None Notebook

This notebook contains material from CBE30338; content is available on Github.

< 7.6 Path Planning for a Simple Car | Contents | Tag Index | 7.8 Path Constraints >

Open in Colab

Download

7.7 Transient Heat Transfer in Various Geometries

Transport of heat in a solid is described by the familiar thermal diffusion model

\begin{align*} \rho C_p\frac{\partial T}{\partial t} & = \nabla\cdot(k\nabla T) \end{align*}

7.7.1 Rescaling

We'll assume the thermal conductivity $k$ is a constant, and define thermal diffusivity in the conventional way

\begin{align*} \alpha & = \frac{k}{\rho C_p} \end{align*}

We will further assume symmetry with respect to all spatial coordinates except $r$ where $r$ extends from $-R$ to $+R$. The boundary conditions are

\begin{align*} T(t,R) & = T_{\infty} & \forall t > 0 \\ \nabla T(t,0) & = 0 & \forall t \geq 0 \end{align*}

where we have assumed symmetry with respect to $r$ and uniform initial conditions $T(0, r) = T_0$ for all $0 \leq r \leq R$. Following standard scaling procedures, we introduce the dimensionless variables

\begin{align*} T' & = \frac{T - T_0}{T_\infty - T_0} \\ r' & = \frac{r}{R} \\ t' & = t \frac{\alpha}{R^2} \end{align*}

7.7.1.1 Dimensionless Model

Under these conditions the problem reduces to

\begin{align*} \frac{\partial T'}{\partial t'} & = \nabla^2 T' \end{align*}

with auxiliary conditions

\begin{align*} T'(0, r') & = 0 & \forall 0 \leq r' \leq 1\\ T'(t', 1) & = 1 & \forall t' > 0\\ \nabla T'(t', 0) & = 0 & \forall t' \geq 0 \\ \end{align*}

which we can specialize to specific geometries.

7.7.2 Preliminary Code

7.7.3 Planar Coordinates

Suppressing the prime notation, for a slab geometry the model specializes to

\begin{align*} \frac{\partial T}{\partial t} & = \frac{\partial^2 T}{\partial r^2} \end{align*}

with auxiliary conditions

\begin{align*} T(0, r) & = 0 & \forall 0 \leq r \leq 1 \\ T(t, 1) & = 1 & \forall t > 0\\ \frac{\partial T}{\partial r} (t, 0) & = 0 & \forall t \geq 0 \\ \end{align*}

7.7.4 Cylindrical Coordinates

Suppressing the prime notation, for a cylindrical geometry the model specializes to

\begin{align*} \frac{\partial T}{\partial t} & = \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) \end{align*}

Expanding,

\begin{align*} \frac{\partial T}{\partial t} & = \frac{\partial^2 T}{\partial t^2} + \frac{1}{r}\frac{\partial T}{\partial r} \end{align*}

with auxiliary conditions

\begin{align*} T(0, r) & = 0 & \forall 0 \leq r \leq 1\\ T(t, 1) & = 1 & \forall t > 0\\ \frac{\partial T}{\partial r} (t, 0) & = 0 & \forall t \geq 0 \\ \end{align*}

7.7.5 Spherical Coordinates

Suppressing the prime notation, for a cylindrical geometry the model specializes to

\begin{align*} \frac{\partial T}{\partial t} & = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial T}{\partial r}\right) \end{align*}

Expanding,

\begin{align*} \frac{\partial T}{\partial t} & = \frac{\partial^2 T}{\partial t^2} + \frac{2}{r}\frac{\partial T}{\partial r} \end{align*}

with auxiliary conditions

\begin{align*} T(0, r) & = 0 & \forall 0 \leq r \leq 1\\ T(t, 1) & = 1 & \forall t > 0\\ \frac{\partial T}{\partial r} (t, 0) & = 0 & \forall t \geq 0 \\ \end{align*}

< 7.6 Path Planning for a Simple Car | Contents | Tag Index | 7.8 Path Constraints >

Open in Colab

Download