{ "cells": [ { "cell_type": "markdown", "metadata": { "nbpages": { "level": 0, "link": "[](https://jckantor.github.io/CBE32338/02.04-Two-Input-Two-Output-Model.html)", "section": "" } }, "source": [ "\n", "*This notebook contains material from [CBE32338](https://jckantor.github.io/CBE32338);\n", "content is available [on Github](https://github.com/jckantor/CBE32338.git).*\n" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 0, "link": "[](https://jckantor.github.io/CBE32338/02.04-Two-Input-Two-Output-Model.html)", "section": "" } }, "source": [ "\n", "< [2.3 First Order Model for a Single Heater](https://jckantor.github.io/CBE32338/02.03-First-Order-Model-for-a-Single-Heater.html) | [Contents](toc.html) | [2.5 Two State Model for a Single Heater](https://jckantor.github.io/CBE32338/02.05-Two-State-Model-for-a-Single-Heater.html) >
"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpages": {
"level": 1,
"link": "[2.4 Two-Input, Two-Output Model](https://jckantor.github.io/CBE32338/02.04-Two-Input-Two-Output-Model.html#2.4-Two-Input,-Two-Output-Model)",
"section": "2.4 Two-Input, Two-Output Model"
}
},
"source": [
"# 2.4 Two-Input, Two-Output Model"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpages": {
"level": 2,
"link": "[2.4.1 Interacting Heaters](https://jckantor.github.io/CBE32338/02.04-Two-Input-Two-Output-Model.html#2.4.1-Interacting-Heaters)",
"section": "2.4.1 Interacting Heaters"
}
},
"source": [
"## 2.4.1 Interacting Heaters\n",
"\n",
"Our next model considers the interaction between the two heaters. From the step response it is obvious that the heaters interact, and we need to understand how that affects the dynamic performance. Will we see qualitative differences in the step response once we've included the second heater?\n",
"\n",
"\\begin{align}\n",
"C_p\\frac{dT_1}{dt} & = U_a(T_{amb} - T_1) + U_b(T_2 - T_1) + P_1u_1\\\\\n",
"C_p\\frac{dT_2}{dt} & = U_a(T_{amb} - T_2) + U_b(T_1 - T_2) + P_2u_2\n",
"\\end{align}"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpages": {
"level": 2,
"link": "[2.4.1 Interacting Heaters](https://jckantor.github.io/CBE32338/02.04-Two-Input-Two-Output-Model.html#2.4.1-Interacting-Heaters)",
"section": "2.4.1 Interacting Heaters"
}
},
"source": [
"As a first step we isolate the bare derivatives on the left-hand side of the equations. This is good practice in situations where you expect to be doing numerical simulation.\n",
"\n",
"\\begin{align}\n",
"\\frac{dT_1}{dt} & = \\frac{U_a}{C_p}(T_{amb} - T_1) + \\frac{U_b}{C_p}(T_2 - T_1) + \\frac{P_1}{C_p}u_1\\\\\n",
"\\frac{dT_2}{dt} & = \\frac{U_a}{C_p}(T_{amb} - T_2) + \\frac{U_b}{C_p}(T_1 - T_2) + \\frac{P_2}{C_p}u_2\n",
"\\end{align}"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpages": {
"level": 2,
"link": "[2.4.2 Deviation Variables](https://jckantor.github.io/CBE32338/02.04-Two-Input-Two-Output-Model.html#2.4.2-Deviation-Variables)",
"section": "2.4.2 Deviation Variables"
}
},
"source": [
"## 2.4.2 Deviation Variables\n",
"\n",
"As before, the equations appear somewhat simpler if we introduce deviation variables from a nominal state. In this case we'll use the ambient temperature as the reference, so the deviation variable will express deviation from ambient.\n",
"\n",
"\\begin{align}\n",
"T_1' & = T_1 - T_{amb} \\\\\n",
"T_2' & = T_2 - T_{amb}\n",
"\\end{align}"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpages": {
"level": 2,
"link": "[2.4.2 Deviation Variables](https://jckantor.github.io/CBE32338/02.04-Two-Input-Two-Output-Model.html#2.4.2-Deviation-Variables)",
"section": "2.4.2 Deviation Variables"
}
},
"source": [
"Then gathering terms\n",
"\n",
"\\begin{align}\n",
"\\frac{dT_1'}{dt} & = -\\frac{U_a+U_b}{C_p}T_1' + \\frac{U_b}{C_p}T_2' + \\frac{P_1}{C_p}u_1\\\\\n",
"\\frac{dT_2'}{dt} & = -\\frac{U_a+U_b}{C_p}T_2' + \\frac{U_b}{C_p}T_1' + \\frac{P_2}{C_p}u_2\n",
"\\end{align}"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpages": {
"level": 2,
"link": "[2.4.2 Deviation Variables](https://jckantor.github.io/CBE32338/02.04-Two-Input-Two-Output-Model.html#2.4.2-Deviation-Variables)",
"section": "2.4.2 Deviation Variables"
}
},
"source": [
"An alternative way to express these equations is in matrix/vector form. We won't use this today, but later will make extensive use of this 'state-space' model of a linear system.\n",
"\n",
"\\begin{align}\n",
"\\left[\\begin{array}{c}\\frac{dT_1'}{dt} \\\\ \\frac{dT_2'}{dt}\\end{array}\\right] & = \n",
"\\left[\\begin{array}{cc}-\\frac{U_a+U_b}{C_p} & \\frac{U_b}{C_p} \\\\ \\frac{U_b}{C_p} & -\\frac{U_a+U_b}{C_p} \\end{array}\\right]\n",
"\\left[\\begin{array}{c}T_1' \\\\ T_2'\\end{array}\\right] +\n",
"\\left[\\begin{array}{cc}\\frac{P_1}{C_p} & 0 \\\\ 0 & \\frac{P_2}{C_p} \\end{array}\\right]\n",
"\\left[\\begin{array}{c}u_1 \\\\ u_2\\end{array}\\right]\n",
"\\end{align}"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpages": {
"level": 2,
"link": "[2.4.3 Steady State](https://jckantor.github.io/CBE32338/02.04-Two-Input-Two-Output-Model.html#2.4.3-Steady-State)",
"section": "2.4.3 Steady State"
}
},
"source": [
"## 2.4.3 Steady State\n",
"\n",
"The steady state is found by setting the derivatives to zero. We'll use a bar over the dependent variables to designate steady state values.\n",
"\n",
"\\begin{align}\n",
"0 & = -(U_a+U_b)\\bar{T}_{1}' + U_b\\bar{T}_{2}' + P_1\\bar{u}_{1}\\\\\n",
"0 & = -(U_a+U_b)\\bar{T}_{2}' + U_b\\bar{T}_{1}' + P_2\\bar{u}_{1}\n",
"\\end{align}\n",
"\n",
"Our challenge is to solve the following 2x2 system of linear equations for the steady state temperatures.\n",
"\n",
"\\begin{align} \n",
"\\left[\\begin{array}{cc}(U_a+U_b) & -U_b \\\\ -U_b & (U_a+U_b) \\end{array}\\right]\n",
"\\left[\\begin{array}{c}\\bar{T}_1' \\\\ \\bar{T}_2'\\end{array}\\right] & = \n",
"\\left[\\begin{array}{c} P_1\\bar{u}_1 \\\\ P_2\\bar{u}_2\\end{array}\\right]\n",
"\\end{align}\n",
"\n",
"The solution to these equations is a bit of work, but you should be able to verify\n",
"\n",
"\\begin{align}\n",
"\\bar{T}_1' & = \\frac{(U_a+U_b)}{U_a(U_a+2U_b)}P_1\\bar{u}_1 + \\frac{U_b}{U_a(U_a+2U_b)}P_2\\bar{u}_2 \\\\\n",
"\\bar{T}_2' & = \\frac{U_b}{U_a(U_a+2U_b)}P_1\\bar{u}_1 + \\frac{(U_a+U_b)}{U_a(U_a+2U_b)}P_2\\bar{u}_2\n",
"\\end{align}\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbpages": {
"level": 2,
"link": "[2.4.4 Estimating $U_a$ and $U_b$](https://jckantor.github.io/CBE32338/02.04-Two-Input-Two-Output-Model.html#2.4.4-Estimating-$U_a$-and-$U_b$)",
"section": "2.4.4 Estimating $U_a$ and $U_b$"
}
},
"source": [
"## 2.4.4 Estimating $U_a$ and $U_b$\n",
"\n",
"Experimental step response data gives us the information needed to estimate parameters $U_a$ and $U_b$. Rearranging the steady state equations, we find a pair of linear equations for $U_a$ and $U_b$.\n",
"\n",
"\\begin{align}\n",
"\\bar{T}_{1}'U_a + (\\bar{T}_{1}'-\\bar{T}_{2}')U_b & = P_1\\bar{u}_{1}\\\\\n",
"\\bar{T}_{2}'U_a + (\\bar{T}_{2}'-\\bar{T}_{1}')U_b & = P_2\\bar{u}_{1}\n",
"\\end{align}\n",
"\n",
"There is an analytical solution to these equations\n",
"\n",
"\\begin{align}\n",
"U_a & = \\frac{P_1\\bar{u}_1 + P_2\\bar{u}_2}{\\bar{T}_1' + \\bar{T}_2'}\\\\\n",
"U_b & = \\frac{\\bar{T}_2'P_1\\bar{u}_1 - \\bar{T}_1'P_2\\bar{u}_2}{(\\bar{T}_1' - \\bar{T}_2')(\\bar{T}_1' + \\bar{T}_2')}\n",
"\\end{align}\n",
"\n",
"The step response data gives us information about steady-state that can be used to estimate values for $U_a$ and $U_b$. First we plot the step response data (see Part 1 if this cell cannot find the data set.)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"nbpages": {
"level": 2,
"link": "[2.4.4 Estimating $U_a$ and $U_b$](https://jckantor.github.io/CBE32338/02.04-Two-Input-Two-Output-Model.html#2.4.4-Estimating-$U_a$-and-$U_b$)",
"section": "2.4.4 Estimating $U_a$ and $U_b$"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xl8VOXZ//HPlR0SIKxh3wRZVBYT\nAUUtwX15FH1cq9atpdbaR2tbrdqqbe1TfWprrb+6VavWaqOl4oIbFokimwKyRJF9JywhhCyQda7f\nH+dknyQzISczmbner9e8mHPPWb5JhrnmbPctqooxxpjoFRPqAMYYY0LLCoExxkQ5KwTGGBPlrBAY\nY0yUs0JgjDFRzgqBMcZEOSsExhgT5awQGGNMlLNCYIwxUS4u1AEC0atXLx06dGirli0pKSE5Oblt\nA7UByxUcyxWccM0F4ZstEnMtX748T1V7tzijqob9Iz09XVtr/vz5rV7WS5YrOJYrOOGaSzV8s0Vi\nLmCZBvAZa4eGjDEmylkhMMaYKGeFwBhjopwVAmOMiXJWCIwxJspZITDGmChnhcAYY6Jch7ihzBhj\n2tv6vUXsKyxjT2EpZ41No1un+JrXlm/LZ9P+EnbmH663TN9unfj25MGN1jVn9W4E4YJx/TzP3RpW\nCIwxxo+zH/u05vmMCf3501UTa6b/+6nFNc9FnH+rh3+fOqInQ3rW3glcWlHFba9+CcAZY84lKT7W\nw9St42khEJGtQBFQBVSqaoaIPAh8D9jvznavqr7nZQ5jTNuq8ik/fm0lW/JK6NstqcX5/2t8f4b0\n6MyT2RvJP1DKv3avwOdT7jjzWOJjhUfnrqOiSmvmV1U27S/hr99JZ0SfLkFle+yj9YjAHWceG9Ry\nH22r4JW/L/P72psrd1NSXuVmq22/eEJ/HncLxNe7Czn/zwu447WV9EpJrJmnpKyy5vnNL31B54Ta\nj92teSX06ZrIry46jriYGG566QuG9UwmJkZq5pnarSqon6M12mOPIFNV8xq0Paaqj7bDto0xHliz\n6xBvr9oNQEWVDxFpct7dBUfYfuAwEwal8uFXe53GPbkADOrRmaS4GN7P2cPovl1rllmbWwjAD1/5\nkg9/fHrAuQ4dqeDxeRsAuPnUYXRJim9hCYfPp7yxoZzkpIP07uIUtl4pieQVlwEwum8Xdh48UjN/\nfKyQGBfL5emDatqOTUvhzDFp7Co4Um9egDH9nJ8tv6SC/JKKmm1u2FfMhn3F/HvFLj7fks/m/SVs\n3l9SMz9ARXB1sFXs0JAxBoDC0gqu+etSDh4ub3HeI+W131I/uKP5D+rHPlrP4/M2sPVACeMHdmPV\nzkOA8+H48uJtiMCotC68f/tpNcvM+MtCVu4oYN3eIk595ONG6xw/MJWfnjOK7/19GRv3FTMgtRMi\nTlGqduYfP6F75wRevHESd/97NZv2F3PT1GF8sTWfNbsO1VufKhyphF+dM5orThrUcHMBiYuN4bnr\nMwKe3+dTht/rHAx5ceFWjlQ4v9PhvZPr/S6ys7NblScYonX3c9p65SJbgIOAAs+o6rPuoaEbgEJg\nGfATVT3oZ9mZwEyAtLS09KysrFZlKC4uJiUlpVXLeslyBcdyNa28SomPod638uLiYhI7J1Ppa3q5\npFgo94HP/QjIyaviLyvLmNA7luT4pr/hV9tT4uPcYfGc1Lf575P7D/t4Z3MFVT44bWAca/cdoUun\nRPp0FpbmOh9+GX1jmdgnrt4yz+eU0SMphoZJ9pT42HTIxwXD4nl3i/PtOj4GJrk5qg/BF5cry/ZW\nceHweOZsdubrkSTklyojUmNI69zgoklfBVePTSYloeWfva0s2l3J9kIfReWKAgeO+Ljx+ET6Jtdm\nO5r3WGZm5nJVbbE6eV0I+qvqbhHpA3wE/AhYB+ThFIffAP1U9abm1pORkaHLlvk/dteS7Oxspk2b\n1qplvWS5gmO5Gpv71R5mvrwcgOumDOE3M46vee2dufO5d2E5RXWOTzc0flAqa3YW1BQCgNgYYc2D\nZ9c7jt3WjvZ3tmTzAa56dkm9thtOGcqDFx1Xr63Kp0z41dya38H00X34+Jt9ALz+/ZOZNKxHm+by\nytHkEpGACoGnh4ZUdbf77z4RmQ1MUtWaU/Ei8ldgjpcZjIkkPp+yOa+YiirlD3PX17S/snRbvcsW\nv9hTSVFZJd89dZjfk7mzlu9k1Y4CYmOE+84bXXPly7BeyZ4WgbYwaWgPHvnvEygqrWT8oFQOFJcx\nbVSfRvPFxghPX5fO2txCundOYNqo3ry1cjcpiXFkDOkeguThy7O/uIgkAzGqWuQ+Pxv4tYj0U9Vc\nd7ZLgByvMhgTaWYt38ld/17dqN2ncN7jC+q1JcTG8OOzjiU5sfF/88LSSr7ZU8TYfl353unDPcvr\nhZgY4cqTGl+r78/UEb2YOqJXzfRNpw7zKlaH5mXpTwNmu8ct44BXVfUDEXlZRCbgHBraCnzfwwzG\ntJsDxWUs3HSAKl/jA/NVPoj1cx9/jAgDu3cGlO0Nbk7y582Vu+iRnMD/XlJ9GEjo2y2J/UVl9bab\nk/MVZ5+a4bcIAMw8fTjH9+9a7+oUE708KwSquhkY76f9Oq+2aUwoXfb0YrbklXi+nQvG9ePc45u/\nQzUpbx3jBqY2+XpKYhxnH9e3raOZDiq8DwYaE+bKq5THPlrPkYqqmiJw1tg07jt/TM08X2zN52ez\nVjMgtROvfHdyveWveGYx+4qca9UvSx/IbZkjWtxm/9RObfgTGGOFwJijsnJ/FU+u3EBiXO1xnzvP\nOpahvWq7GOiZksCfP97A7y4ZV68dnJuefvf+N4Bzl2rD141pD1YIjAlClU/54Ssr+Dq3kCE9O7N+\nVzkJcTGsefAcEuL8d+bbJSmeBXdN9/va9791DN//1jFeRjamRVYIjAnC2txCPvhqDwA9khPokiBc\nNnlYk0XAmI7ACoExdZRWVJHx0H8oLqus13FYtbLK2q4VZt96Cp988gnTpo1uz4jGtDkrBCbq+XxK\nudtHzfJtByl270Q9a2wfv52p7Tp4hGsmD262ozVjOhIrBCbqXfLUIlbtKGjU/rtLx4UgjTHtzwqB\niSoVVT7W5hZS5Xawc7i8ilU7Cjh7bBoTB3d32yo5Y0xaKGMa066sEJio8uLCrfz2vbWN2meePpyM\noT38LGFM5LNCYCLa/HX7yC0orZmes3o3A7t3qtdTZ3JCHOnWCZmJYlYITMTaV1jKjS980aj92imD\nyfTTW6Ux0coKgYkoqsrzn22hpKyKnN3OKFTPX5/B8QO61czT289locZEMysEJqLk7CrkoXedcwCd\nE2IZ268rU0f0Iql62CpjTCNWCEyH98XWfJ7O3oRPlf3uYOMAf/n2iWSOtkNAxrTE7os3Hd4rS7ax\ncFMeB0rKiXFv8jp1RC9OGmZXARkTCNsjMB1Ozq5D/PDVFZS7I7MfKC4nc3RvnrmuxaFZjTF+WCEw\nYa+iykdxuVJwuByAd9fksj3/MJedOBAREIQrJw0KcUpjOi4rBCasqSrnPb6AjfsOw8cf1bSPSuvC\n7y9vNACeMaYVrBCYsFJWWcWGvcUUllYAUHikgo37ipnSL5ZzMkbVzHeS3QVsTJvxtBCIyFagCKgC\nKlU1Q0R6AK8BQ3EGr79CVQ96mcN0HHfPWs2bK3c3aj9vWDzXTx0WgkTGRL722CPIVNW8OtM/B+ap\n6sMi8nN3+u52yGHCWElZJXO/3lNTBAakduIPVziHflIS48jb8GUo4xkT0UJxaOhiYJr7/CUgGysE\nUe+fn2+vuREM4PYzRjJleM+a6ewNoUhlTHTwuhAoMFdEFHhGVZ8F0lQ1F0BVc0XE7viJYks2H+DD\nr/awcGMeA1I78dr3p9AzOZFOCXYnsDHtRVTVu5WL9FfV3e6H/UfAj4C3VTW1zjwHVbVR148iMhOY\nCZCWlpaelZXVqgzFxcWkpKS0alkvWS7HbxYfYWuhj4RYmD4onstHJYRFrkBZruCFa7ZIzJWZmblc\nVVu+wUZV2+UBPAj8FFgH9HPb+gHrWlo2PT1dW2v+/PmtXtZL0Z7rF7PX6FXPLNYR976rv3336xbn\nj/bfV7DCNZdq+GaLxFzAMg3g89mzLiZEJFlEulQ/B84GcoC3gevd2a4H3vIqgwlPew6V8vKSbewt\nKiVjSA8uGt8/1JGMiWpeniNIA2a7A3zHAa+q6gci8gXwuojcDGwHLvcwgwkTFVU+LnlyITsPHqGy\nyjkc+fvLxtuAMMaEAc8KgapuBhrd+qmqB4AzvNquCT8Hisv4anchObsKOXNMHwakdqJ7cgITBqW2\nvLAxxnN2Z7Hx1MKNeVzz3NKa6Qf+6zgG9egcwkTGmIasEJg2p6ps3FdMwZEK3lq5i9gY4aEZx5PW\nNdGKgDFhyAqBaXPPfLqZh9//pmZ63MBuXD1pcAgTGWOaY4XAtJnySh9vrtzF059sqmn7x82TGZkW\nftdmG2NqWSEwbeY/a/dy16zVNdO3nzGSU0f2CmEiY0wgrBCYVvP5lMfnbWBfkTNO8Fe7D5EQF8OC\nuzLpmZxAbIyEOKExJhBWCEyrrd1TyOPzNtCtUzwJcc69iTMm9Ceta1KIkxljgmGFwATtr59u5t01\nuRw64gwe8/ZtUxnSMznEqYwxrWWFwATt+c+2EBsjHNMnhakjejLYLgk1pkOzQmACUlZZxRVPL2ZX\nwRHyisv5xQVj+O5pw0MdyxjTBqwQmBYdOlzBqp0FrNp5iOmj+zC4R2cunjAg1LGMMW3ECoFp1qfr\n9/Odv31eM/3QjOPpn9ophImMMW3NCoFp0o78w7yxYicJsTH88sIx9O3WyYqAMRHICoFp0tV/XcLO\ng0c4aWh3rjt5aKjjGGM8YoXANLJyRwEL1u9n58EjfO+0Yfxg2ohQRzLGeMgKgWnkZ/9axYZ9xcTH\nCpelD6JHsv9xhI0xkcEKgamRX1LOCzllbNxfyY+mj+C26SNIjIsNdSxjjMc8G7PYdDwf5Ozhk52V\nDOuVzHnH97MiYEyUaHKPQER6A71V9esG7ccB+1R1v9fhTPtZtaOAe2evoXMczLvzW7hjTRtjokBz\newRPAL39tA8EHg90AyISKyJfisgcd/pFEdkiIivdx4TgIhsvzP5yFwAXDo+3ImBMlGnuHMEJqvpJ\nw0ZV/VBE/hDENm4H1gJd67T9TFVnBbEO45EV2w/yvZeWUXCkgknDenD+8LJQRzLGtLPm9gjiW/la\nDREZCFwAPBdMKNM+8orLeHvlbgqOVHD9yUO565xRoY5kjAmB5grBBhE5v2GjiJwHbA5w/X8C7gJ8\nDdp/KyKrReQxEUkMcF2mDa3aUUDGQ//hxUVbGdOvC/f/11gyhvYIdSxjTAiIqvp/QeRYYA6wCFju\nNmcAJwMXqur6ZlcsciFwvqreKiLTgJ+q6oUi0g/YAyQAzwKbVPXXfpafCcwESEtLS8/KymrFjwfF\nxcWkpITfmLmhzLX/sI93Nlfw6c5Krh+bwKgesfRPiQl5ruZYruCEay4I32yRmCszM3O5qma0OKOq\nNvkAEoEbgT+4j5uApOaWqbPs74CdwFacD/7DwD8azDMNmNPSutLT07W15s+f3+plvRTKXBf+eYEO\nuXuOnvmH7Eav2e8rOJYreOGaLRJzAcs0gM/rZm8oU9Uy4IXWVCJVvQe4B6DOHsG1ItJPVXPFuTRl\nBpDTmvWb4G3YW8SnG/L4OreQb08ezM/OtnMCxpjm7yM4DbjNnXxS/VxB1EqvuPcoCLASuKWN1mta\ncP9bX7F48wFE4MJx/ehuXUcYY2j+8tE/AKe7zxcAJ7V2I6qaDWS7z6e3dj2mdY6UV/HIB9/w5Y6D\nXD1pML+4YAzJida7iDHG0dynQTbwK5wrfha3SxrjiU837OfFRVsZkNqJi8b3tyJgjKmnyU8EVb1L\nREYBsdqgmwnTcTy3YDPPf7aFuBhh3k++RVK89R9kjKmvpZPF69oriPHGCwu3EiPC/5wx0oqAMcYv\n6300Qq3fW8QJD3zIroIj3HDKUP7njJGhjmSMCVNWCCJQeaWPD3P2UFRWyW2ZI7gsfWCoIxljwlhz\nl4/eA3ygql+2Yx7TBm568Qs+25hHv25J/NT6DzLGtKC5cwRbgNtFZDywCngfmKuqB9slmQlalU9Z\nsvkAn2/J54zRfbj9TDscZIxpWXNXDWUBWQAiMhE4F3hDRGKB/+DsLXzeLilNQD78ag+3vrICgKsm\nDWbcwNQQJzLGdAQBXVDuHh76EvidiHQFzgK+C1ghCBP7ikp58O2vSIyLYfatUxnTr0uoIxljOoig\n7yxS1ULg3+7DhIkXFm5lX1EZZ41NY2z/ri0vYIwxLrtqKAIs2pTHU9mbGN23C89elx7qOMaYDsYK\nQQR49lNnnKBrJg+28YaNMUFrVSEQkdFtHcS0zhPzNpC9bj9XZAzkupOHhjqOMaYDau0ewdw2TWFa\n7ZWl2wG4dsqQECcxxnRUzd1Q9uemXgLsusQwcOUzi9lTWMovLhhjl4oaY1qtuauGbgR+ApT5ee1q\nb+KYQG3NK2HplnwGpHbi0hOtCwljTOs1Vwi+AHJUdVHDF0TkQc8SmRaVlFUy7dFsAB69fDw9bKQx\nY8xRaK4QXAaU+ntBVYd5E8e0RFV55pNNAFw7ZTBThvcIcSJjTEfXXBcT+e0ZxARmza5D/PnjjQDc\nedYou1zUGHPU7D6CDqSotIKf/msVAG/9cKodEjLGtAnPC4GIxIrIlyIyx50eJiJLRWSDiLwmIvZp\nFqB3VuWyfm8xI/qkMH6QXSVkjGkbARcCEUlu5TZuB9bWmX4EeExVRwIHgZtbud6osmFvEffOXkNq\n53g++vHpoY5jjIkgLRYCETlFRL7G/TAXkfEi8mQgKxeRgcAFwHPutADTgVnuLC8BM1qRO+pU3zh2\nZcYgOy9gjGlToqrNzyCyFOcKordVdaLblqOqx7e4cpFZwO+ALsBPgRuAJao6wn19EPC+v3WJyExg\nJkBaWlp6VlZWED9WreLiYlJSUlq1rJeCyVVQ5uOO+UcY1T2GeyZ3Cptc7clyBSdcc0H4ZovEXJmZ\nmctVNaPFGVW12Qew1P33yzptqwJY7kLgSff5NGAO0BvYWGeeQcCaltaVnp6urTV//vxWL+ulYHL9\na9kOHXL3HP374q3eBXJFwu+rPVmu4IVrtkjMBSzTFj5fVTWg8Qh2iMgpgLondv+H+sf8mzIVuEhE\nzgeSgK7An4BUEYlT1UpgILA7gHVFrc825PHTf62iU3ws10waHOo4xpgIFMjJ4luAHwIDgJ3ABHe6\nWap6j6oOVNWhwFXAx6p6DTAf51ATwPXAW63IHTVeW7YDgMeunEBMjJ0bMMa0vWb3CNzxia9zP8Db\nyt1Alog8hDP85fNtuO6IsiP/MO+s2s24gd049/i+oY5jjIlQzRYCVa0SkYuBx45mI6qaDWS7zzcD\nk45mfdGgssrHw+9/A8AdZ44McRpjTCQL5BzBQhH5f8BrQEl1o6qu8CyV4T9r9/HumlwS4mI4fWTv\nUMcxxkSwQArBKe6/v67Tpjj3AxgP5BWX8cDbOQAs+vl04mKtJxBjjHdaLASqmtkeQUytfyzZxt7C\nMjJH9aZXSmKo4xhjIlyLhUBE7vfXrqq/9tdujs6SzQf40382MLJPCn+74aRQxzHGRIFADg2V1Hme\nhHOjWCD3EZhW+NtnWwC4ZvJg60rCGNMuAjk09Ie60yLyKPC2Z4mi2JPZG5n79V5mTOjPDVNt7B9j\nTPtozVnIzsDwtg4S7Xw+5eXF2wCsCBhj2lUg5wjW4FwlBBCL01/Qb7wMFY0uf2YxuYdKuee80Uyw\nsQaMMe0okHMEF9Z5XgnsdfsJMm1kR/5hlm87yPBeyVx1kvUnZIxpX4EcGnpIVbe5j12qWikiL3ue\nLEqUVlRx2v/NB+DBi46jW+f4ECcyxkSbQArBcXUnRCQOSPcmTvR5PycXgKtOGsSpI3qFOI0xJho1\nWQhE5B4RKQLGiUih+ygC9mI9hraZp7I3AXDn2cda76LGmJBoshCo6u+AbsDfVbWr++iiqj1V9Z72\nixi51uYWsn5vMd+ePJg+XZJCHccYE6WaPTSkqj5gfDtliTovLHRuHrt04oAQJzHGRLNAzhEsERHr\n66CNfb6nkteX7eRbx/YmY2iPUMcxxkSxQC4fzQRuEZGtON1NCKCqOs7LYJHu/S0VgHOS2BhjQimQ\nQnCe5ymizNLNB9hyyMf3Tx/OeSf0C3UcY0yUa/HQkKpuAwYB093nhwNZzjTt7VW7Afjv9IEhTmKM\nMQF8oIvIAzjjDFdfKRQP/MPLUJFsR/5hXlm6ndE9Yjg2rUuo4xhjTEDf7C8BLsLtjlpVdwMtfoKJ\nSJKIfC4iq0TkKxH5ldv+oohsEZGV7mPC0fwAHc1bK3cBMH2w3UFsjAkPgZwjKFdVFREFEJHkANdd\nhnM4qVhE4oHPROR997WfqeqsVuTt0CqrfDw6dz2JcTFkpMWGOo4xxgCB7RG8LiLPAKki8j3gP8Bf\nW1pIHcXuZLz70GYWiXjPfLoZgFu+dQwxNuiMMSZMBHKy+FFgFvBv4FjgflV9IpCVi0isiKwE9gEf\nqepS96XfishqEXlMRKJiUN7N+4v5/YfrALjCLhk1xoQRUW35S7qI9AUm4Xyj/0JV9wS1EZFUYDbw\nI+AAsAdIAJ4FNvkb/1hEZgIzAdLS0tKzsrKC2WSN4uJiUlJSWrVsW3pmdSmLd1dxz6QkRvWIDZtc\nDVmu4Fiu4IVrtkjMlZmZuVxVM1qcUVWbfQDfBbYDLwIvAVuBm1pazs96HgB+2qBtGjCnpWXT09O1\ntebPn9/qZdtKVZVPx/zyfR1y9xytrPKpanjk8sdyBcdyBS9cs0ViLmCZBvD5HMjJ4p8BE1X1AICI\n9AQWAX9rbiER6Q1UqGqBiHQCzgQeEZF+qporzsjsM4CcADJ0aP/8YjuHy6t49PLxxFoPo8aYMBNI\nIdgJFNWZLgJ2BLBcP+AlEYnFORfxuqrOEZGP3SIhwErgliAzdzjvuDeQnT7SxhswxoSfQArBLmCp\niLyFc47gYuBzEbkTQFX/6G8hVV0NTPTTPr31cTue5dvyWbI5n+tPHkKfrtbVtDEm/ARSCDa5j2rV\ng9LYbbEBeGOFcwPZlTYWsTEmTLVYCFT1V+0RJBI9t2AzryzdzomDUxnbv2uo4xhjjF8tFgIRyQDu\nA4bUnV+tG+pmqSr/WLINgIdmnBDiNMYY07RADg29gnPl0BrA522cyPHxN/vYeuAwV2YMsr0BY0xY\nC6QQ7FfVtz1PEmFeXLQVgLvPGx3aIMYY04JACsEDIvIcMA+nIzkAVPUNz1J1cLmHjrBgQx5Denam\nR3JCqOMYY0yzAikENwKjcTqNqz40pIAVgiY884nTudzDl9ppFGNM+AukEIxXVTvbGSBVrRmB7MQh\nqSFOY4wxLQukG+olIjLW8yQR4o0Vu8gvKec3M44nMc7GHDDGhL9A9ghOBa4XkS045wgEZ7gBO+7h\nxzurnb2BM0b3CXESY4wJTCCF4FzPU0SIlTsKyF63nysyBtI/tVOo4xhjTEACubN4m4icCoxU1Rfc\nDuPCr9PuMFDdudy1U4aEOImJWFWVUFUGvkqoLKv/WqfuENtgLOyKUqgsBfU5ywDEd4bEBv+FfT44\nnOdd7k7doeIw+Kq824ZptUDuLH4AyABGAS/gXD30D2Cqt9E6lrziMp7/bAuj0rowbqCdJDYe+cel\nsOUT/68N+xZcX+eWH58P/nQClOyrP198Z7gjB5J71ra9+2NY/mKbx/Wn13H34AxFYsJFIIeGLsHp\nRXQFgKruFhHrcK6BD79yBm27YerQ0AYxHZMqFOVCWTGUFTY9T90icO7DtXsA6+fCpo9hx+cgMXQp\nXAffHKpfBC74AxzaCZ89Bmv+BQPrDFy18WMYkAETrm77n+2De529GICYOHrvXwg7lwW/nrgkZ+8G\ngb7HQ5yfUW5VYW8OdO4JXfsfVewm5W+BsiLQKpAY55GUCsV7nde7D4Wqcqdt39cQEweJXeBIAXTu\n7sx/+ICTFaD3aGcPzVcFe9bU7rlV/9gVxXgtkEJQrqoqIgogIskeZ+qQHn7vGwBmTBgQ4iSmQ/ry\nZXj7R4HPn5QKU35QO52SBhs+hOfPAiAd3K9uruQ+cNJ3nUKz+En44O7G65w805mnrRXsgIV/cp4P\nOYW0LZ/Cc2cc3TpPvRPOfKBx+7r3IOvbkNgV7t4GMYFcGBmEnH/DrJuanyc2wSkEgRp3JVz6rPMe\neOf2Ri93PcHPz9nGAikEr4vIM0CqiHwPuAl4zttYHcsXW/MpKqvkuilD6JRgl4yaOnw+yJkFFUec\n4/RV5c4HRUOLnqh9fulfnWPq/sQlQlI351HXqPPh+ndqzhusXr2acePGOevpOqD223NiCsycD4W7\n6y8fEwuDT2nlD9mC6b+E0Rc4OWJiWT33FSdbMFa+Al/NhlEXQME25wM/1U/X7uved/4tK3SKT1O/\nRz/67V4Py7Y0P1Nzh89OvRNK9jsf6NUGnwzbF/uf/5pZsOjPsDkblr3g7KUl94YZT9WbrWjL4YDy\nH41AThY/KiJnAYU45wnuV9WPPE/WgTw5fyMA355sYw6YBlb9E966NfD5uw6AEy4HCXJI05hYGHZ6\nzWT+rngYOc3/vGnHOY/2EhsHgybVTOb3TG86W1M6dXcKwSk/cg6Bffp/MOcO//N2H+ocApsXXA/6\nowDWB7HAgAzYvw7K3QEcM26Ewtz6hWDsxc4hoB1LYOK1kDMbKkqcvYCRZ0HhLmcvoPpnqW6vo2JX\ndlA/R2sEcrL4EVW9G/jIT1vUU1XW7Crk3OP6Mqaf9TIaVb55jxNWPwol70DBdkj1c7XYjqW1z6f/\nAj5+yPn2foGfgf0Skp1j/sEWgWgwMAN+mef8fgZPgZNurj3G3lByLygvcfbCgrBo8SJOOTmAvaKk\nbs5enYibQZ0ropK6OXspd21xzgtUHIGUPjBppnPcPzYBzn3EOUcQ545WmH6D836ovpoqJTT3HwVy\naOgsoOGH/nl+2qLS7kOl5BWXccqIni3PbCJL1tX0BMhfXtvWqYf/ec/5Xzj+Mucb4Rn3Q9d+7ZEw\nslSfGBeBLn2bn7dTqvMIQnnardJuAAAVKUlEQVRiz9b/XWLrHKrr7L4HktwvhhLr7LFB48t2IWQf\n/nU1WQhE5AfArcBwEVld56UuwEKvg3UUj7zvnCQeb5eMRh6fD978gXNMuiF/30aHnAo3vtv8Om9d\n1DbZjGlDze0RvAq8D/wO+Hmd9iJVzW9pxSKSBHwKJLrbmaWqD4jIMCAL6IFzXcN1qhrEKfbwoaos\n3JhHYlyMDT4TifI3weos6HNc/Wvuq404i7yDhfS6+DfOycxT/qf9MxrTBposBKp6CDgEtPbC4jJg\nuqoWi0g88JmIvA/cCTymqlki8jRwM/BUcysKV68s3c6BknJ+c/FxxMe28WVqpn0c2ASvXuH/eHJl\nqfPvpc861637kZOdzbTBk2HwZA9DGuOtQM4RtIqqKlB9J0S8+1BgOvBtt/0l4EE6YCHw+ZS3Vu4C\n4LwT7Hhv2Ks44v/Dfu07cGAjjLvKubqloZS+0Mc63zWRTbSpM+9tsXKRWGA5MAL4C/B7YImqjnBf\nHwS8r6qNvm6JyExgJkBaWlp6VlZWqzIUFxeTktL2XSM9v6aMBbsqOW1AHDef4OcOxxDlOlqRmCuh\nLJ/JS79PrM//EciyhB4sPvlvrbpaJxJ/X14L12yRmCszM3O5qma0NJ9newQAqloFTBCRVGA2MMbf\nbE0s+yzwLEBGRoZOmzatVRmys7Np7bLNuWfxPLomwSPXnd6qnka9ynW0OmyuA5ugvNi59T8mvv6d\nnTs2ga/cueEnJa3Roon9JzqHd7zIFSLhmgvCN1s05/K0EFRT1QIRyQam4NyhHKeqlcBAYHezC4eh\nvYWl5B4q5f4Lx1p30+FgTw483UIfiAkpMO0eiLMxpI1pyLNC4HZXXeEWgU7AmcAjwHzgMpwrh64H\n3vIqg1f+scS5nHD8oG4tzGnaVFUFrHwVivfVvx47d1XjeS96AroPq53u2t+KgDFN8HKPoB/wknue\nIAZ4XVXniMjXQJaIPAR8CTzvYYY2p6r88/MdABzX3wpBu9rwEbzTwiWanXs6PTuOu9J/75TGmEa8\nvGpoNU731Q3bNwOTGi/RMcz9ei95xWXcd/4YkuKtgzlPrcqCLQsAGLUnF9bXuX3lu/Og5zG10/HJ\n9o3fmFZql3MEkeT1L5y9gbPGNj7paNqQKnxwj3M4KKkb3ctKITHJ6U65/0TnEWOF2Ji2YIUgCJv2\nFzPvm31cOnEAQ3vZsAxtpqwY3rzFGbijmq8KjuQ7nbOddDNLwvSKDmMigd0OG4R3V+cCcPFEG3ym\nTW1b5NzYVVboFIDqnhiPmQ7HnhvabMZEAdsjCNChIxX88aP1jOiTwreO7R3qOB1Xzhsw60any15x\nv4dUljnPb3jPf++MxhhPWSEI0IptBwGYMcGjcVAjla+qdixXcIoAOB/+J36ntr3PWCsCxoSIFYIA\nrdxRQIzAjVOHtTyzqTX7FljzeuP2jJvh3P9t/zzGmEasEATA51Nmf7mLkX26kJxov7Jm5W2E/M21\n05vnw5CpMO6K2raYeDjhsvbPZozxyz7VAvDphv1szz/MpXaSuHmq8OL59Q8FgTNEY/oNIYlkjGmZ\nFYIAPP/ZFgB+eaF1R1zPjs/rd+9QXuwUgdN+6ozDCk7Xzmn++/I3xoQHKwQt2F9UxoINefTrlkT3\nZLtztYYqZF0DJfvqt0uscxio96jQ5DLGBM0KQQuezN4IwB+uGB/iJGFgy6eQ82/neVWFUwTO+jWM\n/3btPPFJkNglNPmMMa1ihaAF761xbiI7cXD3ECcJA/P/F3atgE6pznT3oTDmvyDF7qswpiOzQtCM\nN7/cxd7CMu6/cGz0dTBXkgdv3eZ086A+p233Spj0PTj3d6HNZoxpU1YImjHH7VLinOP7hjhJCHz+\nLKx/33k+IN25E/iYTBh/VWhzGWPanBWCJqzaUcB/1u7l0okDGBANo5BVHIGnpnJawQ74LBaqympf\nuzoLUvqELpsxxlNWCJqQvW4/ANefMjS0QbxUWQ6lh5znuSshfxMHep9Kn5EnOm1FuTDkFCsCxkQ4\nKwRNWL2zgBF9Uhg/KDXUUbzz/JmNhnncOOIm+pz93yEKZIwJBSsEfpRWVDnjDpwYYXcSlxyAPe4H\nf0WpUwSOu8TpAgKg20DKc6PgMJgxph4rBH48t8DpKydjSI8QJ2ljb98G696r3zb5BzB4cu10bna7\nRjLGhJ5nhUBEBgF/B/oCPuBZVX1cRB4Evgfsd2e9V1Xf87+W9ldZ5eOZTzeTkhjHFRkDQx3n6K18\nFYr2QEwcbFsIoy+EU37kvBbfGfqNC20+Y0zIeblHUAn8RFVXiEgXYLmIfOS+9piqPurhtlttwYY8\nikorufTEAcTFdvAB3HYuhzd/UL/thMtg8JTQ5DHGhCXPCoGq5gK57vMiEVkLhP1B90c++AaAh2Z0\n0I7Sdi6HL/7q9AV0aEdt+z27nMHe4+0cgDGmvnb5yisiQ4GJwFK36TYRWS0ifxORsOm7YV9hKd/s\nKeLYtBQ6J3TQ0yeL/5/TH9D2xXBop9M27V5n9C8rAsYYP0RVvd2ASArwCfBbVX1DRNKAPECB3wD9\nVPUmP8vNBGYCpKWlpWdlZbVq+8XFxaSkBDYE4jOrSlmcW8V9k5MY2d3bLiWCydWUmKpSTljzW+Ir\nCmvaOh3ZzYGeGXx93N0hy+UFyxWccM0F4ZstEnNlZmYuV9WMFmdUVc8eQDzwIXBnE68PBXJaWk96\nerq21vz58wOed9JvP9Jj73tPyyurWr29QAWTq0kbP1Z9oKvqCxeo/vPbtY8tn4U2lwcsV3DCNZdq\n+GaLxFzAMg3gs9rLq4YEeB5Yq6p/rNPeT53zBwCXADleZQhG1ufb2VtYxi8vHEt8uJ4kVoUXL4A9\na5zpqnLn3ytfhk5hc4TNGNPBeHkgfCpwHbBGRFa6bfcCV4vIBJxDQ1uB73uYIWAff+MMsDJjQv8Q\nJ6mjvMTpBbRaSZ5zCegx06H3aKet10grAsaYo+LlVUOfAeLnpbC5Z6CuVTsLmDGhPz1TEkMdxaEK\nT58G+Zsavzb9F06PoMYY0wY66KUxbStn1yH2FpaFR79CRw7C9iVQWugUgQnXOh2/VeuUCv1PDF0+\nY0zEsUIA/N+H6wA4aWgYdCkx79ew7G+105O/b3f/GmM8FfWFIK+4jE/X72fqiJ4cP6Bb+2780E74\n4vn61/evnwuDT4ZzH3bG/u15TPtmMsZEnagvBK8s2Q7AlScNbv+Nv3A+FGxr3D71dug/of3zGGOi\nUlQXgtKKKv788QaO6Z3MRePb4WqhkgPw5i3QuRej9u6rLQLHTIdrZtXOFxNl4yMbY0IqqgvB4k0H\nqPIpJx/Ts302OPc+2DAXgO6JPSGxK5QVwtkP2Ye/MSZkoroQ3P+2cy/bPeeN8WYDZUXw2rVwpMCZ\nznVvp5AYlpz8N6ZNm+bNdo0xJghhegut9/YXlbEj/wgTBqWSnOhRPdy2CDZnQ0IypKTByHOg6wC4\n6UNvtmeMMa0QtXsEv3jT6abh3vPbYG9g79fw1MnuhNQe5vFVgcTANf9yikFdm7KPfrvGGNMGorIQ\nFJVW8PE3++iZnED6kCC6Z1CF0kNQXux0/1Dtsz/WPo9LgpNvrZ3uPaZxETDGmDASlYXgkicXUVGl\n/Gj6CGJj/PWC0YTlL8KcO5qfZ/JMOOP+o8pnjDHtKeoKwby1e9m4r5gpw3tw1SQ/9w7kroa89f4X\n/uSR2ucXPVH/m35sAsQmwjGZbRvYGGM8FlWFoLiskptfWgbAXeeOJim+wSWbZcXwzGktr6jrADjx\nOx4kNMaY9hfZhWDjPAZvmw0LVgDw9dZ8fhC7n7OPS2PitnXQ8Kbeoj21z2dmQ7yfY/uJKXbM3xgT\nUSK7EKx7j+FbXoYtzuQkYFI8sN59NCWpG/Sf6H0+Y4wJA5FdCM59mE+TzsHXdzRvrdzNezm53Dpt\nBLdPH9n0MjFxEBvZvxZjjKkrsj/xYuPxxSbw+Cc7WL+niGFpPTnrhCEQnxTqZMYYEzYiuhA8MW8D\n/1x8mL2H4aapQ7nvgrGhjmSMMWEnogtB7y6J9E+OIf2YNK7IGBTqOMYYE5Y8KwQiMgj4O9AX8AHP\nqurjItIDeA0YijN4/RWqetCLDFdNGkzfw5uZNs1O/BpjTFO87HSuEviJqo4BpgA/FJGxwM+Beao6\nEpjnThtjjAkRzwqBquaq6gr3eRGwFhgAXAy85M72EjDDqwzGGGNa1i7dUIvIUGAisBRIU9VccIoF\n0Kc9MhhjjPFPVNXbDYikAJ8Av1XVN0SkQFVT67x+UFUbdQEqIjOBmQBpaWnpWVlZrdp+cXExKSkp\nrQvvIcsVHMsVnHDNBeGbLRJzZWZmLlfVjBZnVFXPHkA88CFwZ522dUA/93k/YF1L60lPT9fWmj9/\nfquX9ZLlCo7lCk645lIN32yRmAtYpgF8Vnt2aEhEBHgeWKuqdTrs523gevf59cBbXmUwxhjTMi/v\nI5gKXAesERF3sF7uBR4GXheRm4HtwOUeZjDGGNMCzwqBqn4GNDXqyxlebdcYY0xwPD9Z3BZEZD+N\nO40OVC8grw3jtBXLFRzLFZxwzQXhmy0Scw1R1d4tzdQhCsHREJFlGshZ83ZmuYJjuYITrrkgfLNF\nc652uY/AGGNM+LJCYIwxUS4aCsGzoQ7QBMsVHMsVnHDNBeGbLWpzRfw5AmOMMc2Lhj0CY4wxzYjY\nQiAi54rIOhHZKCLt3tW1iPxNRPaJSE6dth4i8pGIbHD/7e62i4j82c26WkRO9CjTIBGZLyJrReQr\nEbk9HHK520oSkc9FZJWb7Vdu+zARWepme01EEtz2RHd6o/v6UA+zxYrIlyIyJ1wyudvbKiJrRGSl\niCxz28Lhb5kqIrNE5Bv3vXZyqHOJyCj391T9KBSRO0Kdy93Wj933fI6I/NP9v9C+77FA+qHoaA8g\nFtgEDAcSgFXA2HbOcDpwIpBTp+3/gJ+7z38OPOI+Px94H+cGvCnAUo8y9QNOdJ93AdYDY0Ody92W\nACnu83icnmqnAK8DV7ntTwM/cJ/fCjztPr8KeM3DbHcCrwJz3OmQZ3K3sRXo1aAtHP6WLwHfdZ8n\nAKnhkKtOvlhgDzAk1LlwuubfAnSq8966ob3fY57+wkP1AE4GPqwzfQ9wTwhyDKV+IfDb4R7wDHC1\nv/k8zvcWcFYY5uoMrAAm49xIE9fw74rTmeHJ7vM4dz7xIMtAnAGUpgNz3A+GkGaqk20rjQtBSP+W\nQFf3g03CKVeDLGcDC8MhF04h2AH0cN8zc4Bz2vs9FqmHhqp/udV2um2h1tRYDO2eVwIbI6Jdc7mH\nYFYC+4CPcPbqClS10s/2a7K5rx8CenoQ60/AXTjDreJuI9SZqikwV0SWi9NtO4T+bzkc2A+84B5O\ne05EksMgV11XAf90n4c0l6ruAh7F6XctF+c9s5x2fo9FaiHw18dROF8e1a55xRkj4t/AHapa2Nys\nfto8y6WqVao6Aedb+CRgTDPb9zybiFwI7FPV5XWbQ5mpgamqeiJwHs5QsKc3M297ZYvDOST6lKpO\nBEpofjja9n7vJwAXAf9qaVY/bW2eyz0ncTEwDOgPJOP8PZvatie5IrUQ7AQG1ZkeCOwOUZa69opI\nPwD3331ue7vlFZF4nCLwiqq+ES656lLVAiAb59hsqohUd45Yd/s12dzXuwH5bRxlKnCRiGwFsnAO\nD/0pxJlqqOpu9999wGyc4hnqv+VOYKeqLnWnZ+EUhlDnqnYesEJV97rToc51JrBFVferagXwBnAK\n7fwei9RC8AUw0j3znoCzK/h2iDNB02MxvA18x71SYQpwqHp3tS2JBD1GRLvkcrP1FpFU93knnP8g\na4H5wGVNZKvOfBnwsboHTtuKqt6jqgNVdSjOe+hjVb0mlJmqiUiyiHSpfo5z3DuHEP8tVXUPsENE\nRrlNZwBfhzpXHVdTe1ioevuhzLUdmCIind3/n9W/r/Z9j3l5UiaUD5yz/utxjjPfF4Lt/xPnmF8F\nThW/GedY3jxgg/tvD3deAf7iZl0DZHiU6VSc3cjVwEr3cX6oc7nbGgd86WbLAe5324cDnwMbcXbn\nE932JHd6o/v6cI//ntOovWoo5JncDKvcx1fV7/Ew+VtOAJa5f8s3ge5hkqszcADoVqctHHL9CvjG\nfd+/DCS293vM7iw2xpgoF6mHhowxxgTICoExxkQ5KwTGGBPlrBAYY0yUs0JgjDFRzgqB6VDcni1v\nrTPdX0RmebSteBFZ3vKc7UtEhkqdXm2NOVpWCExHk4rTAyPg3F2rqpc1M//ROBVY5NG6jQkbVghM\nR/MwcIzbp/zv6347FpEbRORNEXlHRLaIyG0icqfb+dkSEenhzneMiHzgdta2QERGN7Gtc3G6Iq7h\ndoz3ott3/BoR+XFz6xSRNBGZLc44C6tE5BS3/U53HTkicofbNlSc/vv/Kk7/9HPdu6wRkXR3+cXA\nD+vkOU6ccRxWitNv/si2/GWbKOHV3XL2sIcXDxp37V0zjdOP+0acsRZ64/TMeIv72mM4neyBcwfp\nSPf5ZJzb9P1t63Ogc4O2dOCjOtOpza0TeK3OdmNx+oZJx7lbNRlIwbkzeKL7s1QCE9z5XweudZ+v\nBr7lPv99nZ/5CeAa93kCbr/29rBHMI/qTo2MiRTzVbUIKBKRQ8A7bvsaYJzb8+opwL+crl0A55b+\nekSkP5CvqocbvLQZGC4iTwDv4nQD3dw6pwPfAad3VeCQiJwKzFbVEndbbwCn4fQjs0VVV7rLLgeG\nikg3nILzidv+MrU9VC4G7hORgcAbqroh0F+UMdWsEJhIU1bnua/OtA/n/R6D09f7hBbWcx7OICD1\nqOpBERmPM3jID4ErgDsCXGc1f10JV6ubvwro5M7vty8YVX1VRJYCFwAfish3VfXjAHMYA9g5AtPx\nFOEc+mkVdcZf2CIil0PN2LTj/cza6PyAO38vIEZV/w38Emfoz+bWOQ/4gdseKyJdgU+BGW6Pk8nA\nJcCCZjIXULsnAXBNnTzDgc2q+mecPYpxgf4ujKlmhcB0KKp6AFjonmT9fStXcw1ws4hU99x5cd0X\nRSQW53j/N36WHQBkizOS2os4w6A2t87bgUwRWYNzqOc4VV3hLvs5zghxz6nqly1kvhH4i3uy+Eid\n9iuBHDfPaODvLazHmEas91FjGnC/eV+rqreEOosx7cEKgTHGRDk7NGSMMVHOCoExxkQ5KwTGGBPl\nrBAYY0yUs0JgjDFRzgqBMcZEOSsExhgT5f4/U1b5M+iuv3EAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}