{ "cells": [ { "cell_type": "markdown", "metadata": { "nbpages": { "level": 0, "link": "[](https://jckantor.github.io/CBE32338/02.03-First-Order-Model-for-a-Single-Heater.html)", "section": "" } }, "source": [ "\n", "*This notebook contains material from [CBE32338](https://jckantor.github.io/CBE32338);\n", "content is available [on Github](https://github.com/jckantor/CBE32338.git).*\n" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 0, "link": "[](https://jckantor.github.io/CBE32338/02.03-First-Order-Model-for-a-Single-Heater.html)", "section": "" } }, "source": [ "\n", "< [2.2 Fitting Step Test Data to Empirical Models](https://jckantor.github.io/CBE32338/02.02-Fitting-Step-Test-Data-to-Empirical-Models.html) | [Contents](toc.html) | [2.4 Two-Input, Two-Output Model](https://jckantor.github.io/CBE32338/02.04-Two-Input-Two-Output-Model.html) >
"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpages": {
"level": 1,
"link": "[2.3 First Order Model for a Single Heater](https://jckantor.github.io/CBE32338/02.03-First-Order-Model-for-a-Single-Heater.html#2.3-First-Order-Model-for-a-Single-Heater)",
"section": "2.3 First Order Model for a Single Heater"
}
},
"source": [
"# 2.3 First Order Model for a Single Heater"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpages": {
"level": 1,
"link": "[2.3 First Order Model for a Single Heater](https://jckantor.github.io/CBE32338/02.03-First-Order-Model-for-a-Single-Heater.html#2.3-First-Order-Model-for-a-Single-Heater)",
"section": "2.3 First Order Model for a Single Heater"
}
},
"source": [
"\n",
"\n",
"Mathematical modeling is an integral part of process control. The models come in many forms, ranging from the barest of information about a process to sophisticated simulation involving millions of computational nodes. \n",
"\n",
"Our purpose here is to demonstrate certain basic approaches that will provide with insight about the qualitative nature of process dynamics, how to construct simple models from first-principles understanding of the processes, and how to develop models in those circumstances when its not possible to start from first principles.\n",
"\n",
"Our first example will be the Temperature Control Laboratory.\n",
"\n",
"\n",
"* First-order lumped model for a single heater/sensor device.\n",
"* Interacting first-order models for the dual heater/sensor.\n",
"* Second-order model for a single heater/sensor device.\n",
"* Interacting second-order model for the dual heater/sensor."
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpages": {
"level": 2,
"link": "[2.3.1 First-order lumped model for heater/sensor device.](https://jckantor.github.io/CBE32338/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.1-First-order-lumped-model-for-heater/sensor-device.)",
"section": "2.3.1 First-order lumped model for heater/sensor device."
}
},
"source": [
"## 2.3.1 First-order lumped model for heater/sensor device.\n",
"\n",
"We'll be begin by writing a model for one of the heater/sensor pairs. We will assume the whole heater/sensor pair is at single uniform temperature $T_1$. Then we write a dynamic energy balance\n",
"\n",
"\\begin{align}\n",
"C_p\\frac{dT_1}{dt} & = U_a(T_{amb} - T_1) + P_1u_1 \\\\\n",
"\\end{align}\n",
"\n",
"where $T_1$ is the combined temperature of heater/sensor one, $T_{amb}$ is the ambient temperature of the surroundings, and $u_1$ is a fraction of the maximum heater power $P_1$ being applied. The key parameters are the total heat capacity $C_p$ and the overall heat transfer coefficient with surroundings $U_a$.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpages": {
"level": 3,
"link": "[2.3.1.1 Steady State](https://jckantor.github.io/CBE32338/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.1.1-Steady-State)",
"section": "2.3.1.1 Steady State"
}
},
"source": [
"### 2.3.1.1 Steady State\n",
"\n",
"We'll begin our analysis by investigating the steady-state response of this system to a steady-state input $\\bar{u}_{1}$. At steady-state all variables are constant so $\\frac{dT_1}{dt} = 0$, which leaves \n",
"\n",
"\\begin{align}\n",
"0 = U_a(T_{amb} - \\bar{T}_1) + P_1\\bar{u}_{1}\n",
"\\end{align}\n",
"\n",
"Solving for $\\bar{T}_{1}$\n",
"\n",
"$$\\bar{T}_{1} = T_{amb} + \\frac{P_1}{U_a}\\bar{u}_{1}$$\n",
"\n",
"Next we'll load some experimental data that you can use to estimate the value of $U_a$."
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpages": {
"level": 2,
"link": "[2.3.2 Loading previously saved experimental data](https://jckantor.github.io/CBE32338/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.2-Loading-previously-saved-experimental-data)",
"section": "2.3.2 Loading previously saved experimental data"
}
},
"source": [
"## 2.3.2 Loading previously saved experimental data\n",
"\n",
"Previously a step test was performed in which the temperature control laboratory was initially at steady state at an ambient temperature of 21°C. The power to heater 1 was set to 50% for $P_1$ = 4.0 watts. Temperature $T_1$ and $T_2$ were recorded every second for a period of 800 seconds.\n",
"\n",
"The data is in a file named \"Step_Test_Data.csv\". The following cell will attempt to read the data from the course github repository and store in a local file."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"nbpages": {
"level": 2,
"link": "[2.3.2 Loading previously saved experimental data](https://jckantor.github.io/CBE32338/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.2-Loading-previously-saved-experimental-data)",
"section": "2.3.2 Loading previously saved experimental data"
}
},
"outputs": [],
"source": [
"import pandas as pd\n",
"url = \"https://raw.githubusercontent.com/jckantor/CBE30338/master/notebooks/TCLab/Step_Test_Data.csv\"\n",
"data = pd.read_csv(url)\n",
"data.to_csv(\"Step_Test_Data.csv\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpages": {
"level": 2,
"link": "[2.3.2 Loading previously saved experimental data](https://jckantor.github.io/CBE32338/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.2-Loading-previously-saved-experimental-data)",
"section": "2.3.2 Loading previously saved experimental data"
}
},
"source": [
"If that fails to work, then manually download the dat from this link https://github.com/jckantor/CBE30338/blob/master/notebooks/TCLab/Step_Test_Data.csv and save to the same directory as this notebook before proceeding."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"nbpages": {
"level": 2,
"link": "[2.3.2 Loading previously saved experimental data](https://jckantor.github.io/CBE32338/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.2-Loading-previously-saved-experimental-data)",
"section": "2.3.2 Loading previously saved experimental data"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8VfX5wPHPkw0JEAgQ9hJkKSsIKoqAe1RxD9y2aFtbrbW1amu12lZ/tVU7bN1ateKoExdWCCACKspS9h5hJBAyIPv5/fE9SW6Sm+TekJt7kzzv1+u8cs/3rOeee3Oee77nnO9XVBVjjDGtV1S4AzDGGBNelgiMMaaVs0RgjDGtnCUCY4xp5SwRGGNMK2eJwBhjWjlLBCEmIioiA8Mdh6mdiPQUkc9FJFdEfh/ueIxpaq0iEYhIns9QJiKHfManefMcKSKvi0imiBwQkeUicpuIRItIP++AHhPiOJNF5FkR2eUdlNaKyB0+00OSVETkLp/9USAipT7j3x7Ges8QkfX1zDNDRAq995vr7ff7RSQpiO3sEpETGhon8CNgs6q2U9W7D2M95fHcJCIl3v7LEZGvReQMb1qiiPxXRLZ4n+exh7u9emIZLiJFIvJ0HfNEicgjIrLf+/4/EMqYvG1W+cxEZIiIlIR6u962ponIQu848FEIt3ONiGz1vgdviEiHWuZL8L4L+T7/d38PVVz+tIpEoKpJ5QOwFfieT9nLInIEsBjYBhytqh2Ai4GxQLsmDPURIAkYCnQAzgU2hHqjqvoHn/1zE7DQZ/8MD/X2gftVtR3QBfgBMBmYLyIJTbBtgL7Adw1ZsI4fB+ne/uwIvAK87iU3BeYCVwD7G7LNID0OfFHPPD8BTgWGAWOAS0Xk2hDHFU5ZwJ+Bv4RqAyIyGvgrcCnQHRDgsXoWG+zzf3dzqGLzS1Vb1QBsBk6pVvYS8H4dy/TD/QPH+Jk2DlgIZAMZwN+BOJ/pCvwU2AhkAn8ComrZzkpgai3T5nnrygfygEu98nOApd72PwdGVHuvd+IOcvuB54CEevbPtcBnfsqPAmZ761nlGydwHrAayMUl058CKcAhoMyLNw9I8bPeGcCvq5V1BPYC3/fGhwDpwD6v/AWgnTftdW8bB71t/BSIAf4L7Pb2yxzcP5m/9/sKUAwUesufCLQB/uF9ntu9zyzWm/8MYD3wG2/9T/lZ503A/3zGU7zP7qhq82UCx4bwu34t8G/gQeDpOub7GrjaZ/zHuETmb97FwNne61O89zXF57u4qIGf2R5vXeXfldHeOj4DDnjr+HeA77vK+/XWU+JnvpuBj0K07/8CPOszPtz7f6jx/wckeO+9V6i+C/UNreKMIACnAG80cNlS4GdAZ+A44GRcVYOv83FnF2NwB83ra1nXIuD3InKdiAzynaCqE72XI9X9YnhVRMYAzwI34g42TwDviki8z6LTgNOBI4AjgV8H+wZFpD3wCfCM9z6vBp71qaZ6FncgaQeMAuarapb3vjdq5a+crEC2p6r7cQfvE32Kfwd0A44GBgN3e/NejDuInOZt46/e/O9677kbLkm9UMu2Lscljfu95ecD9wEjvG2lAZOAX/os1g+IBXrjDmK18s4YbsAdzDbV++ZrLv+MiGTXMtT6S19EOuL20S9rm8fHMGCZz/gy3IHLn7m4/QEwEfcD5ySf8bk+8wbzmU0ESn2+K98AfwTeBpKBPrjvd5MSkUF17P9sEbmglkWH47NPVfVbIBr3nazNFyKSISKviUjvRnwb9bJE4KTgfv0FTVWXqOoiVS1R1c24L+tJ1WZ7SFX3qepW4FHg8lpW9xPgZdwvle9EZL2InFnH5n8APKGqi1W1VFVfwP2y9a13/ruqblPVfcDv69h2Xc4HVqrqy952vgTeAy70ppcAw0Wknapmef/Eh2sn0AlAVVer6mxVLVLVXbh9WH0fV/A+ixdUNU9VC3AH9nFBVDVNA36rqpmquht4ALjKZ3ohLnEUqeqhWtZxkohkA7twyX+qquYHuH3f93KDqibXMoyrY9EHcZ/9rrrWLyKxQDwuUZU7QO1VonOpeuD/o8/4Sd70oD+zWhTjkm43VT2kqguCXP6wqeq6OvZ/sqq+WcuiSVTdp+DOmP3t12Lcj56+uKScDbwjIk12fLZE4GTh6vGC5l1knuld/MoB/oD71exrm8/rLUAPf+vyvux/UNU0XHJ6DVe33KmWzfcFfu77CwX3K9V3/QFtux59gYnVtnMhlftsqje+VURmi8jYBmyjup64agVEpIe4C/k7vH38NDX3cQURiRGRh0Vkozf/alwdbUp9GxURwf2K3eJTvMWLp9wuVS2uZ1VzvQNFZ1WdoKrp9W27sYjIeGA8rnqrTt77KATa+xS3xx20/PkMGCkinXG/8l8ABnvjI73pQX9mtfgZ0Bb4xruJ4Moglw+nPKruU3BJoMZ+9X5cfaaqxd7Z8M24qti6zh4alSUC539U/roN1j9xB5pBqtoeuAt30PHle5rXB/drt06qWp5UEoH+tcy2Dfh9tV8obVX1lcPZdi3bmVVtO0mqeqsX60JVPQdIBWbh6t3B1XsGTUSScdUP872iP+GujRzl7ePvU3UfV9/OdcBpuIvOHXB1xFDzc6lBVRX3K76vT3EfYEcd2wsZEXleqt715jssqWWxycBAYLuI7MIdWK4QkYW1zP8d7iBebiTg924xVT2Au5Z1G7DESyRfeeMrve8tBP+Z1dinqrpDVa/H/eD4Ka46sk8t78FXPi6BlOsWwDJ+eT/0atv/eSJS23HjW3z2qYgMw1UjB3rzhxLA97WxWCJwfgscLyJ/EpFuACIyUERe8g5K5eK9W73Khyhcls8B8kRkCPBDP+v/hYh09Or9bgFe9ReEiPxGRI4RkTivGuMW3GniGm+W3cAAn0WeAm4SkfHiJIrI2SLie/r5YxHp5Z1V3FXbtuvxNjBaRC4VkVgvvmO9f5JEEbnMu45QjPvFU+oTb1cJ8FZQb5+OA97BJayXvEntcL+wcrwDwW3VFq2+X9oBBbgzvURc1U4wXgF+KyIpItIVV7f9Uj3LBExE4n2qqeKkjiorVb3Wp968+pBWy2J/wyWCUd7wHPAW8L1a5v837jvazfuO3go8X8dbmItLLuXXA9KrjUPwn9keINr3QO9933p4yTnbKy7xpi0SkV/VEt9SYLK450M6Anf4ThR3S3gC7qaCKO975/fuL1VdW8f+T1LV/9YSw0vAhd7/SRKuevJVr6qyChEZ4Q3R3v/RY8A63E0JTUPDdJU6XAN+7hryygfj7mbIwtXtLcP9Q0RTeddQ9eEUXD3patyXfj7uAtlnPuv1vWuo/La16Fpi+zXu11YOrlokHTjeZ/pNuGsZ2cAlXtkZwJdU3rX0OpV3Z2ym8q6hbNxpfNt69s+1+L9raDjwEe5Ol0zcWdRw3IF2Fu5uohzcXSXjvWUE9w+R5W2/k5/1zsBVTeR6+3Al7kyovc88o3D/3HnAEtw/9nqf6RfjzlqycQekDsD73vybvPdU610ZVLtzCfdr8p+4M4OduDtA4nz29/p69mGVu4b8TN/l57vULYTf+ep30ZwCZPqMR+FuXd7vfVa/r2d953kxl3/OY73x8xr6mXllD+HuDsr2ln/U+07n4Q6M1/osvx2YWEt8UbgfSQdwP6JuxOeuIe/zqb7//xWC/X6tF2c+7oaEDj7TZgO3ea9PB9Z68+3x5u0fqu+Dv0G8QEwLJCKbcbdg/i/csRjTWMTdrfaUqk4OdywtRUiflDXGmMamqutx10FMI7FrBMYY08pZ1ZAxxrRydkZgjDGtXLO4RtC5c2ft169fg5bNz88nMTGxcQNqBBZXcCyu4ERqXBC5sbXEuJYsWZKpql3qnbEpb1Fq6JCWlqYNNWfOnAYvG0oWV3AsruBEalyqkRtbS4wL+EoDOMZa1ZAxxrRylgiMMaaVs0RgjDGtXLO4WOxPcXEx27dvp6CgRtMdVXTo0IFVq1Y1UVSBSUhIwDVyaYwx4ddsE8H27dtp164d/fr1q/OgmpubS7t2TdnbZN1UlaysrIi8O8EY0zo126qhgoICUlJSmt0vaxEhJSWF6OjocIdijDFAM04EQLNLAuWaa9zGmJap2VYNGWNMKK3dncuenEJ25RRw6rBUOrSJrZi2ZMs+NuzNZ/u+g1WW6dahDVeMr9l3zszlOxGEs0c0qCPEkLNE0EBZWVmcfPLJAOzatYvo6Gi6dHEP8I0ZM4aZM2fStWtXVq5cGc4wjTENdNoj8ypeTx3Vg0cvG10xfuE/Kzt7Kz/BL2+2bcLAFPqmVF4DLCgu5eb/uG68Tx56BgmxkVctHNJE4LWHX95jVYmqjhWRe3Gdru/1ZrtLVT8IZRyhkJKSwtKlSwG49957SUpK4vbbbwdg3rx53HzzzVx99dXhDNGYkCktU3726lI2ZebTrUOtHaxV+N7IHvTt1JbH09ezL6uA13d+TVmZcuspRxIbLTw8aw3FpZUNYKoqG/bm89TVaQzsGtzNHo98shYRuPWUI4Na7pMtxbz876/8Tnt76U7yi0q92CrLzxvVg8e8BPHdzhzO+ut8bn11KZ2T4ivmyS8sqXh9wwtf0jau8rC7OTOfru3jue/c4cRERXH9C1/SPyWRqKjK6uMJHUoJtaY4I5isqpnVyh5R1YebYNthMXHiRDZv3hzuMIwJmRU7DvDuMtf9dXFpWZ3XvXZmH2Jr1kFG9U7m4293u8JdGQD07tSWhJgoPly5iyHdKvt6X5Xhuj7+8cvf8PHPJgYc14FDxTz26ToAbjihP+0SYutZwikrU95cV0Riwn66tHOJrXNSPJl5hQAM6daO7fsPVcwfGy3Ex0RzcVpll+BHpiZxytBUdmQfqjIvwNDu7r3tyy9mX35xxTbX7clj3Z48/vv1Dr7YtI+Ne/PZuDe/Yn6A4ia46bFFVA3d9963fLczx++00tLSBt2hM6xHe377veGHG5oxzUZOQTHTnlrM/oNF9c57qKjyV+pHt9Z9oH7kk7U89uk6NmflM7JXB5ZtPwC4g+OLC7cgAoNT2/HhLSdWLDP1HwtYui2bNbtzOeGh2TXWObJXMrefPpgf/Psr1u/Jo2dyG0RcUip3yl/m0rFtHM9fN447/rucDXvzuH5Cf77cvI8VOw5UWZ8qHCqB+04fwiXH9K6+uYDEREfx9DVjA56/rEwZcJerDHl+wWYOFbt9OqBLYpV9kZ6e3qB4ghHqRKDALBFR4AlVfdIrv1lErga+An6uqvurLygi04HpAKmpqTV2RocOHcjNzQWguKiY0lL/p0+qWuu0uhQXFVesvz6FhYXExsZWmT8vL4+ysrJa16GqTfIBBysvL8/iCkIkxFVUqsRGVb0bLS8vj09mz6GkrPblEqKhqAzKvKqOlZmlrNhRyKgu0STG1nNnWxvYFRPFGf1j633/vYrLmNgrhtIyOLFHIf1ilHZt4unatpDFXsxjuxVVWc+0/mUU5EfRKSEKobjK+nbll/H+igzIy2T9HjdtT84hxnVzh7OhHdzfvKISvtpVyAOvzmPuRjff3/+3in0FysDkKFLbVr1psl+C0nb/etLTN9T93hvR9BHxbM0pI7dIUWLIOlTGdUPKquyLpviOhToRTFDVnSLSFfhERFbjOgW/H5ck7sd15n599QW9pPEkwNixY3XSpElVpq9atariQbEHLhxVawBN8UBZfHw88fHxVbaTlJREVFRUrdsWEaq/p0iQnp5ucQUhnHHN+nYX019cAsBVx/bl/qlHVUx7b9YcbptbRK5P/XR1I3sns2J7dkUiAIiOEv7zk1Oq1GM3hot9Xge6zy4+y3/5oo1ZXPbkIt7fVJkgph3bj3vPrXoGX1qmjLpvFjO9JDBlSFdmr94DwB8uHc+4/p2qzB+OzzKQrTVFXCFNBKq60/u7R0TeAsapasWleBF5CpgZyhiMaUnKypSNmXkUlyp/nrW2ovzlxVuq3Lb45a4ScgtL+P4J/f1ezH1jyXaWbcsmOkq4+8whFXe+9O+c2OhJoLGN69eJhy48mtyCEkb2TiYrr5BJg7vWmC86SvjXVWmsysihY9s4Jg3uwjtLd5IUH8PYvh3DEHnkCtknLiKJQJSq5nqvTwN+JyLdVTXDm+18oMXdX3n55ZeTnp5OZmYmvXr14r777uOGG24Id1imBXhjyXZ++d/lNcrLFM58bH6VsrjoKH526pEkxtf8N88pKGH1rlyGdW/PDyYOCFm8oRAVJVx6TM179f2ZMLAzEwZ2rhi//oT+oQqrWQtl6k8F3vLqLWOA/6jqRyLyooiMwlUNbQZuDGEMTeLee++tMv7KK6+EJxATVll5hSzYkEVpWc2K+dIyiPbzHH+UCL06tgWUrdUeTvLn7aU76JQYxx/OL68GErp1SGBvbmGV7a5c+S2nnTDWbxIAmD5xAEf1aF/l7hTTeoUsEajqRmCkn/KrQrVNY8Lpon8tZFNmfsi3c/aI7pxxVN1PqCZkrmFEr+RapyfFx3Da8G6NHZpppiK7MtCYCFdUqjzyyVoOFZdWJIFTh6Vy91lDK+b5cvM+fvHGcnomt+Hl74+vsvwlTyxkT667V/2itF7cPHlgvdvskdymEd+BMZYIjDksS/eW8vjSdcTHVNb73HbqkfTrXNnEQEpSHH+dvY4/nj+iSjm4h57++OFqwD2lWn26MU3BEoExQSgtU3788td8l5FD35S2rN1RRFxMFCvuPZ24GP+N+bZLiGX+L6f4nXbjSUdw40lHhDJkY+plicCYIKzKyOGjb3cB0CkxjnZxwkXj+9eaBIxpDiwRGOOjoLiUsQ/8j7zCkioNh5UrLKl8Sv2tHx3P3LlzmTRpSFOGaEyjs0TQQLU1Q52bm0ufPn3YtWsXUVFRTJ8+nVtuuSXM0Zq6lJUpRV4bNUu27CfPexr31GFd/TamtmP/IaaN72MdDJkWwxJBA9XWDHVGRgYZGRmMGTOG3Nxc0tLSOPXUUxk2bFiYIza1Of+fn7NsW3aN8j9eMCIM0RjT9CwRNLLu3bvTvbu7x7tdu3YMHTqUHTt2WCKIEMWlZazKyKHUa2DnYFEpy7Zlc9qwVEb36eiVlXDy0NRwhmlMk2oZieDDX8GuFX4ntSktgegGvM1uR8OZDx5WWJs3b+abb75h/Pjx9c9smsTzCzbz+w9W1SifPnEAY/t18rOEMS1fy0gEESgvL48LL7yQRx99lPbt7TH+cJmzZg8Z2QUV4zOX76RXxzZVWupMjIshzRohM61Yy0gEdfxyP9QEzVBXV1xczIUXXsi0adO44IILmnTbptKenAKue+7LGuVXHtuHyX5aqzSmtWoZiSCCqCo33HADQ4cO5bbbbgt3OK2OqvLMZ5vILyxl5U7XC9Uz14zlqJ4dKubp4ue2UGNaM0sEjWzBggW8+OKLHH300Ywa5TrM+cMf/sBZZ9XSy4ZpVCt35PDA++4aQNu4aIZ1b8+EgZ1JiA2+u1JjWgtLBI3AtxnqE044AVWtfWbT6L7cvI9/pW+gTJW9XmfjAP+4YgyTh1gVkDH1sefiTbP38qItLNiQSVZ+EVHeQ14nDOzMMf3tLiBjAmFnBKbZWbnjAD/+z9cUeT2zZ+UVMXlIF564amyYIzOmeWrWiUBVm+Vj/lZ1FJzi0jLyipTsg0UAvL8ig637DnLRmF6IgCBcOq53mKM0pvlqtokgISGBrKwsUlJSmlUyUFWysrIoLS2tf2aDqnLmY/NZv+cgzP6konxwajv+dHGNDvCMMQ3QbBNBr1692L59O3v37q1zvoKCAhISEpooqsAkJCSQnx/6Lg2bo8KSUtbtziOnoBiAnEPFrN+Tx7Hdozl97OCK+Y6xp4CNaTQhTQQishnIBUqBElUdKyKdgFeBfrjO6y9R1f3Brjs2Npb+/fvXO196ejqjR48OdvUht2XLlnCHEJHueGM5by/dWaP8zP6xXDOh/s/bGBO8pjgjmKyqmT7jvwI+VdUHReRX3vgdTRCHiWD5hSXM+m5XRRLomdyGP1/iqn6S4mPIXPdNOMMzpkULR9XQecAk7/ULQDqWCFq9V77YWvEgGMAtJw/i2AEpFePp68IRlTGtQ6gTgQKzRESBJ1T1SSBVVTMAVDVDROyJn1Zs0cYsPv52FwvWZ9IzuQ2v3ngsKYnxtImzJ4GNaSoSylsZRaSHqu70DvafAD8B3lXVZJ959qtqjaYfRWQ6MB0gNTU1bcaMGQ2KIS8vj6SkpAYtG0oWl3P/wkNszikjLhqm9I7l4sFxERFXoCyu4EVqbC0xrsmTJy9R1fofsFHVJhmAe4HbgTVAd6+sO7CmvmXT0tK0oebMmdPgZUOptcf167dW6GVPLNSBd72vv3//u3rnb+37K1iRGpdq5MbWEuMCvtIAjs8ha2JCRBJFpF35a+A0YCXwLnCNN9s1wDuhisFEpl0HCnhx0RZ25xYwtm8nzh3ZI9whGdOqhfIaQSrwlvewVwzwH1X9SES+BF4TkRuArcDFIYzBRIji0jLOf3wB2/cfoqTUVUf+6aKR1iGMMREgZIlAVTcCNR79VNUs4ORQbddEnqy8Qr7dmcPKHTmcMrQrPZPb0DExjlG9k+tf2BgTcs32yWLTPCxYn8m0pxdXjP/2e8Pp3altGCMyxlRnicA0OlVl/Z48sg8V887SHURHCQ9MPYrU9vGWBIyJQJYITKN7Yt5GHvxwdcX4iF4duHxcnzBGZIypiyUC02iKSsp4e+kO/jV3Q0XZSzeMZ1Bq5N2bbYypZInANJr/rdrNL99YXjF+y8mDOGFQ5zBGZIwJhCUC02BlZcpjn65jT67rJ/jbnQeIi4li/i8nk5IYR3RU8+knwpjWzBKBabBVu3J47NN1dGgTS1yMezZx6qgepLaPrP4fjDF1s0RggvbUvI28vyKDA4dc5zHv3jyBvimJYY7KGNNQlghM0J75bBPRUcIRXZOYMDCFPnZLqDHNmiUCE5DCklIu+ddCdmQfIjOviF+fPZTvnzgg3GEZYxqBJQJTrwMHi1m2PZtl2w8wZUhX+nRqy3mjeoY7LGNMI7FEYOo0b+1ern72i4rxB6YeRY/kNmGMyBjT2CwRmFpt23eQN7/eTlx0FL85ZyjdOrSxJGBMC2SJwNTq8qcWsX3/IY7p15GrjusX7nCMMSFiicDUsHRbNvPX7mX7/kP84MT+/HDSwHCHZIwJIUsEpoZfvL6MdXvyiI0WLkrrTadE//0IG2NaBksEpsK+/CKeW1nI+r0l/GTKQG6eMpD4mOhwh2WMCbGQ9Vlsmp+PVu5i7vYS+ndO5MyjulsSMKaVsDMCA8Cybdnc9dYK2sbAp7edhNfXtDGmFaj1jEBEuojIMD/lw0WkS2jDMk3trW92AHDOgFhLAsa0MnVVDf0N8HfA7wU8FugGRCRaRL4RkZne+PMisklElnrDqOBCNo3p6637Sbv/E15ctIVx/Ttx1gC7MGxMa1NXIjhaVedWL1TVj4ERQWzjFmBVtbJfqOoob1gaxLpMI8rMK+TdpTvJPlTMNcf145enDw53SMaYMKjrGkFsA6dVEJFewNnA74HbgojLhNiybdmc948FABzVsz33fM/VAqZvDmNQxpiwEFX1P0HkfeAfqvpBtfIzgZ+q6pn1rlzkDeCPQDvgdlU9R0SeB44DCoFPgV+paqGfZacD0wFSU1PTZsyYEcz7qpCXl0dSUuT1mRvOuPYeLOO9jcXM217CNcPiGNwpmh5JUWGPqy4WV3AiNS6I3NhaYlyTJ09eoqpj651RVf0OwJHAWuB54Cfe8IJXdmRty/ksfw7wuPd6EjDTe90dECDeW9899a0rLS1NG2rOnDkNXjaUwhnXOX+dr33vmKmn/Dm9xjTbX8GxuIIXqbG1xLiAr7Se46uq1l41pKprReRo4ArgKK94LnCjqhYEkIwmAOeKyFlAAtBeRF5S1Su96YUi8hxwewDrMo1g3e5c5q3L5LuMHK4Y34dfnGbXBIwx9TxHoK7K5rmGrFhV7wTuBBCRSbiqoStFpLuqZoi7R3EqsLIh6zfBu+edb1m4MQsROGdEdzpa0xHGGOpIBCJyInCzN/q4+rmDqIFe9p5DEGApcFMjrdfU4lBRKQ99tJpvtu3n8nF9+PXZQ0mMt2cJjTFOXUeDPwMTvdfzgWMauhFVTQfSvddTGroe0zDz1u3l+c830zO5DeeO7GFJwBhTRV1HhHTgPqAMWNgk0ZhG9/T8jTzz2SZiooRPf34SCbHWfpAxpqq6Lhb/UkQGA9Gq+l0TxmQa0XMLNhMlwk9PHmRJwBjjV30Xi9c0VSCmca3dncuFj39ObmEJd581lB9MHBDukIwxEcqaoW6BikrK+HjlLnILS7h58kAuSusV7pCMMRHMrhq2QNc//yWfrc+ke4cEbrf2g4wx9airGeo7RWR0UwZjDk9pmbJgfSZfbNrHyUO68sRVaeEOyRjTDNR1RrAJuEVERgLLgA+BWaq6v0kiM0H7+Ntd/OjlrwG4bFwfRvRKDnNExpjmoK67hmYAMwC8M4MzgDdFJBr4H/CRqn7RJFGaeu3JLeDed78lPiaKt340gaHd24U7JGNMMxHQxWJV/UZV/6iqk3GNyX0LfD+kkZmgPLdgM3tyC5l4ZBeG9WhvvYwZYwIW9MViVc0B/usNJgJ8viGTf6ZvYEi3djxp1wWMMUGy20dbgCfnbQRg2vg+diZgjAmaJYJm7m+friN9zV4uGduLq47rF+5wjDHNUIMSgYgMaexATMO8vHgrAFce2zfMkRhjmquGnhHMatQoTINc+sRCduUU8Ouzh9qtosaYBqurP4K/1jYJsKNOmG3OzGfxpn30TG7DBWOsCQljTMPVddfQdcDPcZ3MV3d5aMIxgcgvLGHSw+kAPHzxSDpZT2PGmMNQVyL4Elipqp9XnyAi94YsIlMnVeWJuRsAuPLYPhw7oFOYIzLGNHd1JYKLAL+d1Ktq/9CEY+qzYscB/jp7PQC3nTrYbhc1xhy2upqY2NeUgZj65RYUc/vrywB458cTrErIGNMoQv4cgYhEi8g3IjLTG+8vIotFZJ2IvCoidjQL0HvLMli7O4+BXZMY2duu1xtjGkdTPFB2C7DKZ/wh4BFVHQTsB25oghiavXW7c7nrrRV0h0/tAAAgAElEQVQkt43lk59NDHc4xpgWJOBEICKJwa5cRHoBZwNPe+MCTAHe8GZ5AZga7Hpbo/IHxy4d29uuCxhjGpWoat0ziByPO5AnqWofr3+CG1X1R/WuXOQN4I9AO+B24FpgkaoO9Kb3Bj5U1aP8LDsdmA6QmpqaNmPGjGDeV4W8vDySkpIatGwoBRNXdmEZt845xOCOUdw5vk3ExNWULK7gRGpcELmxtcS4Jk+evERVx9Y7o6rWOQCLgd7ANz5lKwNY7hzgce/1JGAm0AVY7zNPb2BFfetKS0vThpozZ06Dlw2lYOJ6/att2veOmfrvhZtDF5CnJeyvpmRxBS9SY2uJcQFfaT3HV1UNrBlqVd1WrTqiNIDFJgDnishZQALQHngUSBaRGFUtAXoBOwOJobX6bF0mt7++jDax0Uwb1yfc4RhjWqBArhFs86qHVETiROR2ql789UtV71TVXqraD7gMmK2q04A5uGcUAK4B3mlY6K3Dq19tA+CRS0cRFWXXBowxjS+QRHAT8GOgJ7AdGOWNN9QdwG0ish5IAZ45jHW1aNv2HeS9ZTsZ0asDZxzVLdzhGGNaqDqrhrz+ia/yfsk3mKqmA+ne643AuMNZX2tQUlrGgx+uBuDWUwaFORpjTEtW5xmBqpYC5zVRLMbH/1bt4f0VGcTFRDFxUJdwh2OMacECuVi8QET+DrwK5JcXqurXIYuqlcvMK+S3764E4PNfTSEm2jqSM8aETiCJ4Hjv7+98yhT3YJgJgZcWbWF3TiGTB3ehc1J8uMMxxrRw9SYCVZ3cFIEYZ9HGLB793zoGdU3i2WuPCXc4xphWoN5EICL3+CtX1d/5KzeH59nPNgEwbXwfa0rCGNMkAqkayvd5nYB7Yrje5whM8B5PX8+s73YzdVQPrp1gXT4YY5pGIFVDf/YdF5GHgXdDFlErVVamvLhwC4AlAWNMk2rI7ShtgQGNHUhrd/ETC8k4UMCdZw5hlPU1YIxpQoFcI1iBu0sIIBrXcNz9oQyqtdm27yBLtuxnQOdELjvG2hMyxjStQK4RnOPzugTY7TUYZxpBQXEpJ/7fHADuPXc4HdrGhjkiY0xrE0jV0AOqusUbdqhqiYi8GPLIWokPV2YAcNkxvTlhYOcwR2OMaY0CSQTDfUdEJAZIC004rc8/0zcAcNtpR1rrosaYsKg1EYjInSKSC4wQkRxvyAV2Y01HN4pVGTms3Z3HFeP70LVdQrjDMca0UrUmAlX9I9AB+LeqtveGdqqaoqp3Nl2ILddzC9zDYxeM7hnmSIwxrVmdF4tVtczro9g0si92lfDa0u2cdGQXxvbrFO5wjDGtWCDXCBaJiDV608g+3FQMuIvExhgTToHcPjoZuElENuOamxBAVXVEKANryRZvzGLTgTJunDiAM4/uHu5wjDGtXCCJ4MyQR9HKvLtsJwAXpvUKcyTGGBNA1ZCqbgF6A1O81wcDWc74t23fQV5evJUhnaI4MrVduMMxxpj6D+gi8ltch/PldwrFAi+FMqiW7J2lOwCY0seeIDbGRIZAftmfD5yL1xy1qu4E6v0pKyIJIvKFiCwTkW9F5D6v/HkR2SQiS71h1OG8geakpLSMh2etJT4mirGp0eEOxxhjgMCuERSpqoqIAohIYoDrLsRVJ+WJSCzwmYh86E37haq+0YB4m7Un5m0E4KaTjiBKdoY5GmOMcQI5I3hNRJ4AkkXkB8D/gKfqW0idPG801hu0jkVatI178/jTx2sAuMRuGTXGRBBRrf/YLCKnAqd5o7NU9ZOAVi4SDSwBBgL/UNU7ROR54DjcGcOnwK9UtdDPstOB6QCpqalpM2bMCGSTNeTl5ZGUlNSgZRvTE8sLWLizlDvHJTC4U3TExFWdxRUciyt4kRpbS4xr8uTJS1R1bL0zqmq9A9ANd53ge0C3QJaptnwyMAc4CuiOexYhHngBuKe+5dPS0rSh5syZ0+BlG0tpaZkO/c2H2veOmVpSWqaqkRGXPxZXcCyu4EVqbC0xLuArDeAYHchdQ98HvgAuAC7CPWl8fTBZSVWzgXTgDFXN8GIsBJ4DxgWzrubolS+3crColIcvHkm0tTBqjIkwgVws/gUwWlWzAEQkBfgceLauhUSkC1Csqtki0gY4BXhIRLqraoaICDAVWHlY76AZeM97gGziIOtvwBgTeQJJBNuBXJ/xXGBbAMt1B17wrhNEAa+p6kwRme0lCQGWAjcFGXOzsmTLPhZt3Mc1x/Wla3tratoYE3kCSQQ7gMUi8g7urp/zgC9E5DYAVf2Lv4VUdTkw2k/5lIaH2/y8+bV7gOxS64vYGBOhAkkEG7yhXHmnNNY+Qj2enr+RlxdvZUyfZIb1aB/ucIwxxq96E4Gq3tcUgbQ0qspLi7YA8MDUo8McjTHG1K7eRCAiY4G7gb6+86s1Q12n2av3sDnrIJeO7W1nA8aYiBZI1dDLuDuHVgBloQ2n5Xj+880A3HHmkPAGYowx9QgkEexV1XdDHkkLknHgEPPXZdI3pS2dEuPCHY4xxtQpkETwWxF5GtccREVTEKr6ZsiiauaemOsal3vwAqs9M8ZEvkASwXXAEFyjceVVQwpYIvBDVSt6IBvTNznM0RhjTP0CSQQjVdVuewnQm1/vYF9+EfdPPYr4GOtzwBgT+QJphnqRiAwLeSQtxHvL3dnAyUO6hjkSY4wJTCBnBCcA14jIJtw1AsF1N2AV4NUs3ZZN+pq9XDK2Fz2S24Q7HGOMCUggieCMkEfRQpQ3LnflsX3DHIlpsUpLoLQQykqgpFo3Hm06QnS1vrCLC6CkALTMLQMQ2xbiq7VvX1YGBzNDF3ebjlB8EMpKQ7cN02CBPFm8RUROAAap6nNeg3GR13tDmGXmFfLMZ5sYnNqOEb3sIrEJkZcugE1z/U/rfxJc43Ond1kZPHo05O+pOl9sW7h1JSSmVJa9/zNY8nyjh+tP5+F3ApOaZFsmMIE8WfxbYCwwGNd/QCzwEjAhtKE1Lx9/uwuAayf0C28gpnlShdwMKMyDwpza5/FNAmc8WHkGsHYWbJgN274AiaJdzhpYfaBqEjj7z3BgO3z2CKx4HXr5dFy1fjb0HAujLm/89/bRXe4sBiAqhi57F8D2r4JfT0yCO7tBoNtREBNfcx5V2L0S2qZA+x6HFXat9m2CwlzQUpAoNyQkQ95uN71jPygtcmV7voOoGIhvB4eyoW1HN//BLBcrQJch7gytrBR2rag8cyt/28V5hFogVUPn41oR/RpAVXeKiDU4V82DH6wGYOqonmGOxDRL37wI7/4k8PkTkuHYH1aOJ6XCuo/hmVMBSAPvP9aT2BWO+b5LNAsfh4/uqLnO8dPdPI0texsseNS97ns8qZvmwdMnH946T7gNTvltzfI1H8CMKyC+PdyxBaICuR8mCCv/C2/U0y9XdJxLBIEacSlc8KT7Drx3S43J7Y/28z4bWSCJoEhVVUQUQEQSQxxTs/Pl5n3kFpZw1bF9aRNnt4waH2VlsPINKD7k6ulLi9yBorrP/1b5+oKnXJ26PzHxkNDBDb4GnwXXvFdx3WD58uWMGDHCrad9z8pfz/FJMH0O5OysunxUNPQ5voFvsh5TfgNDznZxREWzfNbLLrZgLH0Zvn0LBp8N2VvcAT/ZT9Puaz50fwtzXPKpbT/60X3nWvhqU90z1VV9dsJtkL/XHdDL9TkOti70P/+0N+Dzv8LGdPjqOXeWltgFpv6zymy5mw4GFP/hCCQRvCYiTwDJIvID4Hrg6dCG1bw8Pmc9AFeMtz4HTDXLXoF3fhT4/O17wtEXgwTZpWlUNPSfWDG6b0csDJrkf97U4W5oKtEx0LuyR9p9KWm1x1abNh1dIjj+J64KbN7/wcxb/c/bsZ+rAvs0uIaTBwOsDWKBnmNh7xoo8vrtGnsd5GRUTQTDznNVQNsWwegrYeVbUJzvzgIGnQo5O9xZQPl7KS/3UbwjPaj30RCBXCx+WEROBXJw++oeVf0k5JE1E6rKih05nDG8G0O7WyujrcrqDzh6+cOQ/x5kb4VkP3eLbVtc+XrKr2H2A+7X+9l++nOKS3R1/sEmgdag11j4TabbP32OhWNuqKxjry6xMxTlu7OwIHy+8HOOPy6As6KEDu6sTsSLQd0dUQkd3FnKLze56wLFhyCpK4yb7ur9o+PgjIfcNYIYr7fCtGvd96H8bqqk8Dx/FMjF4odU9Q7gEz9lrd7OAwVk5hVy/MCU+mc2LcuMy0kB2LeksqxNJ//znv4HOOoi94vw5HugffemiLBlKb8wLgLtutU9b5tkNwShKD6l4Z9LtE9VXVvvO5Dg/TCUaHfGBjVv24WwHfx9BVI1dCpQ/aB/pp+yVumhD91F4pF2y2jLU1YGb//Q1UlX5+/XaN8T4Lr3617njz5vnNiMaUS1XlIXkR+KyApgsIgs9xk2AcvrW7GIJIjIFyKyTES+FZH7vPL+IrJYRNaJyKsi0mzbaVZVFqzPJD4myjqfaYn2bYDlM6Agx/0a9R1i4mDgqWSmjIfrZ8GYa+B7j4U7YmMapK4zgv8AHwJ/BH7lU56rqvsCWHchMEVV80QkFvhMRD4EbgMeUdUZIvIv4Abgn3WtKFK9vHgrWflF3H/ecGKjG/k2NdM0sjbAfy7xX59cUuD+XvCku2/dj5Xp6UzqMx76jA9hkMaEVq2JQFUPAAeABj1hoqoKlD8JEesNCkwBrvDKXwDupRkmgrIy5Z2lOwA482ir7414xYf8H+xXvQdZ62HEZe7uluqSukFXa3PRtGyitV15b4yVi0QDS4CBwD+APwGLVHWgN7038KGq1vi5JSLTgekAqampaTNmzGhQDHl5eSQlNX6LGM+sKGT+jhJO7BnDDUf7ecIxTHEdrpYYV1zhPsYvvpHoMv8P+RTGdWLhcc826G6dlri/Qi1SY2uJcU2ePHmJqo6tb75ALhY3mKqWAqNEJBl4Cxjqb7Zaln0SeBJg7NixOmnSpAbFkJ6eTkOXrcudCz+lfQI8dNXEBrU0Gqq4DlezjStrAxTluUf/o2KrPtm5bQOUFbkHfpJSaywa32O0q94JRVxhEqlxQeTG1prjCmkiKKeq2SKSDhyLezAtRlVLgF7AzjoXjkC7cwrIOFDAPecMs+amI8GulfCvepq+ikuCSXe6i7zGmCpClgi8VkqLvSTQBjgFeAiYA1wEzACuAd4JVQyh8tIidzvhyN4d6pnTNKrSYlj6H8jbU/V+7IxlNec992/QsX/lePselgSMqUUozwi6Ay941wmigNdUdaaIfAfMEJEHgG+AZ0IYQ6NTVV75YhsAw3tYImhS6z6B935a9zxtU1zLjiMu9d86pTGmhpAlAlVdjmu1tHr5RmBczSWah1nf7SYzr5C7zxpKQqw1MBdSy2bApvkADN6VAWt97lr+/qeQckTleGyi/eI3poGa5BpBS/Lal+5s4NRhNS86mkakCh/d6aqDEjrQsbAA4hNcc8o9RrshyhKxMY3BEkEQNuzN49PVe7hgdE/6dbbWuBtNYR68fZPruKNcWSkc2ucaZzvmBhZF6B0dxrQE9jhsEN5fngHAeaOt85lGteVz92BXYY5LAOUtMR4xBY60LrONCTU7IwjQgUPF/OWTtQzsmsRJR3YJdzjN18o34Y3rXJO94v0OKSl0r6/9wH/rjMaYkLJEEKCvt+wHYOqoEPWD2lKVlVb25QouCYA7+I+5urK86zBLAsaEiSWCAC3dlk2UwHUT+tc/s6n01k2w4rWa5WNvgDP+0PTxGGNqsEQQgLIy5a1vdjCoazsS422X1SlzPezbWDm+cQ70nQAjLqksi4qFoy9q+tiMMX7ZUS0A89btZeu+g1xgF4nrpgrPn1W1KghcF41p14YlJGNM/SwRBOCZzzYB8JtzrDniKrZ9UbV5h6I8lwROvN31wwquaedU/235G2MigyWCeuzNLWT+uky6d0igY6I9uVpBFWZMg/w9Vcsl2lUDdRkcnriMMUGzRFCPx9PXA/DnS0aGOZIIsGkerPyve11a7JLAqb+DkVdUzhObAPHtwhOfMaZBLBHU44MV7iGyMX06hjmSCDDnD7Dja2iT7MY79oOh34Mke67CmObMEkEd3v5mB7tzCrnnnGGtr4G5/Ex452bXzIOWubKdS2HcD+CMP4Y3NmNMo7JEUIeZXpMSpx/VLcyRhMEXT8LaD93rnmnuSeAjJsPIy8IblzGm0VkiqMWybdn8b9VuLhjdk56toRey4kPwzwmcmL0NPouG0sLKaZfPgKSu4YvNGBNSlghqkb5mLwDXHN8vvIGEUkkRFBxwrzOWwr4NZHU5ga6Dxriy3Azoe7wlAWNaOEsEtVi+PZuBXZMY2Ts53KGEzjOn1Ojmcf3A6+l62oVhCsgYEw6WCPwoKC51/Q6MaWFPEudnwS7vwF9c4JLA8PNdExAAHXpRlNEKqsGMMVVYIvDj6fmurZyxfTuFOZJG9u7NsOaDqmXjfwh9xleOZ6Q3aUjGmPALWSIQkd7Av4FuQBnwpKo+JiL3Aj8A9nqz3qWqH/hfS9MrKS3jiXkbSYqP4ZKxvcIdzuFb+h/I3QVRMbBlAQw5B47/iZsW2xa6jwhvfMaYsAvlGUEJ8HNV/VpE2gFLROQTb9ojqvpwCLfdYPPXZZJbUMIFY3oSE93MO3DbvgTe/mHVsqMvgj7HhiceY0xEClkiUNUMIMN7nSsiq4CIr3R/6KPVADwwtZk2lLZ9CXz5lGsL6MC2yvI7d7jO3mPtGoAxpqom+ckrIv2A0cBir+hmEVkuIs+KSMS03bAnp4DVu3I5MjWJtnHN9PLJwr+79oC2LoQD213ZpLtc71+WBIwxfoiqhnYDIknAXOD3qvqmiKQCmYAC9wPdVfV6P8tNB6YDpKamps2YMaNB28/LyyMpKbAuEJ9YVsDCjFLuHp/AoI6hbVIimLhqE1VawNErfk9scU5FWZtDO8lKGct3w+8IW1yhYHEFJ1LjgsiNrSXGNXny5CWqOrbeGVU1ZAMQC3wM3FbL9H7AyvrWk5aWpg01Z86cgOcd9/tP9Mi7P9CiktIGby9QwcRVq/WzVX/bXvW5s1VfuaJy2PRZeOMKAYsrOJEal2rkxtYS4wK+0gCO1aG8a0iAZ4BVqvoXn/Lu6q4fAJwPrAxVDMGY8cVWducU8ptzhhEbqReJVeH5s2HXCjdeWuT+XvoitImYGjZjTDMTyorwCcBVwAoRWeqV3QVcLiKjcFVDm4EbQxhDwGavdh2sTB3VI8yR+CjKd62AlsvPdLeAHjEFugxxZZ0HWRIwxhyWUN419BkgfiZFzDMDvpZtz2bqqB6kJMWHOxRHFf51IuzbUHPalF+7FkGNMaYRNNNbYxrXyh0H2J1TGBntCh3aD1sXQUGOSwKjrnQNv5Vrkww9xoQvPmNMi2OJAPi/j9cAcEy/CGhS4tPfwVfPVo6Pv9Ge/jXGhFSrTwSZeYXMW7uXCQNTOKpnh6bd+IHt8OUzVe/vXzsL+hwHZzzo+v5NOaJpYzLGtDqtPhG8vGgrAJce06fpN/7cWZC9pWb5hFugx6imj8cY0yq16kRQUFzKX2ev44guiZw7sgnuFsrPgrdvgradGbx7T2USOGIKTHujcr6oVtY/sjEmrFp1Ili4IYvSMuW4I1KaZoOz7oZ1swDoGJ8C8e2hMAdOe8AO/saYsGnVieCed92zbHeeOTQ0GyjMhVevhEPZbjzDe5xColh03LNMmjQpNNs1xpggROgjtKG3N7eQbfsOMap3MonxIcqHWz6HjekQlwhJqTDodGjfE67/ODTbM8aYBmi1ZwS/fts103DXWY1wNrD7O/jncd6IVFbzlJWCRMG0110y8LUh/fC3a4wxjaBVJoLcgmJmr95DSmIcaX2DaJ5BFQoOQFGea/6h3Gd/qXwdkwDH/ahyvMvQmknAGGMiSKtMBOc//jnFpcpPpgwkOspfKxi1WPI8zLy17nnGT4eT7zms+Iwxpim1ukTw6ardrN+Tx7EDOnHZOD/PDmQsh8y1/hee+1Dl63P/VvWXfnQcRMfDEZMbN2BjjAmxVpUI8gpLuOGFrwD45RlDSIitdstmYR48cWL9K2rfE8ZcHYIIjTGm6bXsRLD+U/pseQvmfw3Ad5v38cPovZw2PJXRW9ZA9Yd6c3dVvp6eDrF+6vbjk6zO3xjTorTsRLDmAwZsehE2udFxwLhYYK031CahA/QYHfr4jDEmArTsRHDGg8xLOJ2ybkN4Z+lOPliZwY8mDeSWKYNqXyYqBqJb9m4xxhhfLfuIFx1LWXQcj83dxtpdufRPTeHUo/tCbEK4IzPGmIjRohPB3z5dxysLD7L7IFw/oR93nz0s3CEZY0zEadGJoEu7eHokRpF2RCqXjO0d7nCMMSYitehEcNm4PnQ7uJFJk+zCrzHG1CZkjc6JSG8RmSMiq0TkWxG5xSvvJCKfiMg6728QbTwYY4xpbKFsfbQE+LmqDgWOBX4sIsOAXwGfquog4FNv3BhjTJiELBGoaoaqfu29zgVWAT2B84AXvNleAKaGKgZjjDH1E1UN/UZE+gHzgKOAraqa7DNtv6rWqB4SkenAdIDU1NS0GTNmNGjbeXl5JCUlNWjZULK4gmNxBSdS44LIja0lxjV58uQlqjq23hlVNaQDkAQsAS7wxrOrTd9f3zrS0tK0oebMmdPgZUPJ4gqOxRWcSI1LNXJja4lxAV9pAMfpkPZQJiKxwH+Bl1X1Ta94t4h096Z3B/aEMgZjjDF1C+VdQwI8A6xSVZ+eW3gXuMZ7fQ3wTqhiMMYYU79QPkcwAbgKWCEiXq/t3AU8CLwmIjcAW4GLQxiDMcaYejTJxeLDJSJ7qdlodKA6A5mNGE5jsbiCY3EFJ1LjgsiNrSXG1VdVu9Q3U7NIBIdDRL7SQK6aNzGLKzgWV3AiNS6I3Nhac1whvVhsjDEm8lkiMMaYVq41JIInwx1ALSyu4FhcwYnUuCByY2u1cbX4awTGGGPq1hrOCIwxxtTBEoExxrRyLTYRiMgZIrJGRNaLSJM3dS0iz4rIHhFZ6VPmty8Gcf7qxbpcRMaEKKag+ohoqri8bSWIyBcissyL7T6vvL+ILPZie1VE4rzyeG98vTe9XwhjixaRb0RkZqTE5G1vs4isEJGlIvKVVxYJn2WyiLwhIqu979px4Y5LRAZ7+6l8yBGRW8Mdl7etn3nf+ZUi8or3v9C037FAGiRqbgMQDWwABgBxwDJgWBPHMBEYA6z0Kfs/4Ffe618BD3mvzwI+BATXd8PiEMXUHRjjvW4HrAWGhTsub1sCJHmvY4HF3jZfAy7zyv8F/NB7/SPgX97ry4BXQxjbbcB/gJneeNhj8raxGehcrSwSPssXgO97r+OA5EiIyye+aGAX0DfcceGa5t8EtPH5bl3b1N+xkO7wcA3AccDHPuN3AneGIY5+VE0Ea4Du3uvuwBrv9RPA5f7mC3F87wCnRmBcbYGvgfG4Jypjqn+uwMfAcd7rGG8+CUEsvXAdKE0BZnoHhrDG5BPbZmomgrB+lkB778AmkRRXtVhOAxZEQly4RLAN6OR9Z2YCpzf1d6ylVg2V79xy272ycEtV1QxwHfcAXb3yJo/XO6UcjfvlHRFxeVUwS3Et0n6CO6vLVtUSP9uviM2bfgBICUFYjwK/BMq88ZQIiKmcArNEZIm4/jsg/J/lAGAv8JxXnfa0iCRGQFy+LgNe8V6HNS5V3QE8jGt3LQP3nVlCE3/HWmoiED9lkXyfbJPGKyJJuObBb1XVnLpm9VMWsrhUtVRVR+F+hY8Dhtax/ZDHJiLnAHtUdYlvcThjqmaCqo4BzsR1BTuxjnmbKrYYXJXoP1V1NJBP3d3RNvV3Pw44F3i9vln9lDV6XN41ifOA/kAPIBH3eda27ZDE1VITwXagt894L2BnmGLxVVtfDE0WrwTXR0RY9qOqZgPpuLrZZBEpbyXXd/sVsXnTOwD7GjmUCcC5IrIZmIGrHno0zDFVUNWd3t89wFu45Bnuz3I7sF1VF3vjb+ASQ7jjKncm8LWq7vbGwx3XKcAmVd2rqsXAm8DxNPF3rKUmgi+BQd6V9zjcqeC7YY4Jau+L4V3gau9OhWOBA+Wnq41JJOg+IpokLi+2LiKS7L1ug/sHWQXMAS6qJbbymC8CZqtXcdpYVPVOVe2lqv1w36HZqjotnDGVE5FEEWlX/hpX772SMH+WqroL2CYig72ik4Hvwh2Xj8uprBYq334449oKHCsibb3/z/L91bTfsVBelAnngLvqvxZXz3x3GLb/Cq7OrxiXxW/A1eV9Cqzz/nby5hXgH16sK4CxIYrpBNxp5HJgqTecFe64vG2NAL7xYlsJ3OOVDwC+ANbjTufjvfIEb3y9N31AiD/PSVTeNRT2mLwYlnnDt+Xf8Qj5LEcBX3mf5dtAxwiJqy2QBXTwKYuEuO4DVnvf+xeB+Kb+jlkTE8YY08q11KohY4wxAbJEYIwxrZwlAmOMaeUsERhjTCtnicAYY1o5SwSmWfFatvyRz3gPEXkjRNuKFZEl9c/ZtESkn/i0amvM4bJEYJqbZFwLjIB7ulZVL6pj/sNxAvB5iNZtTMSwRGCamweBI7w25f/k++tYRK4VkbdF5D0R2SQiN4vIbV7jZ4tEpJM33xEi8pHXWNt8ERlSy7bOwDVFXMFrGO95r+34FSLys7rWKSKpIvKWuH4WlonI8V75bd46VorIrV5ZP3Ht9z8lrn36Wd5T1ohImrf8QuDHPvEMF9ePw1Jx7eYPasydbVqJUD0tZ4MNoRio2bR3xTiuHff1uL4WuuBaZrzJm/YIrpE9cE+QDvJej8c9pu9vW18AbauVpQGf+Iwn17VO4FWf7Ubj2oZJwz2tmggk4Z4MHu29lxJglDf/a8CV3uvlwEne6z/5vOe/AdO813F47drbYEMwQ3mjRsa0FHNUNRfIFZEDwHte+QpghNfy6vHA665pF8A90l+FiPQA9qnqwbUSFGsAAAGdSURBVGqTNgIDRORvwPu4ZqDrWucU4GpwrasCB0TkBOAtVc33tvUmcCKuHZlNqrrUW3YJ0E9EOuASzlyv/EUqW6hcCNwtIr2AN1V1XaA7yphylghMS1Po87rMZ7wM932PwrX1Pqqe9ZyJ6wSkClXdLyIjcZ2H/Bi4BLg1wHWW89eUcDnf+EuBNt78ftuCUdX/iMhi4GzgYxH5vqrODjAOYwC7RmCan1xc1U+DqOt/YZOIXAwVfdOO9DNrjesD3vydgShV/S/wG1zXn3Wt81Pgh155tIi0B+YBU70WJxOB84H5dcScTeWZBMA0n3gGABtV9a+4M4oRge4LY8pZIjDNiqpmAQu8i6x/auBqpgE3iEh5y53n+U4UkWhcff9qP8v2BNLF9aT2PK4b1LrWeQswWURW4Kp6hqvq196yX+B6iHtaVb+pJ+brgH94F4sP+ZRfCqz04hkC/Lue9RhTg7U+akw13i/vK1X1pnDHYkxTsERgjDGtnFUNGWNMK2eJwBhjWjlLBMYY08pZIjDGmFbOEoExxrRylgiMMaaV+3/qeTzN1gDSYAAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}