggxgKS4EkIIIYQYQFJcCSGEEEIMoLBZuLmpqXPQXyMuzkhrq2vQ\nX0f0j+Ql/EhOwpPkJfxITsLTUOTFajUfcd+oarnS6bShDkEchuQl/EhOwpPkJfxITsJTqPMyqoor\nIYQQQojBJsWVEEIIIcQAkuJKCCGEEGIAhU2HdiGECDden59auxNXtxefX8Xn9+PzqXj9Kj6fv3db\n4H5g2zeO6b1/YPuBY1RVJSEmkjSrifTEaJITjOi08r+uECOFFFdCCAGoqkpzezeVdR1U1nawu7ad\nffUOvD7/oL+2VqNgizeSlmgizWoiLTGadKsJa2wUGo0y6K8vhBhYUlwJIUalrh4ve3oLqcBXOx0u\nT3C/RlFITzIxJsWCxWRAq1HQajWBW42C7sB9rYJWo/l6m1YJHqPVatAdtP/APgWFxrYuapoc1Nid\n1DQ5qbE7qLU72bDj6xj1Og2pCb0Fl9VE/jgr0XoNceYIFEWKLiHClRRXQogRz+9XqbE72V3bTmVt\nB3tqO6i1O1EPOibOHMHMiVbGpMYwJtVCVrKZCP3gDedOiIkkNysu+FhVVVo7e6juLbSqGwO3NXYn\n+xoC8wC+vWI3AFERut5Liiayks3kZseTFBs1aLEKIfpHiishxIjT2tkTaI2qa6eypoO99Z30eHzB\n/RF6LRMyYhmTagkWU3HmiBBGDIqiEG+JJN4SScHYhOB2v18NtnK1urzs2tdCTZODypoOKqrbg8cl\nxkSSlx1HblY8uVlxWEyGUHwbQgikuBJCjAAtHd1s3NlERXUblXUdtHT0BPcpQGqiiZxUC2NSLYxN\njSE10YhWMzw6kGs0CsnxRpLjjVit5uBqFh6vn7pmJxU17ZTtbWXHvla+LKrjy6I6ANKt0eRlx5GX\nHceEjFgiDfJxL8RQkXebEGJYcnR52LizkXWlDeyqagte4rMY9Uwbl9jbKmUhJ8VCVMTI+6jT6zRk\n2sxk2sycMT0dv19lX0MnZXtbKNvbSnl1O9VNDj7ZUIVWo5CTaiEvK4687HjGpFpkdKIQg2jkfeII\nIUYst8fH1go768oaKN7djM8fKKkmZMQyN8/G5Jx4EmIiR2Vnb41GISclUExeOC8bj9dHRXU7Zfta\nKdvbyu6adiqq2/lg1d7gZdHpExKZMTGJ6Ch9qMMXYkSR4koIEdZ8fj/b97WytrSBzbua6HYH+k6l\nW6OZl29jdq6NhJjIEEcZfvQ6LbnZ8eRmx3PpaeDq9rBjfxtle1vYvq+VbZXNbKts5rVPdpGXHc/s\n3CQKx1sxRsqfBSFOlryLxHHp8nbjUwN/1BSU3tsDeh8r33h8yP5Dt4/GFgZxbKqqsqeuk7Wl9azf\n0UiH0w1AgiWSM2ekMyfPRro1OsRRDi/GSD3TJ1iZPsEKgL2tiw07Glm/vTFYaOm0OykYm8Ds3CSm\njk0kwiCLEgtxIqS4EkFd3i4aXXaaXHYau+w0uppp6go8dnpdg/a6SaYEMkzp5MRkkW3JIN2chl4j\nv5qjUX2Li7Wl9awta6CxtQuA6Cg9iwrTmJNnY1x6DBopyAdEYmwU58/N4vy5WdS3uFi/vYH12xvZ\nvKuJzbuaMOg1TBuXyKxJNnKz4qRFS4h+UFRVVY992OA7MAJmMB080ma06vb20NQVKJoOLqSaXHY6\nPY5DjtcqWhKj4kmMSkCv0X09L1Dvr82Bx+pB9w7a/fXjbx7Xe+P1e6l11eNwO4OvqVO0pJlTybFk\nkm3JJCcmk4TIeGnlGkJD+V5pc/SwvqyBNWUN7KsPvKZBp6FwgpU5vf2opPN1wFDkpbrJwfrtjazf\n/nWBq1EUclLM5GbHkZcVz7j0GMlJL/m7Ep6GIi9Wq/mI+6S4GoHcPg/2ruZg0dTostPY1USTy067\n+9DvX6NoiI+MIykqEasxkSRjIklRgdu4iFi0msG9NJCYGE3Z/r3s7djP3o797GnfT7WjFr/69bIj\n0XoT2QcVW1mWdKJ0MmniYBns94qr28umXY2sLW1gx/5WVDXwBzw/J565eTYKJyTK1AGHMZSfYaoa\nGH24eZed7fta2FPbib/3z0VUhI6pYxOYOSmJKWPi0etG7+XD0fJ3ZbiR4qrXSC2u/H6VTpebdmfg\nq6P3tt3hpsPlpt3RQ7fbh0ajoCiBPzCKoqBR6N2m9G7j61tNYJtf6cGt66BH006Ppp1uTRvdmnbc\nyqEtUAoKcZGxhxRQVmMiCZFx6EJ4Ge5weXH7PFQ7atjbvp89HfvZ21FFS3drcL+Cgs2URLYlI9jC\nlWKyDXohOFoMxnvF6/NTsqeF1dvq2FrRHFyzb2yahbl5ycyalCQTXx5DKP+Qd/V42bm/jdI9LWyt\naKK5dy6xqAgt08ZZmZ2bRP4obGWU4io8SXHVa7gVVweWqmhocdF22KLJTYezh84uD8f6Cet1GlQ1\ncE6/qn7jeBV0bjRRDpQoZ+A20oEmyoli6DnkXKo7An+3CbXbiNptwt97a9HHYLVEkxgTSWJsJIkx\nUYH7MYEZoUP5gXi8eWnv6Qy2bu1t38/ezircPndwv0FrIMsc6LtVaJ1ChjlNLiWeoIF6r6iqyv4G\nB6tK6lhX1kBn79p9KQlG5ubZmJOfLMu29EO4/CFXVZW99Z1s2NHIhu2NNHd0A2CM0DF9QqDQmpQV\nNyoKrXDJiehr2BZX999/P0VFRSiKwrJlyygoKAjuW716NY888gharZaFCxdy2223HfN84Vpc+f0q\nTW1d1DY7qWt2UWd3Utvsoq7ZGRwSfjhREVosRgMxJgOW6IjArSnw+OD7FpMBnVaDqqq09bRT72yk\nzlnfe9tIvasBl7frkPPHGmJJirKSGGklMTKRxIgkEiMSMGgi6XR5sLd3YW/vDny1Be63dPQEm/UP\npiiBddUOLriC92MjiTNHDOps1if6JvCrfuqcDYFCqyPQwlXvbAz260qLTmFeyixmJRcSrTcNdNgj\n2sl+MLV29rC2rJ7VJfXUNAX600VH6ZmTZ2P+5GSyk81S+J6AcPxDrqoqlbUdgUJrRyOtnYF/+qKj\n9MyclMSc3CTGZ8SO2IEI4ZgTMUyLq/Xr1/PCCy+wfPlydu/ezbJly3jzzTeD+y+44AJeeOEFbDYb\nixcv5n//938ZN27cUc8Z6uLK5/dT3xJYv6vW3ltINTupb3Hh9fX9EWl7l6NISTCSnGAkzhzZp2iy\nmAx9Fnz1q36cHhcd7k46ejppd3cE73e4O7F3t9DgbKTb17clSkHBGpVAsslGsimJZGMSKSYbSUYr\nkbr+r4Pm8/tp7ezB3tZbdB1cgLV30drRw+F+GbQahThzBBlJ0cFJCrNTzJgiB2biwYF8E3R5uylv\n3c26+k0U28vwq350ipYp1nzmpcwiN348GmXk/zd9sk4kJz0eH1vKm1i9rZ7SvS2oauB3Z9q4ROZP\nTmbK2IRR0ZIxmML9D7lfVamobmfD9kY27Gigo7elMs4cwaxJSczJs424wjrcczJahbq4OqGONmvW\nrOGss84CYOzYsbS3t+NwOIiOjqaqqoqYmBhSUlIAOO2001izZs0xi6uh1OF0U9XkoLox8FXVW1B9\ns4iK0GtJt0aTkmAiNdFISoKJ5PgoEmMj8OHD6/fS43PT6e6kw91KTU8n21s66ajvoL23cDrwdXDn\n7G/SKlqSjIkkm2ykGJMChZTJRlJUInrtwM2crNVoelukDn8Zxuvz09LR3afgCrR8ddPY6mJLuZ0t\n5fbg8UlxUWQnm4MFV5bNHPJ5caJ0kRRY8ymw5tPpdrChfjOr6zawpbGYLY3FxEbEMDd5BnNSZpJk\nTAxprCOBX1Upr2pjVUk9G3c0Bltzx6RamD85mdm5Npn9exTRKAoTMmKZkBHLlWeNY8f+NtaXNbBp\nZxOfbKjikw1VJMVGMTsviTm5NtJkrjIxQp1QcWW328nPzw8+jo+Pp6mpiejoaJqamoiPj++zr6qq\n6uQjPUnlDbUs+/d7dHR14/X1Xs5TAFSUWAVTkoZIgxaDQYNOp6LRqqiKD4/Pwx6/l3KPF0+tB0+1\n96BpB45Op9FhMZjJMqdjibBgMZiJMZixGMxYIszEGCxYIsyY9dFh0RFbp9WQFGckKc54yD5VVWlz\nuNlT18Geug721nWwt76zd8h2IxC4vJiaaOpTcKVbo9HrQtNaYTZEc0bmQhZlnMq+zirW1G5gY0MR\nH+/7jI/3fcb42DHMS5nFtKQpRGilI3V/NLS6WL2tnjWl9djbA/1tEiwRnDUznXn5yaQkyGXY0U6r\n0ZCfHU9+djyLz5lI6Z4W1m1vYEt5Ex+u3seHq/eRbjUxO9fG7Dyb9L0TQd3ebhpcTTS4muj29uD1\ne/D4vXj8Xrx+L57exwfue/0+VFRUVaXD6aHT6eHyqRdQkJQTsu9hQIaIDUSf+Lg4I7pBHM775d5m\n2nT7UCwqh3sVd+8XPlD8CgatAYNGh16rJ9IQgUFjQq/Vo9fqMRy41QTuWyLNxEXGEBtpIS7KQmxU\n4L5JbxxRzd9JSTBhzNetPaqqUt/soryqlfKqNsqr2thd3UZNk5NV2+oB0GkVslNjGJ8Ry/j0WMZn\nxpFhM6PV9P25HK15dWBiz2fW2Hx6vG7WVW9hxZ7VlDbuorytkrfL32d+5kwW5cxjfELOiMrZyfhm\nThxdHlZurWHFxiq2720BAn0Lz5yVwRkzM5g8JhGNRn52g22w3yuDJTUlhrPn59Dd42VDWQNfbq1m\n4/ZG3v2ykne/rGRiVhyLpqdzyrQ0YqL73+0hlIZrTkKto7uT6o56ajrqqemoC95v7mo99pOPRgvF\nNRWcmV9w7GMHyQn1uXriiSewWq1ceeWVAJx55pm8//77REdHU11dzV133RXsg/Xkk08SGxvL4sWL\nj3rOobhmbYoxYG9uBw4s4RKY6kA5aItG0YRFK9Jw5fer1DU72VPXyZ76QAtXVaOjzyVXg15Dls1M\ndrKFnBQzs6akovH5hryosXc1s7ZuI2vqNtLWE/i9SDYmMS91FrOTp2MxjN4PzAP9Fbrd3t4Wh0a2\nltvx+vwoQF52HPMnpzB9gjXkl4JHk5HWv8fV7WHzLjvryuop29ca7Kc3ZUwCc/NtTBuXiEEf3r9f\nIy0nA+3gwVr1rkbqnA3UOxtpcDXi8DgPOT42IoZkYxI2UxLJRitGvRG9Ro9eo0Ov0aHrva/V6Kio\n6uSLzfVU1gSmHzJF6pk1KYl5+SnMK8jCbj90WqKBNOAd2jdv3swTTzzBSy+9RGlpKf/3f//HX//6\n1+D+Cy+8kOXLl5OcnMwVV1zBQw89RE7O0ZvnQt2hXQwer89PdZMjUHD1XlKssTv7TDlhNuoZmxrD\nmFQLY1MtZKdYiIoYmrm3/KqfnS0VrK5bT3FTKV7Vh0bRMDkhlwWps8lLmDiqOsG3O3qoqHewcks1\nZXtbg/NRpSQYWTAlhbl5NuItslByKIzkz7ADM/WvLq1nf0Pgj2KkQcvMiUnMm5zMxMzwHHE4knNy\nMnx+H5sai/j3vhXUOxv67FNQSIiKDw7SsvUO2Eo2WY85ObTX52ddWQMfr9tPjT1QnBWMTeC0qal9\nBs2EukP7CU/F8NBDD7Fx40YUReHXv/41ZWVlmM1mzj77bDZs2MBDDz0EwDnnnMMPf/jDY55PiqvR\npcftY39jJ3tqO6hp6aKssjk4Vw4EusOlWU2MSY1hbKqFMWkxpCQYB/3D1eFxsrF+K6vr1lPjqAPA\nZrRyevopzEmZMSL7ZqmqSm2zi63lTWwpt1NZ2xHcl241MW28lRkTrGTaouWSaYiNls+wmiYHa8sa\nWFtaH5ysNM4cwdw8G/Pyk0lPCp+O8KMlJ8fL6/eyvn4Ln+z7jKauZjSKhvyESaRHp5Js6h3xfgKD\ntbp6vHxZVMsnG6po7exBq1GYk2fjvDmZh13EfdgWVwNNiqvR60Be2hw9VNZ2sLu2ncqaDvbUd+D2\nfD3KMipCy5gUS6DgSgvcDuZItP0d1XxevYqNDVvxqT6MuigWpM7htPT5xEXGDtrrDgW/X6Wipp0t\nvQXVwWvITciI4ZTCdManmLFKJ+OwMto+ww6MRl1TWs+GHU109XgBSLdGM2+yjbl5ycSZQ9s/a7Tl\n5Eg8Pg9r6jbwyb7Pae1pQ6domZsyk7OzFpEYFX/sExxBu9PNpxurWLG5BlePlwi9ltOmpXL2zAwS\nYo7cgi7FVS8prkavI+XF5/dT0+Rkd20HlTXtVNR20NDi6nOMLS4qWGyNTY0hzWoa8LmU2ns6WVmz\nhpU1a3B4nGgUDYXWKSzKOJWcmMwBfa3B1OP2UbKnha3lTRTtbsbRFZiDKMKgZUpOPNPGJ1IwNpHo\nKL28V8LUaM6Lx+ujqKKZNaX1FO9uxudXUYBJWXHMy09mxkTrkHUlONhozglAj8/NVzVr+XT/F3S4\nO9FrdJySOpczMxee1D+h1Y0O/ru5mlXb6vH6/JiNes6akc6i6enH9U+1FFe9pLgavfqTF0eXh8ra\nDipr2wNFV21H8L9ZAINOQ1aymcwkM2lWU+ArMRpj5Ml/6Hp8HjY0bGVF1UpqnYHRkDmWLBZlnMI0\n6+SwGwjh8/uptbvYXdtOUbmdsn2teLyBlsCYaAOF4xKZNt5KblbsIQvvynslPEleAhxdHjbsaGRN\naT0V1YHBKHqdhoKxCczJtVEwNmHIOsKP1px0ebv5sno1n1WtxOFxEqE1sDBtPmdknnrCg4E8Xj8b\ndzayYktNMK/W2EjOm53Jgikp/cqpFFe9pLgavU4mL/7e6SB217YHLinWdFBjdxyynmO8JYJ0azRp\niabArdVESoLxkKLieKiqys7WClZUfUVJ83YA4iJiOS19PgtS52DUD/2lNK/PT63dyb76TvY2dLKv\nvpOqRkewmAJISzQxbXwiheOtZKeYj9p/Td4r4UnycqjGti7WldaztqyBuuZAy3aEQUvh+ERm59qY\nPMiLSY+2nDg9F1yg8AAAIABJREFULlZUfcXn1avo8nYRpYvi9PQFLMo4BZP+0DkSj0djWxdfbKlh\nZXFdsEV9ck48iwrTKBiXcELLr0lx1UuKq9FroPPS4/ZR2+ykuslBTZOTGnvgfrvD3ec4jaJgi4/q\nU3ClW6OxxkYd93xNDa4mPq9axdq6Dbj9HgxaA3OTZ7IoYwFJRuuAfU8HO1BI7a0PFFF76zupbupb\nSGk1CmmJJrKSzWQnm8nPiT/s5LBHIu+V8CR5OTJVValqdLBhRyPryhqCk9saI3RMn2hlTq6NSVmx\nA75O6mjJSYe7k8/2r+TLmtX0+NxE602ckXEqC9PnHXOE3+H4/SpFu+2s2FJDaWULKoH1KE8pSOH0\naan9+rw6HCmueklxNXoNVV4cXR5qmhxUH1Rw1TQ5+1xWhMDlhdQEE+lWEwkxkURH6b/+MuqJjtRj\nitITadAGR8+5PC5W1a7ni+rVtPa0ATApbjynpM2lIDGvX5cMPV4fHU4PzR3dNLd3Y++9DT5u7w5O\njwC9hZQ1MDN+VrKF7GQz6VbTCbXKHSDvlfAkeTk+qqqyp66T9dsb+iwmbTYeWEzaxrj0mAEZfTzS\nc9LW086n+77gq9p1ePweYgxmzso8jQVpc09o9HS7o4cvi2r5oqiWlt6RoOPSYlhUmMbMSdaT+tw6\nmBRXvaS4Gr1CmRdVVWnt7OktuBxUNwZua+2uPgXM4Wg1SrDoMkXpMUfpMUZp6YqsplYppdUfmMrB\nQBRJ6kQSvRPQ+kx4fX68Xj9en4rb66Orx4urJ3Db1ePt0wL1TaZIHdbYKDJt5t5iyjwoSwzJeyU8\nSV7678Bi0uu2N7BxRyOd31hMenaujZyUE19MeqTmxN7Vwn/2rWBt3Ua8qo+4iFjOyVrEvJSZ/Z5G\nQVVVduxvY8WWGrbsasLnV4nQa5mXb+P0wjQybQM/YbMUV72kuBq9wjEvPr+fxtYu2jp7cHR7cbjc\nOLo8OLq8OLo8OLs9vY89OFweXN9o/QJQojrRWavRJtag6LyoKvjbE/E2ZuBvswKBgkiv0xAVoSPK\noCUqQocpUocpSk9CTCSJlkgSYiJJ6L2NNAzNaKhwzImQvJwsn9/Pjn1trN8eWEz6wPs2MSaSOXk2\nZk1KIiOpf/O5jcScFDWV8GLp63j9XqxRCZyTdQazkwvRafr3+dPc3s2GHY2sLK4N9odLs5pYVJjG\nvPzkQR3dKcVVLymuRq+RkBef34+z24uzt+BydXvRahX0Wg2q4mO3cwdFbZupcVUDYNGbmW2byYK0\n2SSZEkIc/aFGQk5GIsnLwPH6/JTsaWH99ga2lNvpcfuAwEoEs3NtzJxoJTXRdMxCa6TlZG3dRl7b\n/jZ6rZ4rJ1zCTNu0fnVraO3sYeOORtbvaGB3TWBCYp1WYebEJE4vTGN8esyQTEYsxVUvKa5Gr9GU\nlxpHHatq17G+fjNd3m4UFMbF5jDLVkhh0hSMJzjaZqCNppwMJ5KXweH2+Cje3cz67Q0U7W4OXpqP\nt0SQnx3P5DEJ5GXHYYo89HLYSMrJiqqveKf8A4y6KG6d+sPjnsevw+lm485G1m9vpLyqDRVQFJiU\nGces3CRmTLBiNg7t6hZSXPWS4mr0Go156fG52dxQxNr6jVS07QFAp2jJT5jEDNtUJifmhXSpndGY\nk+FA8jL4unq8bK2wU1Rhp3RPC87uwKVDRYGcFAuTc+KZnJNATqoZrUYzInKiqir/3PMfPtr7KTEG\nM0un3UhqdPJRn+Po8rCpt6DasT+w6LYCjE+PYVZvy19MdOhmz5fiqpcUV6PXaM9Lc1crmxq2sr5h\nM3W9C5zqNTomxo1jcmIeUxJziY2IGdKYRntOwpXkZWj5/Sr7GjopqWymZE8Lu2s68Pf+yYyK0JGX\nFcfcglSyrEYSY4bnUlF+1c875R/wRfVqEiPjub3wpiMuV+Pq9rB5l531OxrYvrcVnz/wsxibamFW\nbqDPWqiXIzpAiqteUlyNXpKXAFVVqXXWs7mxmKKmkmChBZBhTmNKQi5TEvPIMKcNep8FyUl4kryE\nlqvby479rZTsaaGksjk4lxZAcryRyTnx5OfEMykzjghDeK3YcDg+v49Xt7/FhoYtpJqSWTrtBmIi\nLH2O6erxUlRhZ/32Rkr2NOP1BUqGrGQzs3OTmDUpKSwLSymueklxNXpJXg7P3tXMNvt2SuzbKW+r\nxKcGOtyaDdFkWzLJNKeRaU4n05J+wstNHInkJDxJXsKHqqo0tnaxr8nJ2m11bN/XSo8n8B7VaRXG\np8cGi63+jkAcCm6fhxdKXqOkeTs5lixunXodRr2RbreXhpYuau1ONpc3UXxQH7R0a3SgoMpNwnaS\nk3wONimueklxNXpJXo6ty9vN9pZdbLOXsbOlgnZ3R5/9sRExgULLnE6mJVB0mQ3RJ/x6kpPwJHkJ\nPwdy4vX52V3T3tuq1cK+hq/zZDEZAh3jc+JJs5qwmAxER+kHdVmeo+nodvKnopeocu7Hqskg3XUa\n9lYvDa2uQ1ayODB6cnZuEikJppDEeyKkuOolxdXoJXnpv/aeDvZ3VrO/s4b9HdVUdVbT7u77M4yL\niCXTnEaGOZ3YCAtGvRGT3ohRF4VJb8KkjzrivDWSk/AkeQk/R8pJh9NN6d4WSvcEvtqd7kOOiY7S\nYzbqiTEZMBsNWEwGLEZ94NZkwGL8+ra/lxm9Pj/N7d3Ut7hoaO2iocVFQ6uL+vY2nKmr0Jg68DYn\n46ksAFWDAiTERGKLN2KLi8IWZyQ3K44067GnowhHUlz1kuJq9JK8DIy2nnaqeout/Z3V7OusptPt\nOOpzDFoDJl1v0aU3YtJFYdIbSYyJRfHoMPbui9RGoFEUFEUTuOXA7cHblOAxwfsHjvvG/ShtZL/m\nzhEB8l4JP8eTkwPrHpbtbaW5vZsOl5sOpzt4e2BE4tFE6LWHFmImfbAAc3R5qG9x0dhbSDW1dQc7\n3x+gGLqIyt2EGuHA6pvAHPNZJMebsMUbscZGDfhKD6EU6uJqaKZ7FkIMutiIGGIjYpiSmAcEPtDb\n3R1Ud9bS6XHi8rhwelw4va7gfZfHhdPbhb2rmW5H7dcnqz3CiwwQjaIh2ZhEanQyadEppJoCt7ER\nQzPBoBBDSVEUMm3mIy7z4vX56XR56HC66XS5aXe6g4+DhVjv/b31ncFRekcSHaVnTKol0AIVb8QW\nb0RndPJO1eu09Tg4O/N0Lh57vrzXBpEUV0KMUIqiBAuu4+H1e3F5u3B5XOhNCjVNTTh7H3d7u1FR\nUVUV/4Fb1Y/K17d9tx041o+qql8f1/v89p4Oah111Drr2diwNRhDlC6KtG8UXCmmZCJ14TG8W4jB\noNNqiDNHHNc0Bn5VxdXtPaQQM0bqsMUZscVHHTLZ6f7Oap7a+mccHicXjz2fc7IWDda3InpJcSWE\nAECn0WExmLEYzFitZhJIGtTX86t+mrtaqXHWUeuoo8ZRT62zjt1te4MTqx6QGBlPanQKadHJgVtT\nMlZjIhpl5FzGEOJ4aJSvF4yHY3cwL2+t5Jnil+jxubl64qUsSJsz+EEKKa6EEKGhUTRYjQlYjQlM\ns04Obnf73NQ5G4LFVo2jnlpHHcX2UortpcHj9BodKSZbsNhKjU5hbGwO+n4uLivESFVi387zJa/i\nV1Wuy7+aGbapoQ5p1JBPISFEWDFoDWRZMsiyZAS3qapKh9vRW2zVUdtbcNU6G9jfWRM8LiEynovH\nns/0pALpTyJGtfX1m3l1+1toFS03F/yA/ISJoQ5pVJHiSggR9hRFISbCTEyEmdz4CcHtPr+Ppi47\nNY56ytsqWV27nhdL/8JnVSu5ZNyFjIvNCWHUQoTGF9WreWvXe0TpovhRwXWMjc0OdUijjhRXQohh\nS6vRkmyykWyyMcM2lTMzFvJ+5UdsaSzmj5ufZpp1MhePPZ8kozXUoQox6FRV5eO9n/Hhnn9jNkRz\n+7QbSYtOCXVYo5IUV0KIEcNqTOCGyYupbN/H3ys+ZGtTCcX2MhamzeP87LOINgyfGaaF6A+/6ufv\nFf/ks6qVJETGsXTajSQZE0Md1qh1QsWVx+Ph3nvvpba2Fq1Wy+9+9zsyMjL6HJOfn8/06dODj19+\n+WW0Wpk0UAgx+MbEZPGT6beytamE93b/i8+rV7GufhPnZp3B6ekL0Gv1xz6JEMOEz+/j9R1/Y239\nRpJNNm6fdsNxT8EiBscJFVcffvghFouFhx9+mK+++oqHH36YRx99tM8x0dHRvPrqqwMSpBBC9Jei\nKBQmTWFKYi4ra9by0Z5PeW/3v/iiejUXjz2fGbapMpWDGPZ8fh8vlv6FrU0lZFkyuHXq9UTrpYU2\n1E7ok2XNmjWcffbZAMyfP5/NmzcPaFBCCDFQdBodizJO4X/m3cNZmafR6e7k5bK/8oeNT1LeujvU\n4QlxUt7tvfw9IXYsd0y7UQqrMHFCLVd2u534+HgANBoNiqLgdrsxGAzBY9xuN3fddRc1NTWce+65\nXHfddUc9Z1ycEZ1u8C8bHm0tIBE6kpfwM/JyYuam1Cv5TsHZ/LX4PVbt38ijW5YzM7WA70+9hDRL\ncqgDPC4jLy/DX6hy8p+KlXxevYqMmFSWnXEbRn1USOIIV6F8rxyzuHr77bd5++23+2wrKirq8/hw\naz//7Gc/49vf/jaKorB48WJmzpzJlClTjvg6ra2u4435hMmip+FJ8hJ+RnJOFAxcPe5yFiTN492K\nD9lYW8zmuhJOSZ3DBTlnYzZEhzrEIxrJeRmuQpWTnS0VvFD0BtF6EzfmLcHZ5sWJ/G4cEPYLN192\n2WVcdtllfbbde++9NDU1MWnSJDweD6qq9mm1ArjqqquC9+fOncuuXbuOWlwJIcRQyrJkcGfhLRTb\ny3hv9z/5smYN6+s3c3bWIs7IOAWD1nDskwgRAo2uJp4veRUFhRunLCEhKj7UIYlvOKE+VwsWLODj\njz8GYMWKFcyZ03etosrKSu666y5UVcXr9bJ582bGjx9/8tEKIcQAUhSFqdZ8fjH7Lq6Y8B10Gh3/\nqPyY36z9A+vqNuFX/aEOUYg+XJ4unil+GZe3i6smXSoT5YapE+pzdcEFF7B69WquuuoqDAYDDzzw\nAADPPvsss2bNorCwkOTkZL73ve+h0Wg444wzKCgoGNDAhRBioGg1Whamz2dWciGf7PucFVUr+fP2\nN4MzvU+Kl38ORegdGBnY4GrizMyFzEuZGeqQxBEo6uE6TIXAUFyzlv4K4UnyEn5Ge05au9v4R+W/\nWVe/CYD5KbO4cuJ30WpCO1ffaM9LOBrKnLy1632+qF7F5IRcbi74gUwlchSh7nMlmRFCiG+Ii4xl\nSd4V3DPrDjLMaayu28Dyba/Q43OHOjQxSq2sWcMX1atINSVzXf5VUliFOcmOEEIcQaY5nTsLbyE3\nfgKlzTt4bMtyHG5nqMMSo8zOlgre2vU+0XoTtxRcS6QuMtQhiWOQ4koIIY4iUhfBjwquY3bydPZ1\nVPHw5qdo7moJdVhilJCRgcOTFFdCCHEMWo2WJblXcHbm6TS67Dy06SmqO2tDHZYY4WRk4PAlxZUQ\nQhwHRVH4zrgL+N74b9PpdvDHzc+wq7Ui1GGJEcrn9/FCyWs0uJo4K/M0GRk4zEhxJYQQ/bAo4xSu\ny78Kj9/DU1tfYFND0bGfJEQ//a3iH+xoLWdyQi4Xjz0/1OGIfpLiSggh+mmGbRq3Tf0hOo2Ol0pf\nZ0XVV6EOSYwgX1av4Yvq1TIycBiTjAkhxAmYGD+OO6f/CLMhmnfKP+D93R8ddp1VIfpjR0s5b5fL\nyMDhToorIYQ4QRnmVO6acRtJUYl8sm8Fr25/C5/fF+qwxDDV4GrihZLXZGTgCCDFlRBCnITEqHh+\nMuNWsiwZrKvfxDPFL9Pt7Ql1WGKYcXlcPFP8kowMHCGkuBJCiJNkNkTz48KbyUuYSFnLTh7f8iyd\nbkeowxLDRGBk4F9odNllZOAIIcWVEEIMgAitgVumXMvc5Jns66zikU1/wt7VHOqwxDDwTnlgZOCU\nRBkZOFJIcSWEEANEq9GyOPcyzs06g8auwGSjVZ01oQ5LhLEvq9fwZU1gZOC1eTIycKSQLAohxABS\nFIVvjz2PyyZcjMPt5NHNz7CjpTzUYYkwJCMDRy4proQQYhCcnr6A6yd/H6/fy5+KXmRjw9ZQhyTC\nSIOriedLXkMjIwNHJCmuhBBikExPKuC2aTeg1+h5qfR1PqtaGeqQRBg4MDKwS0YGjlhSXAkhxCCa\nEDeWn8z4ETEGM38r/wd/r/gnftUf6rBEiBw8MvDszNOZKyMDRyQproQQYpClRadw14yl2IxWPt3/\nBX8uewuv3xvqsEQIHDwy8Ntjzwt1OGKQSHElhBBDICEqjp/MuJUcSyYbGjbz3LY/4/F5Qh2WGEJf\nVq+WkYGjhGRWCCGGSLTexB2FN5EbP4GS5h08U/wybp871GGJIVDUVMrb5R/0jgy8TkYGjnBSXAkh\nxBAyaA3cXHAtUxJz2dFazlNFL9Dt7Q51WGIQ7Wqt4MXSv6BTtNxScC0JUXGhDkkMMimuhBBiiOk1\nOm6YfA2F1ilUtO3hya0v0OXtCnVYYhDs66jimeKXUVWVmwp+QE5MVqhDEkNAiishhAgBnUbHdflX\nM8s2nT0d+3h8y7M4PM5QhyUGUJ2zgaeKXsDt83Bt/lXkxk8IdUhiiJxwcbV+/XrmzZvHihUrDrv/\ngw8+4NJLL+Wyyy7j7bffPuEAhRBipNJqtCzJu5z5KbPY31nDY5uXy4LPI0RzVwtPbn0ep8fF1ZMu\nZXpSQahDEkPohIqr/fv389JLLzF9+vTD7ne5XDz11FO8/PLLvPrqq7zyyiu0tbWdVKBCCDESaRQN\nV026lIVp86h11vPHzc/Q1tMe6rDESWjv6eSJrc/R1tPOJeMuZH7q7FCHJIbYCRVXVquVJ598ErPZ\nfNj9RUVFTJkyBbPZTGRkJNOnT2fz5s0nFagQQoxUGkXD5RO+w5kZC2lwNfLo5mdo6W4NdVjiBLg8\nXTxV9DxNXc2cm3UGZ2WeFuqQRAjoTuRJUVFRR91vt9uJj/96naT4+HiampqO+py4OCM6nfZEwukX\nq/XwBaEILclL+JGcDL2brFcSYzbxbtlHPL51Ob9adCe2aGufYyQv4edATrq9PTz++TPUOOo4Z+xC\nrp/xPRRFCXF0o1co3yvHLK7efvvtQ/pM3X777Zx66qnH/SKqqh7zmNZW13Gf70RZrWaamjoH/XVE\n/0hewo/kJHTOTF6Eu8vPh3v+zS8/fZg7pt2IzZQESF7C0YGceP1elhe/ws6WSmbapvGtzAuw26X/\nXKgMxXvlaMXbMYuryy67jMsuu6xfL5iUlITdbg8+bmxsZNq0af06hxBCjFbn55yJXqvj7xX/5I9b\nnuGOaTeRGp0c6rDEEfhVP6+UvUFZy07yEyaxJPcKmX19lBuU7E+dOpVt27bR0dGB0+lk8+bNzJwp\ni1MKIcTxOivzNC6f8B063Q4e27Kcqs7aUIckDkNVVd7Y+S6bG4sZG5PDDZMXo9UMfhcXEd5OqLj6\n/PPPueaaa1i5ciWPPPII119/PQDPPvssW7ZsITIykrvuuosf/vCHXHfdddx2221H7PwuhBDi8E5L\nn8/Vky7F6XHx2JblVDTvDXVI4hteL36PVbXrSY9O5UdTr8WgNYQ6JBEGFPV4OkQNgaHoRyD9FcKT\n5CX8SE7Cy/r6zfy57E0idRHcUnAd42JzQh2SAD7Zt4L3d39EkjGRn0y/FbMhOtQhiV6h7nMlF4WF\nECLMzU6ezvWTv4/b5+aprc+zs6Ui1CGNel/VrOX93R+REBXH7dNulMJK9CHF1VEsWXIFNTXVwceL\nF1/GmjVfBR//v//3U9atW8PSpTdRWXlyH3YXXnjmIduWLr2JG25YwtKlN/GjH13Pgw/eh8/n69d5\nH3vsYWpra3A6HaxfvxaAV199mZKS4pOKVwgxtKYnFXDXgpvwq36eLn6R0uadoQ5p1NrUsJU3dv6d\naL2JX5x+B/GRshCz6EuKq6OYPn0mW7cGJj9ta2ujq6uLrVu3BPeXlZVQUDC4oyCXLfsVTz75LE8/\n/SJer5dPP/13v57/4x/fRWpqGjt37ggWV9dccy2TJ8tSDEIMNzPTpnJTwbUAPFv8MkVNpaENaBQq\nbd7JK2VvEqE1cNvUH5JmkVGc4lAnNInoaFFYOJNVq77kwgu/TXHxVs499wKKi7cCsHfvHlJTU4MT\nqn722ac89tjDtLe388ADj5CcnMzy5U9RXLwVv9/Hd797OWeffR52exO/+91v8Xo9aDQa7rnnlyQn\nH9+bMy8vn+rqKgD+9KfH2LatCK/Xx6WXXs55513IRx99yLvvvoVOp2fcuAncddc9LF16Ez/5yc94\n5JEHcbmcZGRkUlJSzOmnn8mcOfN48MH7qK2twe12c8MNtzB79lyuuOI7XHzxd1m1aiVut5vHHvsT\nRqNpcH7IQoh+yU+YyI8KrueZ4pd4vuRVrs27ihm2qaEOa1TY3baX57b9GY2icEvBtWRa0kMdkghT\nw6a4euuzCjbsaDypc2i1Cj7f1/33Z01K4vIzxh3x+MLC6Tz99OMAFBVtYcGCU9myZRM9Pd1s3bqZ\nwsKvp5eIi4vjscee5plnnuTLLz9j4sRcGhrqeeqp53C73Vx//WIWLjyd5557miuv/D6zZs1hzZqv\neOWV57nnnl8cM3afz8e6dWv41rcuYevWzVRW7ubpp1+kq6uLH/zgShYuPJ033niNBx98FJstmX/+\n8wN6erqDz7/66muorNzNxRd/N3hJ8D//+RiDwcCTTz6L3d7E0qU388Yb7+Lz+cjMzObqq5fw61//\nPzZu3MDChaf398cthBgkE+PHsXTajfyp6AVeLP0LjS4752WfIbOBD6LqzlqeLn4Rn+rjpilLGB83\nNtQhiTA2bIqrULBYYoiKiqKpqZGyshJuuulH5OXlU1paQnHxVi644FvBYw9cHrRarbS3t7NtWxGl\npdtYuvQmAFTVj91up6SkmP379/HKKy/g9/uJjT36tfr77/9fIiMjUVWVOXPmMX/+KbzxxmtMmxZY\nNDsqKors7DFUVVVx1lnnsmzZ3Zx77vmcdda5REREHvXcO3dup7BwBgCJiVYMBj0dHYEFY6dOLez9\nfmw4nTLLsBDhZmxsNndO/xHLi1/mwz3/psZZxzW5lxMhUwEMuEZXE08WPU+3t4cleVcwJTEv1CGJ\nMDdsiqvLzxh31Fam43EiQzOnT5/JunVrUBSFiIhICgqmsW1bEWVlpdxzz8+Dx2m1X08ap6oqer2e\niy66mGuuua7P+XQ6Pb/97e9JTEw8rtdftuxXjBnT9/tWFIWDJ9AIXGJUuOaa6zj77PP5/PNPueOO\nH/HUU88e4+xKn6WJPB4PSu+swt/8foQQ4SfDnMo9s+7guW1/ZktjMXaXnZsKfiAdrAdQa3cbT2x9\nnk63g8snfIfZydNDHZIYBqRD+zEUFs7k/fffZfLkKUCghWr16q9ITEw8astQXt5kVq1aid/vp6en\nhz/+8cHg9pUrPwdg06YNfPLJx/2OadKkfLZs2QSAy+Wipqaa9PRMli9/isTERK68cjGTJ0+hvr4+\n+BxFUQ4ZaZibm8fmzRsBaGioR6PRyGSvQgwzZkM0dxTexILU2VQ5anlwwxNUtO0JdVgjgsPt5Mmt\nz9PS3cpFOedyWvr8UIckholh03IVKtOmTefnP7+bH/wgMAt9XFw8HR3tnHXWuUd93pQpUyksnMHN\nN18HqFxySWB9xh/+8Cbuv/83fPrpv1EUhWXLft3vmKZOncbEiZO47bYb8Xq93HLLUqKiojAaTdx8\n83VER0eTmprG+PETgs+ZOHESzzzzBFZrUnDbmWeew5Ytm7j99pvxej3cffeyfscihAg9nUbHVRMv\nJS06lXfKP+DxLc9y5cRLmJ86O9ShDVvd3m6eKnqBelcjZ2ScynnZZ4Q6JDGMyAztIuQkL+FHchKe\njicvO1sqeKHkNZxeF6elL+DScRfJWnf95PF5+FPRi+xq283clJksnnTZEQcLyHslPMkM7UIIIQbM\nxPhx3D3zdlJMNr6oXsVTRS/g9LhCHdaw0dLdylNFL7CrbTdTrZO5euKlMgpT9JsUV0IIMcJYjQn8\ndMZtTEnMY2drBQ9ufIJaR/2xnziKqarK6toN3Lfuj5S3VTI1MZ/r8q6SVj9xQqS4EkKIEShSF8lN\nU5ZwXtYZ2LuaeXjTU2yzl4U6rLDU3tPBM8Uv8ZcdbwMqiyddxo1TlqDX6kMdmhimpEO7EEKMUBpF\nw7fGnkdqdDKvbn+b5cWv8O0x53F21ulyqYtAa9XGhq28tes9XN4uJsWN5/u535OpLMRJk+JKCCFG\nuBm2aVijElm+7RXer/yIGmcd35/0PQyjeMLRTreDN3a+y9amEgwaPVdMuIRT0+ZK0SkGhBRXQggx\nCmRa0vnZzDt4vuTPbGzYSqOrievzF2M1JoQ6tCG3tXEbf935Lg6Pk7ExOVyTe/mo/DmIwSPF1TFU\nVe3n8ccfpq2tFZ/Pz5QpBdx2250YDP37j+9f//oHzz//DKmpaaiqSkxMLEuX3klqahpr166mrq6W\nSy753gnHuWLFpyxadNaAnEsIMTLFRJi5o/Bm3tj5LmvrNvJ/6x/m3KxFnJ15+qjoX+T0uHhr13ts\nbNiKXqPj0nEXcXrGKWgU6X4sBpbMc3UUPp+P66//PnfeeTeFhTNQVZVHH/1D72Sdt/Xrtf/1r39Q\nWbmbpUvvBGD9+rX88Y8P8vLLfyUiIqJf5/omj8fD7bffzDPPvHhS5wkVmScm/EhOwtNA5UVVVTY1\nFvFu+T9od3dijUrgigmXkJsw4dhPHqZK7Nt5fcc7tLs7ybJksCT3CpJNScd+4jHIeyU8hXqeK2m5\nOooNG9aRmZkdXNxYURRuvfWO4Pp7TzzxCGVlpbjdbr7znUv51re+w333/Q86nZ6Ojjbuu+8PRzz3\n7NlzmTb+Tr5fAAAgAElEQVRtOl9+uQKPx0Nl5W4uvfRy/vd/f0lUlJFLL72c6Oholi9/Cp1OR1KS\njXvu+QV6vZ5HH32IsrIStFotd9/9//j73//G7t0VPPTQA+Tl5QeLuLfe+iv//e8nAJx66mksXnwt\n9933PyQmWtm5czsNDfX86lf/x8SJkwb/hymECBuKojDTNo38hEn8c88nfF61iieLnqcwqYBLx11E\nXGRsqEMcMF3ebv5W/g/W1G1Aq2j59pjzOCvzNJliQQyqYVNcvVvxIVsat53UObQaBZ//64a6wqQp\nfHfcRUc8fv/+vX2WkAGC6wn29PSQnJzK7bf/hJ6ebi6//Dt861vfAcBisfRZ1PlIJk7MZe/ePaSl\npQe3lZfv5G9/+5CYmFiuu+5qHnvsaSyWGP70p8dYseJT4uLiaWxs4NlnX2br1s3897//4eqrr6Gs\nrISf/vRe/vWvfwBQW1vDRx/9g+ee+zMAN930AxYtOgsAt9vNI488yXvvvcPHH/9TiishRqkoXSTf\nG/9t5iTP5M2df2dLYzFlzTu4MOccTk9fMOwLkB0t5by2/W1ae9pIj05lSd4VpEWnhDosMQoMm+Iq\nNBT8fv9h90RERNDR0c4tt1yPTqejra01uC8vL/+4zu5yudBo+l7rT0tLJyYmlpaWZqqrq1i27G4A\nuru7/397dx5XZZ33f/x1DofDvh04B5BNRDYRVAT3pVTccpyptKxsm6lZHJvm/lnmbTbWlKaOzTRZ\nd6Vpi22mNmVNZVpaLigCioIhAgaILAdk35fz+4OiLFcCrgv4PB93N5xzHc71kc8cePP9fs/3wsXF\nFbO5mMjIIUDbdQ+HDo2moODcz5779OlTREREotO1tTgycgiZmRkADBkyDACj0ZOTJ9OuqlYhRO/l\n59SP/zf8TxwqSOSDzE94P/NjDhUkcmvojQx0DVS6vGtW39zAh1mf8HV+PFqNlhn9pzC9/yR0WvmV\nJ7pHj/lf2k0DZ112lOlqXOscbEBAf7Zvf++C+xobGzl7NpeKigqSkxN5/vn16HQ64uLGtz9Gp7u6\nhaGnTp1kypRpVFX9UNP3X6vTWePhYeT559df8DXvvPMmFsvFA9+FNPx4OV1TU1P7dKaV1Q9/japk\nyZ0QQmFajZYx/UYQ5RHBh1mfcrAggX8lv8hIr+HMDJyCh13PeDddZvkZNp/cQkn9ebwcPLkr/BYC\nnP2ULkv0MfIWicuIjR1JUVEB+/d/DUBraysvvriOL77YRUVFOSaTJzqdjv37v6KlpZWmpqarfu74\n+APk5OQwduyEix53dnYG4MyZbAC2bXuXzMzThIcPIjk5EYCMjHSeeWY1Go2WlpaWC74+JCSU1NQT\nNDc309zczMmTaYSEhF7z90AI0bc46h24I3wOi4b/GR9Hbw4XJvF4/Bo2pb5FXlW+0uVdUmNLE9tP\nf8SzyS9RWl9GnP91LIn5iwQroYgOj1wlJCTw4IMPsnLlSq6//vqfHY+IiCA6Orr99muvvXbBiElP\noNVqeeaZ51mzZgWvvroBa2trYmNHcu+991NbW8tbb73OwoW/Z/z4iYwZM461a5++7PN9+eUu0tNP\nUltbi5ubgRUr1vxsWvDHliz5GytXPoG1ddso1uzZN6HX69m37ysWLLgPgEWLluDh4UFzcxPLlj3C\nmDHjAPD27sfs2TfywAO/p7XVwq9+9Wu8vGStgRDi6gxwCeCRmL9wtPg4n+fuJak4haTiFMLcgpnk\nP55wQ4jiWxhYLBZK68vIKMtid+5XFNUWY7Lz4M5BtzDApb+itYm+rUNbMeTm5vL000+j1WqZM2fO\nRcPVyJEjOXz48FU/pxq3YhDdQ/qiPtITdVKqLxaLhW/OZ7ArZy8Z5VkAeNgaGGaKYogxggBnv24L\nWqV158koz+Z0WRYZZVmUNZS3H7vOdyy/DprRrTvPy2tFnXrkVgxGo5Hnn3+eRx+98jvihBBC9Gwa\njYZB7qEMcg8lt+osX509SHLxcXbl7mVX7l5c9M5EGSMYYowgxDWoU99leL6+jNNl2WSUZXG6PIvS\n+h/ePOSgs2eocTDBrkGEGYI7Zd8qITpDh8KVnZ3dFR/T2NjIokWLyM/PZ9q0adx7770dOZUQQggV\n8Xfy5c7wW7g15EbSz2eQYk7jRMlJ9uXHsy8/HjudHYMMIRjtPXDRO+Ni44SLjTMuemec9U5XDF5l\n9eXfBam2QFVaf779mL3OjiEeEQS7BRHiFoS3g6fiU5NCXMwVw9XWrVvZunXrBfc98MADjB8//hJf\n0Wbx4sXMnj0bjUbD/PnziYmJITIy8pKPd3OzR6fr+jVZlxvGE8qRvqiP9ESd1NQXH69RTGYULa0t\nfGPOJCH/GEfy29ZmXYwGDc62ThhsXXCzc8HVzgWDnQtOekdyys+SZj5NUbW5/fEO1nbE+AwhwhhM\nhCkUf9d+qgxTauqJ+IGSfflFl79ZsmQJ06ZNu+iaqx9bs2YNQUFB3HzzzZd8jKy56rukL+ojPVGn\nntAXi8WCua6UioYKKhoqKW+spKKhksrGKioa2j4vb6igsfXn766209ky0DWQENcggt2C8HH0VmWY\n+rGe0JO+qEeuubqS7OxsXnjhBdauXUtLSwvJyclMnz69K04lhBBCRTQaDSZ7D0z2Hpd8jMViob6l\noT1sVTVWYXIw4uuozpEpIa5Vh8LV3r172bhxI9nZ2aSlpbF582Y2bdrE+vXriY2NZdiwYXh5eTFn\nzhy0Wi2TJk0iKiqqs2sXQgjRA2k0Gux0ttjpbGURuuiVftG0YGeSacG+S/qiPtITdZK+qI/0RJ2U\nnhaU8VchhBBCiE4k4UoIIYQQohOpZlpQCCGEEKI3kJErIYQQQohOJOFKCCGEEKITSbgSQgghhOhE\nEq6EEEIIITqRhCshhBBCiE4k4UoIIYQQohNJuBJCCCGE6ERdcuFmNVq5ciUpKSloNBqWLl0q1zpU\nUEZGBgsWLOCee+5h/vz5FBQUsHjxYlpaWjAajfzjH/9Ar9crXWafsmbNGpKSkmhubuYPf/gDkZGR\n0hOF1dXVsWTJEkpLS2loaGDBggWEhYVJX1Sgvr6eWbNmsWDBAkaPHi09Udjhw4d58MEHCQ4OBiAk\nJIT77rtP0b70iZGrhIQEcnJy2LJlCytWrGDFihVKl9Rn1dbW8uSTTzJ69Oj2+5577jluv/123n77\nbQICAti2bZuCFfY9hw4d4vTp02zZsoVXXnmFlStXSk9UYM+ePQwePJg333yTZ599llWrVklfVOLF\nF1/ExcUFkJ9fajFixAg2b97M5s2beeyxxxTvS58IV/Hx8UyZMgWAoKAgKioqqK6uVriqvkmv17Nh\nwwZMJlP7fYcPH2by5MkAXH/99cTHxytVXp8UGxvLv//9bwCcnZ2pq6uTnqjAzJkzuf/++wEoKCjA\n09NT+qICWVlZZGZmct111wHy80utlO5LnwhXJSUluLm5td82GAyYzWYFK+q7dDodtra2F9xXV1fX\nPlzr7u4uvelmVlZW2NvbA7Bt2zYmTJggPVGRefPm8dBDD7F06VLpiwqsXr2aJUuWtN+WnqhDZmYm\nf/zjH7nttts4cOCA4n3pM2uufkwup6he0hvl7N69m23btrFp0yamTp3afr/0RFnvvvsu33zzDQ8/\n/PAFvZC+dL8PPviAoUOH4ufnd9Hj0hNl9O/fn4ULFzJjxgzy8vK46667aGlpaT+uRF/6RLgymUyU\nlJS03y4uLsZoNCpYkfgxe3t76uvrsbW1paio6IIpQ9E99u3bx0svvcQrr7yCk5OT9EQFUlNTcXd3\nx9vbm/DwcFpaWnBwcJC+KGjv3r3k5eWxd+9eCgsL0ev18lpRAU9PT2bOnAmAv78/Hh4enDhxQtG+\n9IlpwbFjx7Jz504A0tLSMJlMODo6KlyV+N6YMWPa+/P5558zfvx4hSvqW6qqqlizZg0vv/wyrq6u\ngPREDRITE9m0aRPQtrShtrZW+qKwZ599lu3bt/Pee+8xd+5cFixYID1RgR07drBx40YAzGYzpaWl\n3HTTTYr2RWPpI+OYa9euJTExEY1Gw/LlywkLC1O6pD4pNTWV1atXk5+fj06nw9PTk7Vr17JkyRIa\nGhro168fTz/9NNbW1kqX2mds2bKFdevWERgY2H7fqlWrWLZsmfREQfX19Tz66KMUFBRQX1/PwoUL\nGTx4MI888oj0RQXWrVuHj48P48aNk54orLq6moceeojKykqamppYuHAh4eHhivalz4QrIYQQQoju\n0CemBYUQQgghuouEKyGEEEKITiThSgghhBCiE0m4EkIIIYToRBKuhBBCCCE6kYQrIYQQQohOJOFK\nCCGEEKIT/aJwlZGRwZQpU3jzzTd/duzgwYPMmTOHW2+9lRdeeOGXnEYIIYQQosfocLiqra3lySef\nZPTo0Rc9/tRTT7Fu3TreeecdDhw4QGZmZoeLFEIIIYToKTp84Wa9Xs+GDRvYsGHDz47l5eXh4uKC\nt7c3ABMnTiQ+Pp6BAwde8vnM5qqOlnLV3NzsKSur7fLziGsjfVEf6Yk6SV/UR3qiTt3RF6PR6ZLH\nOjxypdPpsLW1vegxs9mMwWBov20wGDCbzR09VafR6ayULkFchPRFfaQn6iR9UR/piTop3ZcOj1x1\nNjc3+275ZlwuaQrlSF/UR3qiTtIX9ZGeqJOSfemScGUymSgpKWm/XVRUhMlkuuzXdMewqtHo1C3T\nj+LaSF/UR3qiTtIX9ZGeqFN39OVy4a1LwpWvry/V1dWcPXsWLy8v9uzZw9q1a7viVKIHa2puobSy\ngboWC2VltWg0oNFo0ACa7/6fFkADWo0G+O74Tx7Xft93x7VaDTbWMlQvhBBCGR0OV6mpqaxevZr8\n/Hx0Oh07d+5k0qRJ+Pr6EhcXx+OPP86iRYsAmDlzJoGBgZ1WtOg5mppbKC6vp/h8LUVldRSXff+x\njvOV9Vi66Lyujnr8TE74mRzxMznia3LEy2CHlVa2dhNCCNG1NBaLpat+v12T7hhWleHbrtHY1EJx\neVtgKiqrpbjsh8/LKhsuGqBcHfV4utljdLXDycmGuromLBYLFgttH2n7SNv//eg+fnjcxR5jaQt0\n50prKatquOCc1jot/Twc2gOX/3ehy8HWusu/Rz2NvFbUSfqiPtITdeqV04Ki92loasFcVveT0ae2\njz8NMd9zc7Ih1N8Vk5sdnm727R+NrnbY6H+YtuuqF0F1XRN5xdXf/VdFXnE1+eZqcgovPJe7sw2+\nRkf8PB3bR7tMrnZotZpOr0kIIUTvJ+FKXFJlTSPJp80kpReTnltOS+vPx6AMzjaE+bviaWgLTyZX\nezwNdm0BSuF1T4521oQHuBEe4NZ+X3NLK4Xna9tD19nvPqZklZKSVdr+OL21Fl+jI8G+LgwLNjLQ\nx0XClhBCiKsi4UpcoKyqgeQMM0mnijmVV873k8YBXk4EejlhcrPH080Ok1tbgNL3sIXjOqu20ORr\ndGR0xA/3V9Y0/myUK6ewiuxzlexMyMPJ3pohAz0YFuxBRH9Dj/t3CyGE2v3hD/fyP/+zmLCw8Pb7\nXnrpeVxcXLnttvkXPLag4BzLlj3Cxo2br/r5Dx06SEHBOW68cQ579uzm+uundFrtPyXhSnC+sp7E\nU22BKvNsRfsaqYE+LgwPNTI8xIiHq52iNXY1Zwc9EYEGIgJ/2Py2qbmFb3LKOXrazNHTJew/XsD+\n4wXorbUMDnRnWLAHQwZ64Ggna7aEEOKXioubxpdf7rogXO3d+yXr1r3UKc8/atSY9s/ffPN1CVei\n85nL60g6ZSbxVDHZ5yqBtq0Mgv1ciQk1MjzUhJuTjbJFKsxaZ0VUkDtRQe7cOc3CmXOVJJ82czSj\nhOQMM8kZZrQaDSF+LgwNNjIs2ANjLw+hQgjRVSZPnsqf/vQ7Fiz4CwDp6d9gNBqprq7mySf/hkaj\nwd7enqVLH7/g65KTE1m//v/Q6XQYjSb+93//RlNTE48//ihFRQXo9TYsW/YER44cJjs7C4PBQGZm\nBkuXPoxOp2P27BuJiRlBY2Mj8+fP5e23t6PT/bJ4JOGqDyk8X0vSqWIS083kFLUt6tZqNIQHuBET\nZiI62AMXx74dqC5Fq9EQ5ONCkI8Lc68bSEFpDUdPl3A0w0x6bjnpueW8+8Vp/EyODAv2IDrEiJ/J\nEY1G1mkJIXqe977M5Eh6cac+Z2yYiVsmXfoaw25uBvr18+HkyVQGDRrMl1/uIi5uOs8++w8efngp\nfn7+vP/+Vt5//z2mTp3R/nVr1z7Nv/71Ap6eXvzzn6vZteszHBz0uLu78/jjK9i9eyf793+NjU3b\n77fbb7+Lt956nZUr/8GBA/v44otdxMSMICkpgVGjxvziYAUSrnq9/JIaktKLSTxVzFlzDQBWWg2D\nBxiICTUxLNgDJ3u9wlX2PN7uDni7OzBzVADl1Q0cyyzhaEYJ3+ScJ6+4mh0HviXIx5mZIwMYEuzR\nvgmqEEKIS4uLm84XX+xi0KDBHDjwNS++uIl16/7F6tVPAdDU1ER4+KD2x1dWVqDRaPD09AIgOjqG\nY8eSsbbWEhk5FIApU6YB8MknH/3sfCNHjubFF5+jubmZffu+YubMX3XKv0PCVS9jsVjIK65uX0NV\nUNp2WSGdlYahAz0YHmpkaLCH7O3UiVwdbbhuqA/XDfWhrqGZ1DPnOXiigJSsUta9fwJvd3umj/Bn\nVIQX1jrZxFQIoX63TBp42VGmrjJx4vW88cYm4uKm4efnj7OzM7a2tqxb9/IFMwEFBee++0zDj7fr\nbGpqQqPRYmVlRetF3uH+UzqdjtjYUSQmJnDmTDaDB0d1yr9DwlUv0dLaSsLJYj45lEN+SdsIlbVO\ny/AQI8PDjAwJ8sDORtrd1exsdMSGmYgNM5FvruazhFwOpRXx6qfp/GdfNlNj/Zk4tJ/0QgghLsLe\n3oGgoGDeeONV4uKmAzBwYDCHDh1k9Oix7N69E1dXN3x8fAFwdnZGo9FQWFiIl5cXx44lExU1FEdH\nG+LjE5g0aQoHDuwjK+s0Hh7G9vP8OHhNmzaTZ555mtjYUZ3275Cf8D1cU3MrB1ML+ORQDubyeqy0\nGmK+++UeOcCArV5arBQfoyO/u2EQN44fwOdH8vgq5Rzv7cnko4Pfcv0wH+JifGWNmxBC/ERc3HSe\nemo5y5c/CcCDDz7EmjUreOut19HrbXj88aeoqalpf/zixct44olHsbKywsfHl8mTp+Lu7sCXX37F\nwoW/x8pKx7Jlj3PkyOH2rwkJCeX+++9iw4Y3CAsLp7Kysj3MdQa5/E0P1djUwtcp5/j0cC5lVQ3o\nrDSMj+rHjJH+PW7bhN7Ul8upqW/iy+R8difmUVXbhM5Ky5jBnkwc6kN/LydVLX7vKz3paaQv6iM9\nUadr6Utubg7PPLOaf//7/675HJciwxo9TF1DM3uP5rMzIZfK2ib01lqmxvoxbYR/n986Qe0cbK35\n1Zj+TIv140BqITsP5/J1SgFfpxTgY3RgfKQ3owZ74SxvMBBCiG7xwQfb2LHjPzz66BOd+rwyctVD\n1NQ3sTvxLLsT86ipb8bOxopJ0b7Exfr1+F/GPbkvv0Rrq4XUM+fZf/wcR0+X0NJqwUqrYVyUN78a\n0x+Ds61itfXVnqid9EV9pCfqJBduFpdVWdPI50fy+DL5LPWNLTjaWXPj+EAmD/fFXt7x16NptZr2\nTUqrahs5lFbEl8ln+erYOQ6mFjJthB8zRwXIujkhhOhh5Ke2Sp2vrOezhFy+PnaOxuZWXBz0zB4b\nyHXD+skv217IyV5PXKwfk4b7cPBEIR/sP8PHB3PYl1LAjRMGMC7SWy4cLYQQPYT8llaZ4vI6Pj2U\nw4ETBTS3WHB3tmHGqADGR3ljrZOLBfd2Vlot44f0Y0S4J58l5PLp4Rxe+zSdL5POcuvkYMID3JQu\nUQghxBV0OFytXLmSlJQUNBoNS5cuJSrqh423Jk2ahJeXF1ZWbWFg7dq1eHp6/vJqe7FzJTX8Nz6H\nwyeLaLVYMLnZccPoAEZHeKGzko0n+xobvRW/HhfIhCH92P5VFgdTC/nHO0cZOtCDWyYNxMtgr3SJ\nQgghLqFD4SohIYGcnBy2bNlCVlYWS5cuZcuWLRc8ZsOGDTg4OHRKkb1ZvrmaDw98S1J6MRbAx+jA\nDaMDGBHmKdNAAjcnG+6bNYjJw31594vTHMss4UR2Kb8a05+ZowMkeAshhAp1KFzFx8czZcoUAIKC\ngqioqKC6uhpHR8dOLa43a2pu5aOD3/LpoRxaWi0EeDnxqzH9GSrXoRMXEejtzJI7okk6ZeadL07z\nwf4zJJ4y89sbwujv5ax0eUIIIX6kQ+GqpKSEiIiI9tsGgwGz2XxBuFq+fDn5+fkMHz6cRYsWqWqD\nRKWdPlvOa5+mU1Bai8HZhjviQhg60EO+R+KyNJq23fcH9Tfw3p5Mvk45x1OvJzFjlD+zx/aXNXlC\nCKESnbKg/adbZf3lL39h/PjxuLi48Oc//5mdO3cyffrlt5V3c7NH1w2/HC63L0VXq61v4vX/nuST\ng9+i0cCscYHcOSNctlRA2b70RA/fFUtcRjHrtqbw3/gcjmeX8pdbhxEWYOi0c0hP1En6oj7SE3VS\nsi8dClcmk4mSkpL228XFxRiNP1wQ8Te/+U375xMmTCAjI+OK4aqsrLYjpVwTJTd7O5ZZwuadpyir\nasDb3Z57Z4Qz0NeFmqp6aqrqFalJLWQTvo7xcbPj8Xti2L43my+Sz7L4uX3Exfpx44QB2Fj/sj9U\npCfqJH1RH+mJOim9iWiHVsOOHTuWnTt3ApCWlobJZGqfEqyqquJ3v/sdjY2NABw5coTg4OCOnKZX\nqKxp5KUPU3lu23EqaxqZPbY/j987goG+LkqXJnoBW72OO6aGsOSOaIxudnx+JI/lGxM4lVumdGlC\nCNFndWjkKjo6moiICObNm4dGo2H58uW8//77ODk5ERcXx4QJE7j11luxsbFh0KBBVxy16o0sFgsH\nUwt594vT1NQ3E9TPmXtmhOFjlEX/ovOF+LnyxG9H8OG+M+w8ksvqt48yKdqHmycGYWcj29kJIUR3\nkmsLdgFzeR1v7DxF2pnz2FhbcfPEAUyK9pWtFS5BhtU7V9a5Cl79JJ1zJTW4O9tyz4wwIgKvbS2W\n9ESdpC/qIz1RJ6WnBeVP2k7U2mphd2Ie7+/LprGplcEDDNw1LRQPFzulSxN9SFA/F5bfE8tHB7/l\nk/gcntlyjMnRvtwyaSDWOtkXSwghupqEq05ytriaVz9N50xBJY521tw9PYxRgzxlewWhCGudlpsm\nDGB4iJFXPj7JF8lnyTxXwZ9+HYHJTXZ3F0KIriTh6hdqam7ho4M57ZuBjorwZN7kYJzt9UqXJgQB\nXk4suzuGt3ZlsP94AU+8doR7Z4QTE2ZSujQhhOi1JFz9At8WVrLho5Ptm4HeNS2MqCB3pcsS4gI2\n1lb8dmY4oX6ubP78FP/3QapMEwohRBeScNUBFouF3Ulnee/LTFpbLUwe7stNEwbIu7KEqo2N9Ka/\ntzMvfZAq04RCCNGF5M/Wa1RT38Tz75/gnd2ncbDV8T+3DuGOuBAJVqJH8PFwYNndMYyL8iansIon\nXjtCYnqx0mUJIUSvIongGmTlV/DSh2mUVtYT5u/K72dH4Opoo3RZQlwTmSYUQoiuJeHqKrRaLHye\nkMf2r7JotVj4zbhAZo3pL/tWiR7t+2nCF2WaUAghOpX8mXoFVbWNPLftOO/tycTR3pqH5w1j9rhA\nCVaiV/DxcOCxu2IYFynThEII0Vlk5OoyMvLKeXlHGmVVDUQEGrh/1iCcHWSLBdG72Oit+O0N4YT6\n/zBNmGuu4VejA2SaUAghOkDC1UW0Wiz8Nz6HD/Zlo0HDzRMHMGNUAFrZEFT0Yj+eJvz4wBlOZJXI\nNKEQQnSA/Fn6ExU1jfxryzH+83U2ro42LL59GDeM7i/BSvQJ308TTon1l2lCIYToIBm5+pFTuWW8\n9GEaFTWNDAly53ezBuFoZ610WUJ0Kxu9FQ/OG0aAyeGCdxPeOnkgOiv5e0wIIa5EwhVtm4J+mZzP\nO7tPo9HArZMGMjXWT64LKPq0n246ml9SzYIbI+UPDiGEuII+/2doc0srr3+Wzlu7MnCw0/HwbcOY\nNsJfgpUQtE0TPnrXcKJDjKTnlvPk60fIL6lRuiwhhFC1Ph2uKmoaWfPOUb5OKcDf05G/3R1LiJ+r\n0mUJoSq2eh0LbhzMrDH9MZfXs3JzIsezSpUuSwghVKvPhqtvCyv5+2tHyDxbwYhwE/87fzjuLrZK\nlyWEKmk1Gm6aMIDfzx5EU7OFf29LYWdCLhaLRenShBBCdTq85mrlypWkpKSg0WhYunQpUVFR7ccO\nHjzIP//5T6ysrJgwYQJ//vOfO6XYznIorZBXP02nubmVmycOYOaoAJkGFOIqjBrkhcnVnnXbj7Pl\ny0zyS2q4a1qoLHQXQogf6dBPxISEBHJyctiyZQsrVqxgxYoVFxx/6qmnWLduHe+88w4HDhwgMzOz\nU4r9pVpaLWzdk8n6j06is9LwlzlR3DC6vwQrIa7BgH7OPHZ3DAFeTuw/XsDad45SWduodFlCCKEa\nHQpX8fHxTJkyBYCgoCAqKiqorq4GIC8vDxcXF7y9vdFqtUycOJH4+PjOq7iD6hubeWJDPJ8ezsXT\nzY5H74xhyEAPpcsSokcyONuy5I5oYsJMZJyt4MnXEjlbXK10WUKIPq6ltZWkU8WUVzUoWkeHpgVL\nSkqIiIhov20wGDCbzTg6OmI2mzEYDBccy8vLu+JzurnZo9NZdaScq7LvWD5HM8wMDzPx0PwYeTu5\nyhiNTkqXIH7ianryt/tG8e7np3j781M8/VYSD90Rw4gIr26oru+S14r6SE/UIbewkmffPcbpvHIq\n6pq5NS5UsVo6ZZ+rzljUWlZW2wmVXFqwtyP/eGA8bnY66qrrqauu79LziatnNDphNlcpXYb4kWvp\nyUO1NjUAABrMSURBVJRoH1zsrdn48Ume2nSYOdcFMX2kbGfSFeS1oj7SE+W1tLayMyGPD/Zl09xi\nYVSEJ7PGDejyvlwuVHcoXJlMJkpKStpvFxcXYzQaL3qsqKgIk8nUkdN0KiutlrD+LvIiEKILxIaZ\nMLrasm77CbbuzSK/pIa7p4di3YWj0UIIYS6v4+UdaWSfq8TZQc/d00IZFmLEwc6aWgUHUTq05mrs\n2LHs3LkTgLS0NEwmE46OjgD4+vpSXV3N2bNnaW5uZs+ePYwdO7bzKhZCqFJ/r7aF7oHeThxMLWTN\nO0epqFZ23YMQovfKOlfBU28kkn2uklGDPHnqvpEMCzEqXRbQwZGr6OhoIiIimDdvHhqNhuXLl/P+\n++/j5OREXFwcjz/+OIsWLQJg5syZBAYGdmrRQgh1cnW04ZHbo3nt03QOnSziyTcS+cvNUfh7ypoU\nIUTnSTplZv1HaTS3tDJ/agiTon2VLukCGotKdgHsjuk6mRtXJ+mL+vzSnlgsFv4bn8P7X2ejt9Zy\n/6xBDA9VfnlATyevFfWRnnS/z4/kseWL0+itrfjjryMu+s7/7ujL5dZcyc5/QohOp9FomDWmP3++\nMRKAF/6TykcHv5Ud3YUQHdbaauHtXRm8+8VpnB30LLkjWrVbKnXKuwWFEOJihocaMboO57ntx/nP\n19mcK6nh3hlh6K1lobsQ4uo1NLbw8o40jmWW4OPhwF/nDlH1Jetk5EoI0aX8PZ147O5YgnycOXyy\niNVvJ1Om8AZ/Qoieo6K6gdVvJ3Mss4TwALcecS1gCVdCiC7n4qBn8W3RjBnsxZmCKp58/QjfFlYq\nXZYQQuXOldSwYnMS3xZWMTbSi/+5ZQj2tuqfdJNwJYToFtY6Lb+7IZy51wVRUd3IqjeTOZJerHRZ\nQgiV+ianjJWbkyipqOc34wP57czwHnOR+J5RpRCiV9BoNMwYFcDCmyPRaDW8+EEqH+4/IwvdhRAX\n2Hf8HP/ccoyGphbumxXO7LGBPeqqDxKuhBDdbliwkUfnD8fDxZYP95/hpQ/TaGhqUbosIYTCWlst\nvPdlJq9+ko6t3or/d+tQxgz2VrqsaybhSgihCF+TI8vujiHY14Uj6cWsfksWugvRl9U1NLNu+3E+\nS8jFy2DPsrtiCA9wU7qsDpFwJYRQjLO9nofmDWNcpDffFlbx99ePcKZAFroL0deYy+tY+WYSKVml\nRPR3Y9ldw/E02CtdVodJuBJCKMpap+XemWHccv1AKqsbWfVWMgnfFCldlhCim2TklfPk64nkm2uY\nPNyXv94yBHtba6XL+kXU/35GIUSvp9FomD7SH293e17ekcZLH6ZxrqSG2eMC0fagRaxCiGuz7/g5\n3vjsFBYL3DktlOuH+ShdUqeQkSshhGoMGejBo3e2LXTfceBbXvogVRa6C9EL/XTh+qJbh/SaYAUS\nroQQKuNjdOSxu2MI8XUh8ZSZVW8mc76yXumyhBCd5KIL1/sblC6rU0m4EkKojpO9noduG8b4KG9y\niqp48vVEss/JQncherqSXrZw/VIkXAkhVElnpeWeGWHMmzSQytpGVr+dzKGThUqXJYTooIy8cv7+\n/cL16N6xcP1SZEG7EEK1NBoNU0f44+XuwMs7Ulm/4yTnSmr5zXhZ6C5ET7L/eAGvf5be6xauX0qH\nwlVTUxNLlizh3LlzWFlZ8fTTT+Pn53fBYyIiIoiOjm6//dprr2FlZfXLqhVC9ElRQe4svTOG57al\n8PHBbykoqeG+WYOw0cvPFCHUrLXVwra9WXyWkIuDrY4//WYwg3rZ+qqL6VC4+vjjj3F2duaZZ55h\n//79PPPMMzz77LMXPMbR0ZHNmzd3SpFCCOHj4cBjd8fywvsnSMowY34rib/cHIXB2Vbp0oQQF1Fb\n38z6j9I4nlWKp8Gev86J6pXrqy6mQ2uu4uPjiYuLA2DMmDEkJyd3alFCCHExjnbWLJo3lAlD+pFb\nVM3fX08k61yF0mUJIX6ioLSGJ99I5HgvX7h+KR0KVyUlJRgMbcN6Wq0WjUZDY2PjBY9pbGxk0aJF\nzJs3j1dfffWXVyqEELQtdL97eii3TQmmqraR1W8dJT5NFroLoRbHTpfw5OuJFJ2vZfoIf/56yxAc\neunC9Uu54rTg1q1b2bp16wX3paSkXHDbYrH87OsWL17M7Nmz0Wg0zJ8/n5iYGCIjIy95Hjc3e3S6\nrl8/YTQ6dfk5xLWTvqiP2nty+4xBhAV6sGbzETZ8dJLy2ibmTw9Hq+3dC93V3pe+SHrSprXVwntf\nZPDWZ+nodVoW3TGc66J9FatHyb5oLBdLRlewZMkSbrjhBsaPH09TUxOTJk1i3759l3z8mjVrCAoK\n4uabb77kY8zmqmst45oZjU7dch5xbaQv6tOTelJQWsO/tx6nuLyOwQMM/O6GQbg46JUuq0v0pL70\nFdKTNnUNzWz67zckZZhxd7Zh4U1RBHgpF266oy+XC28dmhYcO3Ysn332GQB79uxh5MiRFxzPzs5m\n0aJFWCwWmpubSU5OJjg4uCOnEkKIy/J2d2DZ3TEMHmAgNfs8yzclkHqmVOmyhOgzistqWbk5iaQM\nM6F+rjx2T6yiwUoNOvRuwZkzZ3Lw4EFuu+029Ho9q1atAmD9+vXExsYybNgwvLy8mDNnDlqtlkmT\nJhEVFdWphQshxPcc7az569wh7DqSx7a9WfxzSwrTR/hz08QB6Kxkr2QhukpqdikvfZhGbUMzk4f7\ncuukgfKao4PTgl1BpgX7LumL+vTknuQUVvHSh6kUldUR4OXEH2dH9Jp3KfXkvvRWfbUnFouFzxJy\n2bY3CyuthjunhTI+qp/SZbXrkdOCQgihVgFeTiy/N5Zxkd7kFFbx+KtHOHCi4KJvvBFCXLuGphbW\nf3SSrXuycHHQ88gd0aoKVmogl78RQvQ6tnodv70hnEGBbmzeeYqN//2GtDPnuXNaKHY28mNPiI4q\nqajj+e0nyC2uJsjHmT/fGImro43SZamO/JQRQvRaowZ5EdTPhfU70jh0soiscxX8fnYEQf1clC5N\niB7nm5wyXvwgleq6JiYM6ccdcSFY62QC7GLkuyKE6NWMrnY8ckc0N4wOoKS8nlVvJvPf+G9plWlC\nIa6KxWJhV2Iez7x7jLqGZu6cFso9M8IkWF2GjFwJIXo9nZWWmycGMSjAjQ0fn2T7V9mc/LaM+2YN\nws1JpjSEuJSm5hbe2HmKAycKcba3ZsGNkYT4uSpdlupJ7BRC9Bnh/Q088dsRDB3owTc5ZSzflMCx\nzBKlyxJClc5X1rPqrWQOnCikv5cTf7snVoLVVZJwJYToU5zs9TxwcyR3xIVQ39jCc9uO89auDJqa\nW5QuTQjVOH22nL+/nsiZgipGR3ix5I5oDM62SpfVY8i0oBCiz9FoNEwe7kuInysvfZjKF0lnOZVb\nzh9/HUE/DwelyxNCMU3NLew48C2fHc7FYoHbJgczJcYXjaZ3X7Ozs8nIlRCiz/IzOfK3e2KZOLQf\nZ83V/P21I3x1LF/2xBJ90qncMv626Qj/jc/B1VHPonlDiYv1k2DVATJyJYTo02ysrbh7ehgR/Q28\n9mk6r392irQz57l7RhgOttZKlydEl6utb+K9PVl8nXIODTAlxpebJgzAVi8RoaPkOyeEEEBMmIlA\nb2fWf5RG4ikzZwoq+f3sCIJ9ZQGv6L2SThXz5q4MKqob8TU6cPeMMNkHrhNIuBJCiO+4u9iy+PZh\nfHwwhx0HzrDqrWR+PTaQWWP6o9XK1IjoPcqqGnjz81McPV2CzkrLTRMGMH2kv1x0uZNIuBJCiB+x\n0mr59bhAwgPcWP9RGh/sP0NShpm51wcxONBd6fKE+EVaLRa+PnaOrXszqWtoIcTPlbunh+LtLm/k\n6EwSroQQ4iJC/Fx54rcjeHf3aQ6mFvLPLSlEBBq45fqB+JkclS5PiGtWUFrD65+mk3G2AjsbK+6a\nHsqEIf3QyoL1TifhSgghLsHB1prfzRrElBg/tu7NJO3MeR4/k8CYSC9uHD9A9v0RPUJzSyufHs7l\nowNnaG6xMDzEyO1xIXJ1gi4k4UoIIa4gwMuJRbcOJe3Med7bk8mBE4UkfFPM1Fg/ZowMwN5WfpQK\ndco6V8Frn6aTb67BxVHP/LgQhoealC6r1+vwyrWEhARGjx7Nnj17Lnp8x44d3HzzzcydO5etW7d2\nuEAhhFADjUbD4AHuPH7vCO6dGYaDrY7/xuew5OV4vkg6S3NLq9IlCtGuvrGZt3dlsPKNJPLNNUwc\n2o8V942UYNVNOvTnVm5uLq+++irR0dEXPV5bW8sLL7zAtm3bsLa2Zs6cOcTFxeHqKm9pFkL0bFqt\nhvFR/RgR7smuI3l8ciiHt3ZlsDsxj5snBjE81CibLgpFHc8qZfPOdEorG/A02HPP9FBC/d2ULqtP\n6dDIldFo5Pnnn8fJyemix1NSUoiMjMTJyQlbW1uio6NJTk7+RYUKIYSa2FhbMWtMf1b9YTSTon0o\nqajn/z5I5ek3k8k8W6F0eaIPqqxtZP2ONJ7dmkJ5dSOzxgTw99/GSrBSQIdGruzs7C57vKSkBIPB\n0H7bYDBgNps7ciohhFA1Zwc986eGMiXGj+17s0jKMLPyzSSGhxqZMzEIT4O90iWKXs5isRCfVsi7\nX2RSXddEoLcz984Iw1fe1aqYK4arrVu3/mzN1AMPPMD48eOv+iRXc50uNzd7dDqrq37OjjIaLz7a\nJpQlfVEf6cm1MRqdiAz15OSZUl79KI2kU2aOnS5hxuj+zJsaiotj57wzS/qiPkr1xGKxcDyzhPd2\nZ3A8swRbvRX3/3owN4wbgJVseqvoa+WK4Wru3LnMnTv3mp7UZDJRUlLSfru4uJihQ4de9mvKymqv\n6RwdYTQ6YTZXdfl5xLWRvqiP9KTjjI56Hp43lKRTZrZ9lcXHB86w+0guM0cFEBfrh411x/+IlL6o\njxI9aW5p5Uh6MTsP55JbXA1A5AB37pwagoerHedLq7u1HjXqjr5cLrx1yfuHhwwZwrJly6isrMTK\nyork5GSWLl3aFacSQgjV0Wg0xISZGBrswd6j+ew48C3vf53NnqP53Dh+AGMGe8nldMQ1q61v5quU\nfHYnnqWsqgGNpu2amNNG+Mn1AFVGY7maObuf2Lt3Lxs3biQ7OxuDwYDRaGTTpk2sX7+e2NhYhg0b\nxmeffcbGjRvRaDTMnz+f2bNnX/Y5uyP5y1996iR9UR/pSeeqrW/m08M5fH4kj6bmVnyNjswY5c/w\nECP6axjJkr6oT3f0pKSijt2JZ/kq5RwNjS3YWFsxPsqbuFg/jK6XXwPdVyk9ctWhcNUVJFz1XdIX\n9ZGedI3zlfX85+tsDqYWYgHsbHSMGuTJuChv+ns5XXELB+mL+nRlT84UVLIzIZfEdDOtFguujnqm\nxPgxcWg/HGytu+ScvYXS4Uq2FRZCiG5icLbld7MGMWtsf/YfL+DAiQL2HM1nz9F8fI2OjI/yZlSE\nJ072eqVLFQpptVhIySxhZ0IeGXnlAPgaHZk2wo+RgzzRWXV472/RjSRcCSFEN/N0s+fmiUH8Znwg\naWfOs+94AcdOl/DOF6fZujeTocFGxkd5E9HfIGuz+ojGphYOphay80geRefb3uA1ONDAtJH+DApw\nk41pexgJV0IIoRArrZaoIA+igjyorG3kUGoh+44XkJheTGJ6MW5ONoyN9GZclDcmWVvTK1XWNPJl\n8lm+TM6nuq4JnZWGcZHeTB3hh69R9qnqqWTNlVCc9EV9pCfKsVgsnCmoYv/xcxz+poi6hhYAwvxd\nmTluACHeTte0CF50rY6+VgpKa9iZkMfB1EKaW1pxsNVx3TAfJg/3xbWT9kTry2TNlRBCiHYajYYB\n/ZwZ0M+ZWycHk3SqmH0pBaTnlpP+djJ2NjpGDvJk/FUughfqYbFYOJVbzmcJuRzPKgXA6GrL1Fh/\nxkV6Y6OX0NxbSLgSQgiVsrG2Ysxgb8YM9qaorJbkzFJ2Hc5h79F89h7Nx9fowMhBngzqbyDA00nW\nZ6lQbX0TGXkVpOeWkfbtefLNNQAM9HFh2gg/hgUbpW+9kIQrIYToATzd7LlrpifThvuSeqa0fRH8\n9q+y2f5VNnY2OkL9XAkPcCM8wI1+Rge0MqrV7arrmjidV86pvHLSc8vIK6rm+7U3VloNw0ONTBvh\nz0Af2fSzN5NwJYQQPYhWq2lfBF9V28jJb8v4JqeM9JwyjmWWcCyz7dJjTvbWhPm7tYctk5udTCF2\ngaraRpIzzKTnlpGRW05e8Q9hSmelIcTPlVB/V0L93Qjq5yzr5foICVdCCNFDOdnrGTnIk5GDPIG2\nnbzTc8rbwlZuGUfSizmSXgyAm5NNe9AKD3DD4GyrZOk9VlVtIxl55ZzKLSc9t5yz5h+u46ez0rYH\nqVA/VwZImOqzJFwJIUQv4eFix7goO8ZFeWOxWCgqq+ObnB9Gtg6mFnIwtRAAk6sdgf2c8Tc54u/p\nhL+no2xeehGVtY1k5H4XpvLK2tdMAVjrtEQN9GCAlxOh/m1hylonYUpIuBJCiF5Jo9HgZbDHy2DP\n9cN8aLVYOGeuaQ9bp/LKOXyyiMMni9q/xs3JBn+TI36eTgR4toUuDxfbPjGd2NTcQmllA6UV9ZRW\n1pNbVMWp3HLyS34IU3qdlvAAN8K+G50K9Hamn7eLbFsifkbClRBC9AFajQZfkyO+JkfiYv2wWCyY\nK+rJLawit7iK3KJqcouqSMkqJeW7bQIAbPVWuDvb4uZkg8HZBoNT2+duzja4OdlicLLBzkbdv0os\nFgu1Dc3tweliHytrm372dXprLRH93QjxbwtUgd7OcvkZcVXU/YoQQgjRJTQaDSZXO0yudsSEmdrv\nr6xpJLeoitzitrCVX1JDWWXDBSM4P2Vno8PwXeAyONng6tgWuGz1VtjorbDV67C1tsLWpu1zG2ur\n9mPX8o5Gi8WCBWhttWCxWGi1/PB5Q1Nre1A6X1lPyU/CU31jy0WfU2elweBsi4/REXdnW9xdbHF3\ntsXL3Z7+Xk4SpkSHSLgSQgjRztlBz+AB7gwe4H7B/XUNzZRVNXC+qp6yqgbKKhs4/6Pb568QwC7F\nxrotZGlou2ix5bvA1Gqx/Ox2R64nYmdjhcd3gcn9Ih+dHfSyZYXodBKuhBBCXJGdjQ47Gx39PBwu\n+ZjvA1hFdQP1jS1t/zW1UN/YTH1DCw3ff/7dsYYfPQaLBa1Wg1ajQaNpm8bUfHdbq+HCzzWanz3W\nWqdtD0wGZxvcnW3xcLHF3ta6G79LQrSRcCWEEKJTXE0AE6IvkMlkIYQQQohO1OFwlZCQwOjRo9mz\nZ89Fj0dERHDnnXe2/9fScvHFhEIIIYQQvUmHpgVzc3N59dVXiY6OvuRjHB0d2bx5c4cLE0IIIYTo\niTo0cmU0Gnn++edxcnLq7HqEEEIIIXq0Do1c2dnZXfExjY2NLFq0iPz8fKZNm8a999572ccbjd0T\n1LrrPOLaSF/UR3qiTtIX9ZGeqJOSfbliuNq6dStbt2694L4HHniA8ePHX/brFi9ezOzZs9FoNMyf\nP5+YmBgiIyN/WbVCCCGEECp3xXA1d+5c5s6de81PfNttt7V/PmrUKDIyMiRcCSGEEKLX65KtGLKz\ns1m0aBEWi4Xm5maSk5MJDg7uilMJIYQQQqhKh9Zc7d27l40bN5KdnU1aWhqbN29m06ZNrF+/ntjY\nWIYNG4aXlxdz5sxBq9UyadIkoqKiOrt2IYQQQgjV0VgsHblakxBCCCGEuBjZoV0IIYQQohP1mWsL\nrly5kpSUFDQaDUuXLpVpSgVlZGSwYMEC7rnnHubPn09BQQGLFy+mpaUFo9HIP/7xD/R6vdJl9ilr\n1qwhKSmJ5uZm/vCHPxAZGSk9UVhdXR1LliyhtLSUhoYGFixYQFhYmPRFBerr65k1axYLFixg9OjR\n0hOFHT58mAcffLB9bXdISAj33Xefon3pEyNXCQkJ5OTksGXLFlasWMGKFSuULqnPqq2t5cknn2T0\n6NHt9z333HPcfvvtvP322wQEBLBt2zYFK+x7Dh06xOnTp9myZQuvvPIKK1eulJ6owJ49exg8eDBv\nvvkmzz77LKtWrZK+qMSLL76Ii4sLID+/1GLEiBFs3ryZzZs389hjjynelz4RruLj45kyZQoAQUFB\nVFRUUF1drXBVfZNer2fDhg2YTKb2+w4fPszkyZMBuP7664mPj1eqvD4pNjaWf//73wA4OztTV1cn\nPVGBmTNncv/99wNQUFCAp6en9EUFsrKyyMzM5LrrrgPk55daKd2XPhGuSkpKcHNza79tMBgwm80K\nVtR36XQ6bG1tL7ivrq6ufbjW3d1detPNrKyssLe3B2Dbtm1MmDBBeqIi8+bN46GHHmLp0qXSFxVY\nvXo1S5Ysab8tPVGHzMxM/vjHP3Lbbbdx4MABxfvSZ9Zc/Zi8QVK9pDfK2b17N9u2bWPTpk1MnTq1\n/X7pibLeffddvvnmGx5++OELeiF96X4ffPABQ4cOxc/P76LHpSfK6N+/PwsXLmTGjBnk5eVx1113\n0dLS0n5cib70iXBlMpkoKSlpv11cXIzRaFSwIvFj9vb21NfXY2trS1FR0QVThqJ77Nu3j5deeolX\nXnkFJycn6YkKpKam4u7ujre3N+Hh4bS0tODg4CB9UdDevXvJy8tj7969FBYWotfr5bWiAp6ensyc\nORMAf39/PDw8OHHihKJ96RPTgmPHjmXnzp0ApKWlYTKZcHR0VLgq8b0xY8a09+fzzz+/4nUrReeq\nqqpizZo1vPzyy7i6ugLSEzVITExk06ZNQNvShtraWumLwp599lm2b9/Oe++9x9y5c1mwYIH0RAV2\n7NjBxo0bATCbzZSWlnLTTTcp2pc+s4no2rVrSUxMRKPRsHz5csLCwpQuqU9KTU1l9erV5Ofno9Pp\n8PT0ZO3atSxZsoSGhgb69evH008/jbW1tdKl9hlbtmxh3bp1BAYGtt+3atUqli1bJj1RUH19PY8+\n+igFBQXU19ezcOFCBg8ezCOPPCJ9UYF169bh4+PDuHHjpCcKq66u5qGHHqKyspKmpiYWLlxIeHi4\non3pM+FKCCGEEKI79IlpQSGEEEKI7iLhSgghhBCiE0m4EkIIIYToRBKuhBBCCCE6kYQrIYQQQohO\nJOFKCCGEEKITSbgSQgghhOhEEq6EEEIIITrR/wf0t75FEUAytAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "tags": [] }, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(10,8))\n", "plt.subplot(311)\n", "plt.plot(t, a, t, u)\n", "plt.legend(['Acceleration','Steering Input'])\n", "\n", "plt.subplot(312)\n", "plt.plot(t, phi, t, theta)\n", "plt.legend(['Wheel Position','Car Direction'])\n", "\n", "plt.subplot(313)\n", "plt.plot(t, v)\n", "plt.legend(['Velocity'])" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "OUWgux1lmKhv", "nbpages": { "level": 2, "link": "[7.6.5 Visualizing Car Path](https://jckantor.github.io/CBE30338/07.06-Path-Planning-for-a-Simple-Car.html#7.6.5-Visualizing-Car-Path)", "section": "7.6.5 Visualizing Car Path" } }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "_Q8LBqWemKhy", "nbpages": { "level": 2, "link": "[7.6.5 Visualizing Car Path](https://jckantor.github.io/CBE30338/07.06-Path-Planning-for-a-Simple-Car.html#7.6.5-Visualizing-Car-Path)", "section": "7.6.5 Visualizing Car Path" } }, "source": [ "\n", "< [7.5 First Order System in Pyomo](https://jckantor.github.io/CBE30338/07.05-First-Order-System-in-Pyomo.html) | [Contents](toc.html) | [Tag Index](tag_index.html) | [7.7 Transient Heat Transfer in Various Geometries](https://jckantor.github.io/CBE30338/07.07-Transient-Heat-Transfer-in-Various-Geometries.html) >

\"Open

\"Download\"" ] } ], "metadata": { "colab": { "collapsed_sections": [], "name": "07.06-Path-Planning-for-a-Simple-Car.ipynb", "provenance": [], "toc_visible": true, "version": "0.3.2" }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 0 }