{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "*This notebook contains material from [CBE40455-2020](https://jckantor.github.io/CBE40455-2020);\n", "content is available [on Github](https://github.com/jckantor/CBE40455-2020.git).*\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "< [2.1 Campus SIR Modeling](https://jckantor.github.io/CBE40455-2020/02.01-Campus-SIR-modeling.html) | [Contents](toc.html) | [2.3 Campus Re-opening Model](https://jckantor.github.io/CBE40455-2020/02.03-Campus-reopening.html) >
"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "7wQY1Qx7eOKX",
"nbpages": {
"level": 1,
"link": "[2.2 Campus SEIR Modeling](https://jckantor.github.io/CBE40455-2020/02.02-Campus-SEIR-modeling.html#2.2-Campus-SEIR-Modeling)",
"section": "2.2 Campus SEIR Modeling"
}
},
"source": [
"# 2.2 Campus SEIR Modeling\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "nDB7fXWZeVef",
"nbpages": {
"level": 2,
"link": "[2.2.1 Campus infection data](https://jckantor.github.io/CBE40455-2020/02.02-Campus-SEIR-modeling.html#2.2.1-Campus-infection-data)",
"section": "2.2.1 Campus infection data"
}
},
"source": [
"## 2.2.1 Campus infection data\n",
"\n",
"The following data consists of new infections reported since August 3, 2020, from diagnostic testing administered by the Wellness Center and University Health Services at the University of Notre Dame. The data is publically available on the [Notre Dame Covid-19 Dashboard](https://here.nd.edu/our-approach/dashboard/)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 281
},
"colab_type": "code",
"executionInfo": {
"elapsed": 1035,
"status": "ok",
"timestamp": 1597680824455,
"user": {
"displayName": "Jeffrey Kantor",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64",
"userId": "09038942003589296665"
},
"user_tz": 240
},
"id": "POjTcEnHSDwi",
"nbpages": {
"level": 2,
"link": "[2.2.1 Campus infection data](https://jckantor.github.io/CBE40455-2020/02.02-Campus-SEIR-modeling.html#2.2.1-Campus-infection-data)",
"section": "2.2.1 Campus infection data"
},
"outputId": "3768ce83-7730-44c6-c8f0-ce301e462d64"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/jeff/opt/anaconda3/lib/python3.7/site-packages/pandas/plotting/_matplotlib/converter.py:103: FutureWarning: Using an implicitly registered datetime converter for a matplotlib plotting method. The converter was registered by pandas on import. Future versions of pandas will require you to explicitly register matplotlib converters.\n",
"\n",
"To register the converters:\n",
"\t>>> from pandas.plotting import register_matplotlib_converters\n",
"\t>>> register_matplotlib_converters()\n",
" warnings.warn(msg, FutureWarning)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAEICAYAAACHwyd6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAZSElEQVR4nO3df5xldX3f8ddbFmRlkRUwU1yQJRFRZAuWEUk1dhYkoEahj4dBKNGlxWzbxMQ2GxV9aIyxrdiIir+abCV1o9aVohYiqYYHYTBWA7IKWX5IQFiEFRYlu8IQFFc//eOerZdxZu+dnTtzxjuv5+NxH3PPOd97vp97Z7/7nu85Z86kqpAkSfPrCW0XIEnSYmQAS5LUAgNYkqQWGMCSJLXAAJYkqQUGsCRJLTCApQUkyR8m+UTbdcxGkn+Z5J4kE0meO8D9/kqS2wa1P6ltBrB+7iXZkuTR5j/8+5N8LMmyFmt58RzteyxJJfnIpPVfTnLuXPTZ1e+9M3jJe4DXVdWyqvrGLPqtJM/YtVxVf1NVR+3p/qSFxgDWsHh5VS0DjgOeC7x5PjtPsmSeunoEeHWSlfPU3544HLi57SKkhc4A1lCpqvuBL9IJYgCSnJjkK0l2JLkxyVjXtvEk70pyXZKHklyW5MCu7a9IcnPz2vEkz+7atiXJm5L8HfBIkk8BTwf+opmNv7GP/o9Ick2Sh5NcCRzc4y3uAD4GvH26Bkn+TZJbk2xP8sUkhzfr35Hkg83zvZM8kuSPm+WlSX7Q/d53s//xJO9M8n+buv8qycFJnphkAtgLuDHJt5r2T0vymSTfTXJXkt/t2tdeSd6S5FvNvjYlOSzJl5omNzaf5asmz8STPLupZUfzPXpF17aPJflwkiua/V6b5JeabUnyviQPNN/zzUmO6fW+pYGrKh8+fq4fwBbgxc3zQ4HNwEXN8grgQeCldH7gPKVZfmqzfRzYChwD7Ad8BvhEs+2ZdGacpwB7A28E7gD26er3BuAwYOnkWvrs/6vAe4EnAi8CHt7V/xTvcwy4F/gnwEPAUc36LwPnNs9Pb2p8NrAEeCvwlWbbScDm5vk/B74FXNu17cbd9du1PN689pnA0mb5gq7tBTyjef4EYBPwB8A+wC8CdwKnNtvf0Hy/jgICHAscNHk/k+tovh93AG9p9ntS89nt+kw+1nzOJzSfwyeBjc22U5ualjd9Phs4pO1/xz4W38MZsIbF/07yMHAP8AA/nSH+BvCXVfWXVfWTqroSuJ5OIO7y8aq6qaoeAd4GnJlkL+BVwBVVdWVV/YjOuc2ldMJrlw9U1T1V9eg0dU3bf5KnA88D3lZVP6yqLwF/0euNVmeW/yfAH02x+d8B76qqW6tqJ/BfgOOaWfBXgSOTHEQn7C8GVjTny/8FcE2vvrv8j6r6++Z9X0LXEYdJnkfnh40/qqrHqupO4L8DZzXbXwu8tapuq44bq+rBPvo/EVhGJ/gfq6q/Bj4PnN3V5nNVdV3zOXyyq8YfAfsDzwLSfFb39f/WpcEwgDUszqiq/enMkp7FTw/lHg78enOYckeSHcALgUO6XntP1/O76cyuDgae1iwDUFU/adqumOa1U9ld/08DtjfB391/P94NnJrk2Cn6u6irr3+gM8tb0YTl9XTC9kV0AvcrwAuYeQDf3/X8H+mE4VQOB5426f2/BRhpth9GZzY9U08D7mm+J7vczeO/N1PW2IT1h4APAw8kWZ/kyXtQgzQrBrCGSlVdQ+fw43uaVffQmeEu73rsV1UXdL3ssK7nT6czQ/oe8B06AQJ0zh02bbd2dzm5hEnLu+v/PuApSfab1H8/7/NB4P3AO6fo799O6m9pVX2l2X4NncO1zwW+1iyfSudQ7ZcYvHuAuybVs39VvbRr+y/twX6/AxyWpPv/sKfz+O/NtKrqA1V1PHA0nUPpb9iDGqRZMYA1jN4PnNLMDj8BvDzJqc0FP/s2F/Mc2tX+N5IcneRJdA7rXlpVP6ZzaPVlSU5OsjewDvghnVnjdLbROc+5y7T9V9XddGak70iyT5IXAi+fwft8L53D4c/uWvcnwJuTPAcgyQFJfr1r+zXAa4BbquoxOudvX0snJL87g777dR3wcHOx2tLmMzgmyfOa7R8F3pnkyObiqH/aHCKHn/0su11LZ1b7xuaCsjE6n93GXgUleV6S5zff00eAHwA/6fEyaeAMYA2dJkj+HPiDqrqHzoVJbwG+S2fG9QYe/2//43RmzfcD+wK/2+znNjrncD9IZ0b8cjq/7vTYbrp/F/DW5nDr7/fR/78Cnk/nUPHbm7r7fZ8PAf8VOLBr3efoHJ7emOQh4CbgJV0v+wqd89i7Zru30AmguZj90vwg82t0zr/eRedz/ChwQNPkvXR+0PkrOheWXdzUB/CHwIbmszxz0n4fo/P9eEmzz48Ar6mqb/ZR1pPpnIfeTuew9YPAH+/ZO5T2XKomHzGTFo8k43SuOv5o27VIWlycAUuS1AIDWJKkFngIWpKkFjgDliSpBfN1A3kADj744Fq5cuW89ffII4+w33779W4oDTnHgtQx32Nh06ZN36uqp061bV4DeOXKlVx//fXz1t/4+DhjY2Pz1p+0UDkWpI75HgtJpr27nYegJUlqgQEsSVILDGBJklpgAEuS1AIDWJKkFhjAkiS1oK8ATvIfk9yc5KYkn2r+pNoRSa5NckeSTyfZZ66LlSRpWPQM4CQr6Px5ttGqOgbYCziLzp88e19VPYPOn/U6by4LlSRpmPR7CHoJsDTJEuBJwH3AScClzfYNwBmDL0+SpOHU805YVbU1yXuAbwOP0vnD2ZuAHVW1s2l2L7BiqtcnWQusBRgZGWF8fHwAZfdnYmJiXvuTFirHghaDzVu/37PNyFL44Ccvm3b7qhUHDLKk3eoZwEmeApwOHAHsAP4XcFq/HVTVemA9wOjoaM3nLcC8/Z7U4VjQYnDu+Vf0bLNu1U4u3Dx99G05Z2yAFe1eP4egXwzcVVXfraofAZ8FXgAsbw5JAxwKbJ2jGiVJGjr9BPC3gROTPClJgJOBW4CrgVc2bdYA08/pJUnS4/QM4Kq6ls7FVl8HNjevWQ+8Cfi9JHcABwEXz2GdkiQNlb7+HGFVvR14+6TVdwInDLwiSZIWAe+EJUlSCwxgSZJaYABLktQCA1iSpBYYwJIktcAAliSpBQawJEktMIAlSWqBASxJUgsMYEmSWmAAS5LUAgNYkqQWGMCSJLXAAJYkqQUGsCRJLTCAJUlqQc8ATnJUkhu6Hg8l+Q9JDkxyZZLbm69PmY+CJUkaBj0DuKpuq6rjquo44HjgH4HPAecDV1XVkcBVzbIkSerDTA9Bnwx8q6ruBk4HNjTrNwBnDLIwSZKG2UwD+CzgU83zkaq6r3l+PzAysKokSRpyqar+Gib7AN8BnlNV25LsqKrlXdu3V9XPnAdOshZYCzAyMnL8xo0bB1N5HyYmJli2bNm89SctVI4FLQabt36/Z5uRpbDt0em3r1pxwAArgtWrV2+qqtGpti2ZwX5eAny9qrY1y9uSHFJV9yU5BHhgqhdV1XpgPcDo6GiNjY3NoMvZGR8fZz77kxYqx4IWg3PPv6Jnm3WrdnLh5umjb8s5YwOsaPdmcgj6bH56+BngcmBN83wNcNmgipIkadj1FcBJ9gNOAT7btfoC4JQktwMvbpYlSVIf+joEXVWPAAdNWvcgnauiJUnSDHknLEmSWmAAS5LUAgNYkqQWGMCSJLXAAJYkqQUGsCRJLTCAJUlqgQEsSVILDGBJklpgAEuS1AIDWJKkFhjAkiS1wACWJKkFBrAkSS0wgCVJaoEBLElSCwxgSZJa0FcAJ1me5NIk30xya5JfTnJgkiuT3N58fcpcFytJ0rDodwZ8EfCFqnoWcCxwK3A+cFVVHQlc1SxLkqQ+9AzgJAcALwIuBqiqx6pqB3A6sKFptgE4Y66KlCRp2KSqdt8gOQ5YD9xCZ/a7CXg9sLWqljdtAmzftTzp9WuBtQAjIyPHb9y4caBvYHcmJiZYtmzZvPUnLVSOBS0Gm7d+v2ebkaWw7dHpt69accAAK4LVq1dvqqrRqbb1E8CjwN8CL6iqa5NcBDwE/E534CbZXlW7PQ88Ojpa119//YzfwJ4aHx9nbGxs3vqTFirHghaDledf0bPNulU7uXDzkmm3b7ngZYMsiSTTBnA/54DvBe6tqmub5UuBfwZsS3JI08EhwAODKFaSpMWgZwBX1f3APUmOaladTOdw9OXAmmbdGuCyOalQkqQhNP08/PF+B/hkkn2AO4F/TSe8L0lyHnA3cObclChJ0vDpK4Cr6gZgqmPYJw+2HEmSFgfvhCVJUgsMYEmSWmAAS5LUAgNYkqQWGMCSJLXAAJYkqQUGsCRJLTCAJUlqgQEsSVILDGBJklpgAEuS1AIDWJKkFhjAkiS1wACWJKkFBrAkSS0wgCVJaoEBLElSC5b00yjJFuBh4MfAzqoaTXIg8GlgJbAFOLOqts9NmZIkDZeZzIBXV9VxVTXaLJ8PXFVVRwJXNcuSJKkPszkEfTqwoXm+AThj9uVIkrQ4pKp6N0ruArYDBfxpVa1PsqOqljfbA2zftTzptWuBtQAjIyPHb9y4cZD179bExATLli2bt/6khcqxoMVg89bv92wzshS2PTr99lUrDhhgRbB69epNXUeOH6evc8DAC6tqa5JfAK5M8s3ujVVVSaZM8qpaD6wHGB0drbGxsf4rn6Xx8XHmsz9poXIsaDE49/wrerZZt2onF26ePvq2nDM2wIp2r69D0FW1tfn6APA54ARgW5JDAJqvD8xVkZIkDZueAZxkvyT773oO/CpwE3A5sKZptga4bK6KlCRp2PRzCHoE+FznNC9LgP9ZVV9I8jXgkiTnAXcDZ85dmZIkDZeeAVxVdwLHTrH+QeDkuShKkqRh552wJElqgQEsSVILDGBJklpgAEuS1AIDWJKkFhjAkiS1wACWJKkFBrAkSS0wgCVJaoEBLElSCwxgSZJaYABLktQCA1iSpBYYwJIktcAAliSpBQawJEktMIAlSWpB3wGcZK8k30jy+Wb5iCTXJrkjyaeT7DN3ZUqSNFxmMgN+PXBr1/K7gfdV1TOA7cB5gyxMkqRh1lcAJzkUeBnw0WY5wEnApU2TDcAZc1GgJEnDaEmf7d4PvBHYv1k+CNhRVTub5XuBFVO9MMlaYC3AyMgI4+Pje1zsTE1MTMxrf9JC5VjQYrBu1c6ebUaW7r7dfI6TngGc5NeAB6pqU5KxmXZQVeuB9QCjo6M1NjbjXeyx8fFx5rM/aaFyLGgxOPf8K3q2WbdqJxdunj76tpwzNsCKdq+fGfALgFckeSmwL/Bk4CJgeZIlzSz4UGDr3JUpSdJw6XkOuKreXFWHVtVK4Czgr6vqHOBq4JVNszXAZXNWpSRJQ2Y2vwf8JuD3ktxB55zwxYMpSZKk4dfvRVgAVNU4MN48vxM4YfAlSZI0/LwTliRJLTCAJUlqgQEsSVILDGBJklpgAEuS1AIDWJKkFhjAkiS1wACWJKkFBrAkSS0wgCVJaoEBLElSCwxgSZJaYABLktQCA1iSpBYYwJIktcAAliSpBQawJEkt6BnASfZNcl2SG5PcnOQdzfojklyb5I4kn06yz9yXK0nScOhnBvxD4KSqOhY4DjgtyYnAu4H3VdUzgO3AeXNXpiRJw6VnAFfHRLO4d/Mo4CTg0mb9BuCMOalQkqQhtKSfRkn2AjYBzwA+DHwL2FFVO5sm9wIrpnntWmAtwMjICOPj47MsuX8TExPz2p+0UDkWtBisW7WzZ5uRpbtvN5/jpK8ArqofA8clWQ58DnhWvx1U1XpgPcDo6GiNjY3tQZl7Znx8nPnsT1qoHAtaDM49/4qebdat2smFm6ePvi3njA2wot2b0VXQVbUDuBr4ZWB5kl3v4lBg64BrkyRpaPVzFfRTm5kvSZYCpwC30gniVzbN1gCXzVWRkiQNm34OQR8CbGjOAz8BuKSqPp/kFmBjkv8EfAO4eA7rlCRpqPQM4Kr6O+C5U6y/EzhhLoqSJGnYeScsSZJaYABLktQCA1iSpBYYwJIktcAAliSpBQawJEktMIAlSWqBASxJUgsMYEmSWmAAS5LUAgNYkqQWGMCSJLXAAJYkqQUGsCRJLTCAJUlqgQEsSVILDGBJklrQM4CTHJbk6iS3JLk5yeub9QcmuTLJ7c3Xp8x9uZIkDYd+ZsA7gXVVdTRwIvDbSY4GzgeuqqojgauaZUmS1IeeAVxV91XV15vnDwO3AiuA04ENTbMNwBlzVaQkScMmVdV/42Ql8CXgGODbVbW8WR9g+67lSa9ZC6wFGBkZOX7jxo2zr7pPExMTLFu2bN76kxYqx4IWg81bv9+zzchS2Pbo9NtXrThggBXB6tWrN1XV6FTb+g7gJMuAa4D/XFWfTbKjO3CTbK+q3Z4HHh0dreuvv34Gpc/O+Pg4Y2Nj89aftFA5FrQYrDz/ip5t1q3ayYWbl0y7fcsFLxtkSSSZNoD7ugo6yd7AZ4BPVtVnm9XbkhzSbD8EeGAQxUqStBj0cxV0gIuBW6vqvV2bLgfWNM/XAJcNvjxJkobT9PPwn3oB8Gpgc5IbmnVvAS4ALklyHnA3cObclChJ0vDpGcBV9WUg02w+ebDlSJK0OHgnLEmSWmAAS5LUAgNYkqQWGMCSJLXAAJYkqQUGsCRJLTCAJUlqQT834pAkacb6uTdzL4O+N/NC4gxYkqQWGMCSJLXAQ9CS1CIP0y5ezoAlSWqBASxJUgsMYEmSWmAAS5LUAgNYkqQWGMCSJLWgZwAn+bMkDyS5qWvdgUmuTHJ78/Upc1umJEnDpZ8Z8MeA0yatOx+4qqqOBK5qliVJUp96BnBVfQn4h0mrTwc2NM83AGcMuC5JkoZaqqp3o2Ql8PmqOqZZ3lFVy5vnAbbvWp7itWuBtQAjIyPHb9y4cTCV92FiYoJly5bNW3/SQuVY6N/mrd+f9T5WrThgwfY3nxbiZzmyFLY9Opj++rF69epNVTU61bZZ34qyqirJtCleVeuB9QCjo6M1NjY22y77Nj4+znz2Jy1UjoX+nTuIW0OeM7Zg+5tPC/GzXLdqJxdunj765vOz3NOroLclOQSg+frA4EqSJGn47WkAXw6saZ6vAS4bTDmSJC0O/fwa0qeArwJHJbk3yXnABcApSW4HXtwsS5KkPvU8B1xVZ0+z6eQB1yJJ0qLhnbAkSWqBASxJUgtm/WtIkjSXVg7iV1kueNkAKpEGyxmwJEktMIAlSWqBASxJUgsMYEmSWmAAS5LUAgNYkqQW+GtI0hDo9as661bt3O1fipnJr+n4a0HSYDgDliSpBQawJEkt8BC0JC0isz2F4OmDwXEGLElSCwxgSZJa4CFoaQ54pbCkXpwBS5LUglnNgJOcBlwE7AV8tKouGEhVasUwX5zhjFTSQrPHM+AkewEfBl4CHA2cneToQRUmSdIwm80h6BOAO6rqzqp6DNgInD6YsiRJGm6pqj17YfJK4LSqem2z/Grg+VX1uknt1gJrm8WjgNv2vNwZOxj43jz2Jy1UjgWpY77HwuFV9dSpNsz5VdBVtR5YP9f9TCXJ9VU12kbf0kLiWJA6FtJYmM0h6K3AYV3LhzbrJElSD7MJ4K8BRyY5Isk+wFnA5YMpS5Kk4bbHh6CrameS1wFfpPNrSH9WVTcPrLLBaOXQt7QAORakjgUzFvb4IixJkrTnvBOWJEktMIAlSWrBgg/gJGckqSTPGvB+35zkjiS3JTm1WbdvkuuS3Jjk5iTvGGSf0p6ai3GQ5KAkVyeZSPKhSduOT7K5GSMfSJJB9SvNxnyOhST7J7mh6/G9JO8fVL8LPoCBs4EvN18Horll5lnAc4DTgI80t9b8IXBSVR0LHAecluTEQfUrzcLAxwHwA+BtwO9Pse2/Ab8JHNk8Thtgv9JszNtYqKqHq+q4XQ/gbuCzg+p0QQdwkmXAC4Hz6ATmrvVjST7ftfyhJOc2z1+a5JtJNjU/uX9+8n7p3DJzY1X9sKruAu4ATqiOiabN3s3Dq9TUqrkaB1X1SFV9mc5/Pt39HQI8uar+tjpXaf45cMZcvDdpJuZ7LEzq+5nALwB/M6j3s6ADmE5QfqGq/h54MMnxu2ucZF/gT4GXVNXxwJS3/wJWAPd0Ld/brCPJXkluAB4Arqyqa2f5HqTZmqtxMJ0VdMbELv9/fEgtm++x0O0s4NM1wF8dWugBfDadP/JA87XXIYdnAXc2s1qAT820w6r6cXOo4VDghCTHzHQf0oDN+ziQFqg2x8JZs3z9z5jze0HvqSQHAicBq5IUnZt9VJI3ADt5/A8P+85w9z1vo1lVO5JcTefc100z3L80EHM8Dqazlc6Y2MXbzKp1LY2FXX0fCyypqk2D3O9CngG/Evh4VR1eVSur6jDgLuBX6JwIPzrJE5MsB05uXnMb8ItJVjbLr5pm35cDZzWvP4LORSbXJXlqsz+SLAVOAb45B+9N6tdcjoMpVdV9wENJTmyufn4NcNns34o0K/M+FrqczRwcSVqwM2A6b/jdk9Z9Bji7qv59kkvozEzvAr4BUFWPJvkt4AtJHqFzv+qfUVU3N6+/hc5PTr9dVT9uLj7Z0FwR/QTgkqqa6iIuab7M2TgASLIFeDKwT5IzgF+tqluA3wI+BiwF/k/zkNrU1lgAOBN46SDfDAzhrSiTLKuqieYn9w8Dt1fV+9quS5pPjgOpYyGPhYV8CHpP/WZzFfPNwAF0roCTFhvHgdSxYMfC0M2AJUn6eTCMM2BJkhY8A1iSpBYYwJIktcAAliSpBQawJEkt+H9GqDOuM9v5CQAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
}
],
"metadata": {
"colab": {
"authorship_tag": "ABX9TyMLHLafHBVRbuqsiaP/J00M",
"collapsed_sections": [],
"name": "Campus-SEIR-modeling.ipynb",
"provenance": [
{
"file_id": "14v51fHgXJppd-iWZ_I8hWcQsqultykEX",
"timestamp": 1597525384103
}
]
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 4
}