{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "dC0K7BZiKe4P", "nbpages": { "level": 0, "link": "[](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html)", "section": "" }, "pycharm": {} }, "source": [ "\n", "*This notebook contains material from [CBE40455-2020](https://jckantor.github.io/CBE40455-2020);\n", "content is available [on Github](https://github.com/jckantor/CBE40455-2020.git).*\n" ] }, { "cell_type": "markdown", "metadata": { "id": "kywwqZ38Ke4Q", "nbpages": { "level": 0, "link": "[](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html)", "section": "" }, "pycharm": {} }, "source": [ "\n", "< [7.0 Risk and Diversification](https://jckantor.github.io/CBE40455-2020/07.00-Risk-and-Diversification.html) | [Contents](toc.html) | [7.2 Geometric Brownian Motion](https://jckantor.github.io/CBE40455-2020/07.02-Geometric-Brownian-Motion.html) >

\"Open

\"Download\"" ] }, { "cell_type": "markdown", "metadata": { "id": "yv2KJXVdKe4S", "nbpages": { "level": 1, "link": "[7.1 Measuring Return](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1-Measuring-Return)", "section": "7.1 Measuring Return" }, "pycharm": {} }, "source": [ "# 7.1 Measuring Return\n", "\n", "How much does one earn relative to the amount invested? \n", "\n", "This is the basic concept of return, and one of the fundamental measurements of financial performance. This notebook examines the different ways in which return can be measured." ] }, { "cell_type": "markdown", "metadata": { "id": "evkdzCeTKe4T", "nbpages": { "level": 2, "link": "[7.1.1 Pandas-datareader](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.1-Pandas-datareader)", "section": "7.1.1 Pandas-datareader" }, "pycharm": {} }, "source": [ "## 7.1.1 Pandas-datareader\n", "\n", "As will be shown below, [pandas-datareader](https://github.com/pydata/pandas-datareader) provides a convenient means access and manipulate financial data using the Pandas library. The pandas-datareader is normally imported separately from pandas. Typical installation is\n", "\n", " pip install pandas-datareader\n", "\n", "from a terminal window, or executing\n", "\n", " !pip install pandas-datareader\n", "\n", "in a Jupyter notebook cell. Google Colab environment now includes pandas-datareader, so separate installation is required." ] }, { "cell_type": "markdown", "metadata": { "id": "1nTCtGTkJSFd", "nbpages": { "level": 2, "link": "[7.1.2 Imports](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.2-Imports)", "section": "7.1.2 Imports" } }, "source": [ "## 7.1.2 Imports" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "executionInfo": { "elapsed": 360, "status": "ok", "timestamp": 1604434596715, "user": { "displayName": "Jeffrey Kantor", "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64", "userId": "09038942003589296665" }, "user_tz": 300 }, "id": "WQGo0o7_Ke4U", "jupyter": { "outputs_hidden": true }, "nbpages": { "level": 2, "link": "[7.1.2 Imports](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.2-Imports)", "section": "7.1.2 Imports" }, "pycharm": {} }, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import seaborn as sns\n", "\n", "import datetime\n", "\n", "import pandas as pd\n", "import pandas_datareader as pdr" ] }, { "cell_type": "markdown", "metadata": { "id": "Eh1HgZKdKe4d", "nbpages": { "level": 2, "link": "[7.1.3 Where to get Price Data](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.3-Where-to-get-Price-Data)", "section": "7.1.3 Where to get Price Data" }, "pycharm": {} }, "source": [ "## 7.1.3 Where to get Price Data\n", "\n", "This notebook uses the price of stocks and various commodity goods for the purpose of demonstrating returns. Price data is available from a number of sources. Here we demonstrate the process of obtaining price data on financial goods from [Yahoo Finance](http://finance.yahoo.com/) and downloading price data sets from [Quandl](http://www.quandl.com/). (UPDATE: [Look here for an alternative descripton of how to get live market data from Yahoo Finance](https://towardsdatascience.com/python-how-to-get-live-market-data-less-than-0-1-second-lag-c85ee280ed93).)\n", "\n", "The most comprehensive repositories of financial data are commercial enterprises. Some provide a free tier of service for limited use, typically 50 inquires a day or several hundred a month. Some require registration to access the free tier. These details are a constantly changing. A listing of free services is available from [awesome-quant](https://github.com/wilsonfreitas/awesome-quant#data-sources), but please note that details change quickly. [Another useful collection of stock price data using Python](https://towardsdatascience.com/how-to-get-stock-data-using-python-c0de1df17e75)." ] }, { "cell_type": "markdown", "metadata": { "id": "SOgpAYEzKe4Y", "nbpages": { "level": 3, "link": "[7.1.3.1 Stock Symbols](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.3.1-Stock-Symbols)", "section": "7.1.3.1 Stock Symbols" }, "pycharm": {} }, "source": [ "### 7.1.3.1 Stock Symbols\n", "\n", "Stock price data is usually indexed and accessed by stock symbols. Stock symbols are unique identifiers for a stock, commodity, or other financial good on a specific exchanges. For example, [this is a list of symbols for the New York Stock Exchange (NYSE)](http://www.eoddata.com/symbols.aspx?AspxAutoDetectCookieSupport=1) The following function looks up details of stock symbol on yahoo finance.." ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 448, "status": "ok", "timestamp": 1604434598578, "user": { "displayName": "Jeffrey Kantor", "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64", "userId": "09038942003589296665" }, "user_tz": 300 }, "id": "khRgx1GPKe4Z", "nbpages": { "level": 3, "link": "[7.1.3.1 Stock Symbols](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.3.1-Stock-Symbols)", "section": "7.1.3.1 Stock Symbols" }, "outputId": "650453bb-9042-4e8d-a81d-128b2a96079e", "pycharm": {} }, "outputs": [ { "data": { "text/plain": [ "[{'exch': 'NYQ',\n", " 'exchDisp': 'NYSE',\n", " 'name': 'Exxon Mobil Corporation',\n", " 'symbol': 'XOM',\n", " 'type': 'S',\n", " 'typeDisp': 'Equity'},\n", " {'exch': 'NMS',\n", " 'exchDisp': 'NASDAQ',\n", " 'name': 'XOMA Corporation',\n", " 'symbol': 'XOMA',\n", " 'type': 'S',\n", " 'typeDisp': 'Equity'},\n", " {'exch': 'YHD',\n", " 'exchDisp': 'Industry',\n", " 'name': 'Exxon Mobil Corporation',\n", " 'symbol': 'XOM.BA',\n", " 'type': 'S',\n", " 'typeDisp': 'Equity'},\n", " {'exch': 'YHD',\n", " 'exchDisp': 'Industry',\n", " 'name': 'Exxon Mobil Corporation',\n", " 'symbol': 'XOM.MX',\n", " 'type': 'S',\n", " 'typeDisp': 'Equity'},\n", " {'exch': 'DUS',\n", " 'exchDisp': 'Dusseldorf Stock Exchange',\n", " 'name': 'XOMA CORP. DL -,0005',\n", " 'symbol': 'X0M1.DU',\n", " 'type': 'S',\n", " 'typeDisp': 'Equity'},\n", " {'exch': 'STU',\n", " 'exchDisp': 'Stuttgart',\n", " 'name': 'XOMA Corp. Registered Shares DL',\n", " 'symbol': 'X0M1.SG',\n", " 'type': 'S',\n", " 'typeDisp': 'Equity'},\n", " {'exch': 'TLO',\n", " 'exchDisp': 'TLX Exchange',\n", " 'name': 'Exxon Mobil Corporation',\n", " 'symbol': 'XOM-U.TI',\n", " 'type': 'S',\n", " 'typeDisp': 'Equity'},\n", " {'exch': 'VIE',\n", " 'exchDisp': 'Vienna',\n", " 'name': 'Exxon Mobil Corporation',\n", " 'symbol': 'XOM.VI',\n", " 'type': 'S',\n", " 'typeDisp': 'Equity'},\n", " {'exch': 'BUE',\n", " 'exchDisp': 'Buenos Aires',\n", " 'name': 'EXXON MOBIL CORP',\n", " 'symbol': 'XOMD.BA',\n", " 'type': 'S',\n", " 'typeDisp': 'Equity'}]" ] }, "execution_count": 41, "metadata": { "tags": [] }, "output_type": "execute_result" } ], "source": [ "# python libraray for accessing internet resources\n", "import requests\n", "\n", "def lookup_yahoo(symbol):\n", " \"\"\"Return a list of all matches for a symbol on Yahoo Finance.\"\"\"\n", " url = f\"http://d.yimg.com/autoc.finance.yahoo.com/autoc?query={symbol}®ion=1&lang=en\"\n", " return requests.get(url).json()[\"ResultSet\"][\"Result\"]\n", "\n", "lookup_yahoo(\"XOM\")" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 314, "status": "ok", "timestamp": 1604434599538, "user": { "displayName": "Jeffrey Kantor", "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64", "userId": "09038942003589296665" }, "user_tz": 300 }, "id": "8K6KLyOCL9CP", "nbpages": { "level": 3, "link": "[7.1.3.1 Stock Symbols](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.3.1-Stock-Symbols)", "section": "7.1.3.1 Stock Symbols" }, "outputId": "d33cc255-f3ed-4ebb-c729-6ac322a8c5a0" }, "outputs": [ { "data": { "text/plain": [ "{'exch': 'NMS',\n", " 'exchDisp': 'NASDAQ',\n", " 'name': 'Tesla, Inc.',\n", " 'symbol': 'TSLA',\n", " 'type': 'S',\n", " 'typeDisp': 'Equity'}" ] }, "execution_count": 42, "metadata": { "tags": [] }, "output_type": "execute_result" } ], "source": [ "def get_symbol(symbol):\n", " \"\"\"Return exact match for a symbol.\"\"\"\n", " result = [r for r in lookup_yahoo(symbol) if symbol == r['symbol']]\n", " return result[0] if len(result) > 0 else None\n", "\n", "get_symbol('TSLA')" ] }, { "cell_type": "markdown", "metadata": { "id": "_wDxiCroKe4d", "nbpages": { "level": 3, "link": "[7.1.3.2 Yahoo Finance](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.3.2-Yahoo-Finance)", "section": "7.1.3.2 Yahoo Finance" }, "pycharm": {} }, "source": [ "### 7.1.3.2 Yahoo Finance\n", "\n", "[Yahoo Finance](http://finance.yahoo.com/) provides historical Open, High, Low, Close, and Volume date for quotes on traded securities. In addition, Yahoo Finance provides historical [Adjusted Close](http://marubozu.blogspot.com/2006/09/how-yahoo-calculates-adjusted-closing.html) price data that corrects for splits and dividend distributions. Adjusted Close is a useful tool for computing the return on long-term investments.\n", "\n", "The following cell demonstrates how to download historical Adjusted Close price for a selected security into a pandas DataFrame." ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 293 }, "executionInfo": { "elapsed": 1050, "status": "ok", "timestamp": 1604434601334, "user": { "displayName": "Jeffrey Kantor", "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64", "userId": "09038942003589296665" }, "user_tz": 300 }, "id": "ugM0ykkYKe4e", "nbpages": { "level": 3, "link": "[7.1.3.2 Yahoo Finance](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.3.2-Yahoo-Finance)", "section": "7.1.3.2 Yahoo Finance" }, "outputId": "787290dc-1651-499e-9ea7-5003c3e11d2f", "pycharm": {} }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAEUCAYAAACF2yrgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXxU1dnA8d8zmex7AgkQAmHfkU1AQAX3rdW6L3VpbdW2ttpVu9i39e3bWru3trbUtm4ootZ9B4m4gYLsO4SQhZB9XyeZ8/5x7ySTkGWATCaZPN/PJx9mzr1z5zmTaJ4859xzxBiDUkoppZQKHEegA1BKKaWUGuw0IVNKKaWUCjBNyJRSSimlAkwTMqWUUkqpANOETCmllFIqwDQhU0oppZQKME3IlApSIpIpIl8JdBzHQ0SeFpHLAh3HQCYib4jIzYGO42SIyO9E5GuBjkOpvqQJmVL9hIjUeH25RaTe6/kNAYxrqYjk9cH7zAROAV6yn98iIkZEftDhvDwRWdqhzXPuNZ1c90cicsj+HPNE5BmvY5ki0iAi1SJSJSKbROReEQnv5DqPikiziAzv5NglIvKJiNSKSKmIPCkiad309Wci4urwPa/w4WPqkTHmQmPMY/b73CIiH5zIdezEzhObS0SavJ7/3T6np8+22z8I7HPKO/m8fwv8SETCTiR2pQYiTciU6ieMMTGeLyAH+JxX24pAx9cHbgdWmParVZcBPxCR2B5ee7N97k3ejXal6EbgHPtznQes6fDaO40xscBw4LvAtcDrIiJe14kGrgAqgS92eI8rgaeAPwJDgGlAE/C+iCR0E/Mz3t9zY0x35/Y5O7Hz/DyuAB70ivUOHz/bLolIBnA6YIDPd3jvAmBPx3algpkmZEr1cyLisKs2B+3qyyoRSbKPRdjVmFIRqRCRT0UktZNrjBORd+3zSkRkRQ/JQnfxZIrI/4rIh3Zl6W0RGeJ1fImIfGTHkysit/h46QuB9zq07QY+Br7TTTyjgTOB24DzRWSY1+FTgbeMMQcBjDFHjTHLO7uOMabWGJOJlQScBlzsdfgKoAK4Hyv587y3AL8DfmGMecoYU2+MOQp8BagD7uqp01306VwR2SMilSLykIi856k22dW1J73OzbCrg077eaaIfEVEpgB/B07zVOBE5FQRKRSREK/XXy4iW08gTJ8/2y7cBKwHHsXrM/WSSfvvgVJBTRMypfq/bwKXYSUdI4By4K/2sZuBeCAdSAbuAOo7uYYAv7JfP8U+/2cnEdP1wJeAFCAM+B60JkdvAH8BhgKzgC09XcyuQI0B9nZy+D7gbk8S2ombgI3GmOexEjjv4d31wE0i8n0RmeediHTFGJMDbMSq3njcDDwNrAQmi8hcu30SMAp4tsM13MDzwHk9vV9HdnL7X+AnWBW3g8Di472OMWY31s/Dx54KnDHmU6C0Q1w3Ao8f7/U5gc+2g5uwKm8rsBLpjn9I7MYawlZqUNCETKn+7w7gx8aYPGNMI1YidaVdEXFhJWLjjTEtxphNxpiqjhcwxhwwxrxjjGk0xhQDv8dK8E7Uf4wx+4wx9cAqrMQLrERttTHmaWOMyxhTaozpMSEDPNW66k5i3wK8A9zTxWtvwhoyxP63ddjSGPMkVkJ7Plb1rUhEurqOtyOApwo5ClgGPGWMKcQalvO8h6cyWNDJNQqwktKuXG1XrTxfa+32i4CdxpjnjDEurKHQoz7E7KvHsIdd7ST3fNo+P5+dxGeLiCwBRgOrjDGbsJLO6zucVk3bz4VSQU8TMqX6v9HAC55f3FiVgxYgFXgCeAtYKSJHRORBEQnteAERSRWRlSKSLyJVwJO0JRMnwjtBqANi7MfpWL9cj5dnQntXc8V+CnytYxVFRBZjVdZW2k1PATNExJMgYoxZYYw5B+uX+x3A/4rI+T3Ek4Y1Jw2sCtJur8RyBXC9/TmX2G3HTPS320o6afdYZVetPF/L7PYRQK5X/Mb7eS94EvicXZW8GnjfnrN13E7wswWr4vi2Mcbz+TzFscOWsbT9XCgV9DQhU6r/ywUu7PDLO8IYk29XoX5ujJkKLAIuocPEdtsvsSZPzzDGxGFVSKST83oj1nHH+yJjTC1WIjexi+N7sIbxftzh0M1Y/dgiIkeBDV7tHa/hMsY8C2wDpncVi4ikA3OB9+2mm4CxInLUfo/fYyWzF2ENseYBV3W4hgNr3llmV+/TjQKsxNZzLfF+DtQCUV7PvefMdWSOaTAmH2te3uVYyeYTJxBjx2v69NkCiEgkViJ4ptdn+m3gFBHxHqKcApzI3DalBiRNyJTq//4O/J89PwsRGSoil9qPl4nIDHv+ThXWEKa7k2vEAjVApVjLMXzf+6BYSzo82guxrgDOEZGrRcQpIsne1aoevE73w6g/x5q3lgDWDQ1Yv9hvwxoy9Xx9E6uC5RRr2YeLRSTWvjniQqy7IDd0vLiIRInImVjLbnyCdaflaVgJ5nyv60/HHhq1q1ffA34iItfbN1kMAx7BStr+4mPfvb0GTLMn2zuBb9E+6doCnCEio0QkHvhhN9cqBEbKsctHPA78AJiBlegeNx8/W6f9mXi+QrHmQ7YAU2n7TKdgJcDef0yciTUfUalBQRMypfq/PwEvA2+LSDXWZOoF9rFhwHNYydhurLk8nVU8fg7MwVq24TWO/SWcDnx4soHaE+Ivwlo+ogwreTgFWtes6u4X7HLgBrsi1Nm1D2H1LdpuugzrBobH7Tv8jtp3OP4bcAIXYH0uP8JaRqQCeBD4mjHGe22uh+zPtRBrvtbzwAX2xPybgZeMMds7vMefgEtEJMkY8wxWpenbdp8LsJaAOLOHocBrpP06ZDUikmIP410FPIA1AX8CXt8bY8w7wDNY1ahNwKvdvMe7wE7gqIh4D5++gD0Uboyp6+b13fHls30Y63vk+foP1mf6H2NMTofP9CGs779TrLXepgIvnmBsSg040n7JH6XUYGNXT7YCM+1J5IGM5SmsuVUD9hexiJyHVUE7x8cbGny5ZibwpDHmkd64nn3Ng8DtxpjVvXXN3iIivwMOGmP+FuhYlOorzkAHoJQKLGNME9aQUcAZYzreaTfgGGPeFpEvAQvxYcmPQBCRK7Dml70b6Fg6Y4z5bqBjUKqvaUKmlFK9zBjzSqBj6IpdbZsK3GgPyyql+gEdslRKKaWUCjCd1K+UUkopFWADeshyyJAhJiMjI9Bh9Ira2lqio6N7PnGACvb+gfYxGAR7/yD4+6j9G/iCuY+bNm0qMcZ0uoPHgE7IMjIy2LhxY6DD6BWZmZksXbo00GH4TbD3D7SPwSDY+wfB30ft38AXzH0UkcNdHdMhS6WUUkqpANOETCmllFIqwDQhU0oppZQKML8mZCKSLSLbRWSLiGy025JE5B0R2W//m2i3i4j8WUQOiMg2EZnjz9iUUkoppfqLvqiQLTPGzDLGzLOf3wusMcZMANbYzwEuxNqzbQLWZsEP90FsSimllFIBF4ghy0uBx+zHj2FtEOxpf9xY1gMJ9gazSimllFJBzd8JmQHeFpFNInKb3ZZqjCmwHx8FUu3HaUCu12vz7DallFJKDQJ55XUU1w3OHb38unWSiKQZY/JFJAV4B/gm8LIxJsHrnHJjTKKIvAo8YIz5wG5fA9xjjNnY4Zq3YQ1pkpqaOnflypV+i78v1dTUEBMTE+gw/CbY+wfax2AQ7P2D4O+j9m9g++3GBlzNzfxwYXD2cdmyZZu8pnC149eFYY0x+fa/RSLyAjAfKBSR4caYAntIssg+PR9I93r5SLut4zWXA8sB5s2bZ4Jl8bhgXggPgr9/oH0MBsHePwj+Pmr/BrYHtqyjvrE2qPvYFb8NWYpItIjEeh4D5wE7gJeBm+3TbgZesh+/DNxk3225EKj0GtpUSimlVJCrqnfR0OK/kbv+zJ8VslTgBRHxvM9Txpg3ReRTYJWI3AocBq62z38duAg4ANQBX/JjbEoppZTqZyrrXYQEOogA8VtCZozJAk7ppL0UOLuTdgN8w1/xKKWUUqr/am5xU9vUQvggzch0pX6llFJKBVxVQzMAjS3gdg++YUtNyJRSSikVcJX1rtbH9a6WAEYSGJqQKaWUUirgqrwSstqm5gBGEhiakCmllFIq4LwrZHWNWiFTSimllOpz3glZTaNWyJRSSiml+lxVg1eFrEkrZEoppZRSfa5S55AppZRSSgWWziFTSimllAqwqvq2qlhvVsiaW9y9di1/0oRMKaWUUgFXVe8iKToMgLpemtT/9s6jjP/xGxwoqu6V6/mTJmRKKaWUCrjKehfD4yMAqO2lSf1v7DgKwJbcyl65nj9pQqaUUkqpgKtqcDE0NpwQgbpeGrJ0iAADY9hSEzKllFJKBVxlvYv4yFDCQ6C2lyb1Ox3Seu3+ThMypZRSSgVcZb2LuIhQIpxCbSdzyF7ddoR3dhUC8OLmfPLK63q8ZkOzldgVVTf2brB+oAmZUkoppQLq2Y25VNR5Vcg6GbK886nNfPXxjWzMLuPuZ7bwzKe5rcfe2F5Axr2vcbSyod1rymqbADha1b69P9KETCmllFIB9f3ntgHQ7DaEhQgNrq7nfP1pzX4AqhvakrYn1h8GYL/X3ZTGGLKKawHIK+u5mhZompAppZRSql9wtbgJdUBTc9cJ2fv7S4D2E/8954eFtKU1B4tryK+oRwRyNCFTSimllOrejLR4AL511gRCHdDY3P2k/vjI0HZLYzTZd1Ear3Oe2pCL0yHcsiiD8jpXv5/YrwmZUkoppQKqqsHFpbNGEB8VSqhDuq2QAYxIiGw38d9zfr3LStKqG1ys2pjLxTOHc/GM4QC8uaPAT9H3Dk3IlFJKKRVQFXUuEiJDAQgNgcYOCZnbbdo9j490ttvv0lMha7QTsuc25VHT2MyXFo9h7uhEJqbG8OT6HH924aRpQqaUUkqpgGlxG6oaXMRHWdsmOeXYhKzj85hwZ7s7MT0VMs/NAO/vL2FCSgyz0hMQEb64cDTb8yvZmlvhz66cFE3IlFJKKRUw1Q0ujIG4CCcAoSHHDll6hiI9osKc1HnNIXO1tB+yzCquYWJqbOvxL8xOw+kQ3t511C996A2akCmllFIqYDyT82M9CVknk/o7bqUUHR5CjdccMs8SGEVVjbyzq5Ds0jrGDIluPR4bEcrIxEg+OFDKp9llfunHydKETCmllFIBU28nW5FhVkLmdBw7RNnQSYXMM6nf1eJurZY9tHY/X318IwCLxiW3e016UhRbcyu46u8f8+GBEjLufY288jpcLW4u+OM6Vm3MJZA0IVNKKaVUwHj2rYwOCwEg1CHHJGT1TW3Pv7x4DBGhjtZz/vl+VusxV4s1+T/M6WDR+CHtrjEyMar18Q2PbABgR34VtY3N7DlaTU1D72xofqI0IVNKKaVUwHgm50eFtQ1ZNjW72XWkqvUcz5Dliq8s4Kefm0pYSAgtbkOL2/Dgm3uPuab3ArEeXztzHN8+Z2K7Y25jWoc+Y8KdvdepE6AJmVJKKaUCxrN8RXS4p0JmtV/05/dbz6mwF3WNt5fGCHNaJ+09am2VFBvuJNzZltJIJ+8zKjmKu86ZwLafncfK2xYCUFXvak3IojUhU0oppdRg1bFCZjo5p6LO2iQ8MdpaGsOTkK3dWwTAy99cwpgh0Vw4fRgAw+Ijuny/iNCQ1p0BKutdrXPRPAlhoAQ2HVRKKaXUoNTgamF7fmXrhHxPQlTjOjYlK6u1KmRJUe0Tssy9RYyIjyAjOYrnvraIsBAHp32aw7JJKd2+d5Q9X+1Xb+zhP7ecCgR+yFITMqWUUkr1uZe25HPP89s5a7KVPHkqZDVNx55bXtdERKiDSDuRCrfngX2aXc4Vc0YiIq0J1U2nZfT43iJtg5obD1vLYAT9kKWIhIjIZhF51X4+RkQ2iMgBEXlGRMLs9nD7+QH7eIa/Y1NKKaVUYBwqqQPg3T3WsKOnajUy9tjUpKy2qbU6Bm0VMoD5YxJPKo7yOqv6FugKWV/MIbsL2O31/NfAH4wx44Fy4Fa7/Vag3G7/g32eUkoppYJQXnldu+ehdtXr/Awn8zOSGBIT3nqsoq6JhC4SsqGxbecdj+vmjwKgsLIBCPIKmYiMBC4GHrGfC3AW8Jx9ymPAZfbjS+3n2MfPFu+aolJKKaWCRl55PfMzkjh7cgp/vGZWa7tDhFmjEqhpdLW2ldU2kRTtlZB5LV0RFxF6Qu9/48LRABRWexKy4J7U/0fgB4BnQ6lkoMIY41l9LQ9Isx+nAbkAxphmEam0zy/xvqCI3AbcBpCamkpmZqY/4+8zNTU1QdOXzgR7/0D7GAyCvX8Q/H3U/g0ceSV1TEh0cOPkCKjcT2bmfsDqY/HRJhpcbla/uxanQ8gvqSMjztHa9z0lbYu47tm+hZrs468vFddZC8vuPlJFYrjw8Qfv9/AK//JbQiYilwBFxphNIrK0t65rjFkOLAeYN2+eWbq01y4dUJmZmQRLXzoT7P0D7WMwCPb+QfD3Ufs3cLjff4dxo4axdOmMdu2ZmZnMmDyaFw7sYt7CxSREhdHw3ttMHjOCpUunAxCRVQob1wNw9hmnMTw+8rjfv6y2Cda9Q4uBC04ZydKlM0++UyfBnxWyxcDnReQiIAKIA/4EJIiI066SjQTy7fPzgXQgT0ScQDxQ6sf4lFJKKRUgNY3NXc7birE3Gq9uaCYm3ElVg6t1DTKg3SKwJzpk6T1EubSHZTL6gt/mkBljfmiMGWmMyQCuBd41xtwArAWutE+7GXjJfvyy/Rz7+LvGmM7Wh1NKKaXUAOZqcdPU7CY6rPOELNZO1Goam6msd2EMJHYxqd9zd+bxCneGEOZ0EBoiLO6w72UgBOKWgnuAlSLyC2Az8C+7/V/AEyJyACjDSuKUUkopFWTatkvqvkJW09hMaIh1f19XFbKTuf8vNtzJlOFxAV/yAvooITPGZAKZ9uMsYH4n5zQAV/VFPEoppZQKHM92SdFdVLc8CVJNQ9vk/XbrkIX0zh2RP/v8NDKSo3vlWicr8CmhUkoppQaV2h429I71zCFrbKapxbobMjG6ba6Y95DlyfjcKSN65Tq9QRMypZRSSvWpWnv/yq6GCmPCreSrpqGZOntE0nsOmWcYc+rwOD9G2bc0IVNKKaVUn/rNW3uArifkt80hc9Hstu7v807IkmPCefDKma37YAYDTciUUkop1ac+PGCtauW9+r63qNAQRKwKWUOzm8jQkNaNxT2unpfu9zj7kiZkSimllOpTkaEhTEiNYUJqbKfHHQ4hJsxJVUMzO49Udpm4BZO+2FxcKaWUUgqwJvTXu1q4cPrwbs+LiXCy6XA5n2aXc82pwVUN64wmZEoppZTqM0XVjQCkxoV3e15MuJPt+ZUAfGF2WrfnBgNNyJRSSinVZwqrGgBIjYvo9jzPxP7YCCcjE49/r8qBRhMypZRSSvWZtoSs5woZWHdinsxq/AOFJmRKKaWU6jNFVdaQZUoPFTLP4rARob2zKn9/12NCJiJRInKfiPzTfj5BRC7xf2hKKaWUCjZHqxqICgtp3UC8K54KWXgvrcrf3/nSy/8AjcBp9vN84Bd+i0gppZRSQauwqoHUuIgehyE9q/VrhazNOGPMg4ALwBhTBwT/YK5SSimlel1RVSMpsd3PH4O2Sf1hIVoh82gSkUjAAIjIOKyKmVJKKaXUcSmsbujxDkugdUjTs3VSsPNlpf7/Ad4E0kVkBbAYuMWfQSmllFIq+Bhj7CHLnitknkn9zW63v8PqF3pMyIwx74jIZ8BCrKHKu4wxJX6PTCmllFJBpaqhmQaX26cKmWfI0tU8OCpkvtxluRhoMMa8BiQAPxKR0X6PTCmllFJBxbMGWU9LXkDbXZauQVIh82UO2cNAnYicAnwHOAg87teolFJKKRV0PAnZMF/mkHkqZC2akHk0G2MMcCnwV2PMX4HOt2dXSimllOpCYZVv+1hC27IXzS2DY8jSl0n91SLyQ+BG4HQRcQCh/g1LKaWUUsGmdcgy9jjmkGmFrNU1WMtcfNkYcxQYCfzGr1EppZRSKugUVTUQF+EkMqznxV6j7AVhXYOkQtZjQmYnYSuAeHvLpAZjjM4hU0oppQa5XUeqyLj3NXbkV/p0flZJLelJUT6dGx8ZyhkTh/LX6+ecTIgDhi93WV4NfAJcBVwNbBCRK/0dmFJKKaX6t9e3FwCwendhj+caY9iWV8nMkfE+XdvhEB7/8nyWTBhyUjEOFL7MIfsxcKoxpghARIYCq4Hn/BmYUkoppfq32qZmAKJ8GIIsrGqkst7F1OFx/g5rQPJlDpnDk4zZSn18nVJKKaWCWE2DlZCV17l6PLeo2prQ78uisIORL4nVmyLylojcIiK3AK8Br/s3LKWUUkr1d0ftuyYfzjzIweKabs8tqbGWvBjqw8big5EvWyd9X0SuwNrDEmC5MeYF/4allFJKqf4ur7y+9XFOWR3jhsZ0eW5JdRMAQ2I0IeuML3PIMMY8Dzzv51iUUkopNUC43YZ8r4Ssoaml2/OLtULWrS4TMhGpBjpb/EMAY4zRWXlKKaXUIPJpdhlDY8Jpdrt5d08RTS1ublmUwaMfZVNZ3/08stKaJqLDQogI7fkGgMGoy4TMGHNS2yOJSASwDgi33+c5Y8z/iMgYYCWQDGwCbjTGNIlIONYemXOxbhy4xhiTfTIxKKWUUqr3fPuZLYyIj+TTw2UYu2SzYEwSj36UTVldExn3vsa3zp7Ad86deMxr610tRIb5NDA3KHU5qV9EThWRCztpv1BE5vpw7UbgLGPMKcAs4AIRWQj8GviDMWY8UA7cap9/K1But//BPk8ppZRS/URNYzOfZLclYwATUmMJDRH2FFQD8Oc1+zt9bWNzCxGhukhDV7r7ZH4N7OqkfRc+bJ1kLJ5bLkLtLwOcRdsaZo8Bl9mPL7WfYx8/W0Skp/dRSimlVN+o62Se2MjESOIjw9iSWwFATHjnVbBGl5twpyZkXenuk4k1xhzu2Gi3+bRsroiEiMgWoAh4BzgIVBhjmu1T8oA0+3EakGu/RzNQiTWsqZRSSqkAa3EbmpqP3eg7IjSEhKhQcsrqAKuK9to2awV/t9tQZC+NYVXIdP5YV8SYzjftFJED9vDhcR3r4vwE4AXgPuBRz2tFJB14wxgzXUR2ABcYY/LsYweBBcaYkg7Xug24DSA1NXXuypUrfQ2jX6upqSEmpuvbhQe6YO8faB+DQbD3D4K/j9o//2loNtyxuo75w0JIjnQwNt5BQrgwITGEX6yv50BF+2Tt0nGhvHTQmuj/mzMieXRnI40t8JOFkd2+TzB/D5ctW7bJGDOvs2Pdza5bLSL/B/zE2FmbPYT4c+Dd4wnAGFMhImuB04AEEXHaVbCRQL59Wj6QDuSJiBOIx5rc3/Fay4HlAPPmzTNLly49nlD6rczMTIKlL50J9v6B9jEYBHv/IPj7qP3zn5KaRli9ms8tmMyNp2W0O/ZE9qccqChq1/ZObluCFjtqClE5h4gPcbB06cJu3yfYv4dd6W7I8rvAWOCAiDwvIs8D+4GJwHd6urCIDLUrY4hIJHAusBtYC3g2J78ZeMl+/LL9HPv4u6ar8p1SSiml+lS9PX+ss2HH+KhQAM6anMJtZ4wFrPlmy2+07gHcX1hDg84h61Z3y17UAteJyFhgmt280xiT5eO1hwOPiUgIVuK3yhjzqojsAlaKyC+AzcC/7PP/BTwhIgeAMuDa4++OUkoppfyh3mUlZJGdbCQeH2klZFOHxzErPYHl67JIig7jrMkpjBsazerdhdS7dA5Zd3zZOikL8DUJ837dNmB2F9eb30l7A3DV8b6PUkoppfzPUyGL6iQhS4gMA2DMkGiGxVubh58/bRjOEAe3nzGOHzy/DYDpI3RN+a5o7VAppZRSPfJUyDqrciXYQ5ZjhkYzPiWGC6YN45ZFGQBcPieNcUOjAQh3aoWsK5qQKaWUUqpHngpZZCcJ2fwxSZw+YQhThsURERrC32+cy6Rh1oY/zhAH180fBUBtU/Mxr1WW7vayTOruhcaYst4PRymllFL9TX1TCw+tPQB0PodsyvA4nrh1QZevH2tXyArtNcnUsbqbQ7YJa2V9AUZhbXMkQAKQA4zxe3RKKaWUCri/ZR5g0+FyANISul9HrDOjkqIAKKxq7NW4gkmXQ5bGmDHGmLHAauBzxpghxphk4BLg7b4KUCmllFKB5dkWCSA2IvS4Xz8y0UrIPnfK8F6LKdj4su36QmPMVz1PjDFviMiDfoxJKaWUUv3IoZJaAH51+YwTen1EaAi7779A1yHrhi8J2RER+QnwpP38BuCI/0JSSimlVH/R4Gohv6Keu8+Z0Do5/0R0NvdMtfElVb0OGIq1F+V/7cfX+TMopZRSSvUPOWV1GGOtMab8x5eFYcuAu0Qk2l69XymllFKDRFax9at/7JDg3PC7v+ixQiYii+ztjnbbz08Rkb/5PTKllFJKBZxn/ljGkKgARxLcfBmy/ANwPlAKYIzZCpzhz6CUUkop1T8cKqlhaGz4Cd1dqXzn0+0OxpjcDk0tfohFKaWUUv3MoZJanT/WB3xJyHJFZBFgRCRURL6HPXyplFJKqeB2qKSWsZqQ+Z0vCdkdwDeANCAfmAV83Z9BKaWUUirwKutdlNQ0aYWsD/iyDtkkY8wN3g0ishj40D8hKaWUUqo/yLYn9GtC5n++VMj+4mObUkoppYKI5w5Lz+bgyn+6rJCJyGnAImCoiHzH61AcoMvtKqWUUkEuq6QWh0B6ki554W/dDVmGATH2ObFe7VXAlf4MSimllFKBV1BRT0psBOFOrcP4W5cJmTHmPeA9EXnUGHMYQEQcQIwxpqqvAlRKKaVUYFTWu0iI0vXH+oIvc8h+JSJxIhIN7AB2icj3/RyXUkoppQKsot5FXKQmZH3Bl4Rsql0Ruwx4AxgD3OjXqJRSSikVcFX1LuI1IesTviRkoSISipWQvWyMcQHGv2EppZRSKtAq610kaELWJ3xJyP4BZAPRwDoRGY01sV8ppZRSQaxSK2R9pseFYY0xfwb+7NV0WESW+S8kpZRSSgVaU7ObuqYWTcj6SI8JmYj8tItD9/dyLEoppZTqJwoq6wFIjYsIcCSDgy9bJ6hkK2gAACAASURBVNV6PY4ALkE3F1dKKaWCWlaxrtLfl3wZsvyd93MR+S3wlt8iUkoppVTAHSyuAXQfy77iy6T+jqKAkb0diFJKKaX6jyMVDUSFhZAUHRboUAYFX+aQbadtmYsQYCg6f0wppZQKaqW1jQyJCUdEAh3KoODLHLJLvB43A4XGmGY/xaOUUkqpfqC0ponkGK2O9ZUuhyxFJM5+WO31VQ/EiUiiiHS706iIpIvIWhHZJSI7ReQuuz1JRN4Rkf32v4l2u4jIn0XkgIhsE5E5vdJDpZRSSrWzPa+SA0XV3Z5TWttEcnR4H0WkuptD9pT97yZgo/2v5+sz4KiI/LKb1zcD3zXGTAUWAt8QkanAvcAaY8wEYI39HOBCYIL9dRvw8An1SCmllFLd+txDH3DO79d1e05pTSNDtELWZ7ocsjTGXGL/O6az43aFbAfwoy5eXwAU2I+rRWQ3kAZcCiy1T3sMyATusdsfN8YYYL2IJIjIcPs6SimllPKD6gYXdz61makj4nAbw8y0BJaMH0JpbRMpugZZnxEr/+nkQA9DhsaYz3x+E5EMYB0wHcgxxiTY7QKUG2MSRORV4AFjzAf2sTXAPcaYjR2udRtWBY3U1NS5K1eu9DWMfq2mpoaYmJhAh+E3wd4/0D4Gg2DvHwR/H7V/vrnlTWuNse/NC+e3GxuPOX5BRihvZrv4n9MiGBPf7QylXhfM38Nly5ZtMsbM6+xYd5P6PeuPRQDzgK2AADOxhjBP8+XNRSQGeB642xhT5X23hjHGiMhxbVRujFkOLAeYN2+eWbp06fG8vN/KzMwkWPrSmWDvH2gfg0Gw9w+Cv4/av541uFrgzTcBeGq/9Tv5nCkp/PILM7j4Lx9QXN3Im9kuxqfEcMvnz+jzuyyD/XvYlS7nkBljlhljlmENO84xxswzxswFZgP5vlxcREKxkrEVxpj/2s2FIjLcPj4cKLLb84F0r5eP9PV9lFJKKeWbijpX6+MjlQ2cPmEID10/h5S4CC6eMbz12KWnjNAlL/qQLwvDTjLGbPc8McbsAKb09CJ7OPJfwG5jzO+9Dr0M3Gw/vhl4yav9Jvtuy4VApc4fU0oppXrXk+sPt3t+9zkTiQi1hiWvnNu27vtls9P6NK7Bzpd1yLaJyCPAk/bzG4BtPrxuMXAjsF1EtthtPwIeAFaJyK3AYeBq+9jrwEXAAaAO+JJPPVBKKaWUT4wxPLT2QLu22ekJrY+np8WT/cDFGGO0OtbHfEnIvgR8DbjLfv4ePixJYU/O7+q7eXYn5xvgGz7Eo5RSSvWp+qYWRGitJA1Unv0pJ6bGkJEczdQRcTgcx/6q1mSs7/myuXgD8Af7CxE5Hfg9mjwppZQaJM75/Xs0uFrYdN+5gQ7lpGTuLQbg37ecysjEqABHo7z5tLm4iMwWkQdFJBtrH8s9fo1KKaWU6kfyK+oprW3irx2G+waKP67ex2c55by3r5jxKTGajPVDXVbIRGQicJ39VQI8g7Vu2bI+ik0ppZTqM39dewBjDHeeNaFdu9vdtjrTqo25fGPZ+L4O7aQcLq3lj6v388fV+wH4ypJO13tXAdZdhWwPcBZwiTFmiTHmL0BL34SllFJK9a3fvLWX376975j28romAEYnR3G4tI7csrq+Du2keIYpPc6cNDRAkajudJeQXY61BtlaEfmniJxN15P0lVJKqaB0tKoBgCvmWEtCfHigJJDhHLfMvUVkJEeRGBUKwKkZSQGOSHWmu4VhXzTGXAtMBtYCdwMpIvKwiJzXVwEqpZRSgbRun5WAXTxzOKlx4bw/gBKyBlcLHx0sZemkFN68+wxe+PqiAX+naLDqcVK/MabWGPOUMeZzWKvnb8baDFwppZQKai1uw1OfHGbh2CTGDY1h8fghfHSgpN28sv7mYHENzS1uADYcKqOx2c3SSUNJjYtg9qjEAEenuuLLOmStjDHlWPtILvdPOEoppVTfa+kiwVq3r5jcsnruvcDaoGbBmCT++1k+ueV1jE6O7ssQ23G7DX9+dz8TUmI5b1oqoSEOWtyG9Vml3PDIBhaOTWLs0Bie2pADwPwxOkzZ3x1XQqaUUkoFo9qm5mPaCqsauPWxTxkSE85501IBmDQsDoDdBdV9npCV1za1Pt5ztLr1rsmhseHcuHA0mXuL+CynAoD1WWXsPVrden5UmP667+/0O6SUUmrQq25oS8hcLW5CQxw8+OZe3Aaun59OaIg1w2diagwOgZ1HKrlg+rA+iW3v0WrO/+M6AO6dH8FSIKvEWnH/3gsn88Abe/j9O9bdoWOHRvOzz01jwdgkwp0hfGfVFiamxvZJnOrkaEKmlFJq0KvxSsjqXS0IsDmnHIBvnNW27lhUmJNT0hNYt7+E7543qU9ie3lrfuvj9QXN3Nri5s6nNgNw82kZfHighI3Z5bzyzcWMT2mffP3+6ll9EqM6eZqQKaWUGvSKqxtbHxdVNfLNpzeTVVLLpbNGEO5sf1fi/DFJPPL+oT7bgHtfYU3r47J6wytbjwAwPS2OyLAQHv/yfED3nxzofNo6SSmllApmh8tqWx/f9K8N7C6oIjk6jC/MTjvm3KSoMFrchrqmFtxuQ05p7y4U+/ymPJ75NIe6pmbcbsOn2WWtx8obDT9/ZRfTRsTx8jeWAFYipsnYwKcVMqWUUoPeYa+k6khlA/ddMpVbu9hiKDbCWmA1r7yerz25iaySWv779UXM6YUlJT7LKee7z24F4O/vZfGX62ZTUefit1edwrp9xby89Qjg5g/XnILDoUlYMNEKmVJKqUEvu6StQnbu1FS+vDijy3NjI6xaxotb8smyX9dxe6IT9ezGPKLCQvj60nEcKqnlkr98AFjLbSRFhwEQGRrConFDeuX9VP+hCZlSSqlBL6esjmWThvLYl+ez/Ma53Q4BxkVaFbI1uwuJi3AyIy2ej3ph9X5Xi5s3dxRwzpRU5o5uX21LT4oiwd76aMmEIbrafhDShEwppdSgZowhu7SWsUNjOHPi0B7nY3kqZPsKa5iXkcSSCUPYkltBTeOxa5kdjy25FZTXubhoxjBS4yJa26eNsNY+S4yyKmTnTEk5qfdR/ZMmZEoppQa1oupGGlxuMpKjfDo/LqJt+vWpGUnMH5NEs9uwI7/ypOLIL68HYEJqLClx4a3tf//iXABOSU8gLUY4Z0rqSb2P6p80IVNKKTWoeSb0+7ryfpw9qR9g/pjE1grWriNVJxXH0aoGAFLjIkiOthKyb541nvQkK1GclZ7A/y2JIjkmvMtrqIFL77JUSik1qGWXWhPzM3xMyIZ4JUQz0hIIczoYEhPOzpNMyAqrGogJdxITbv1qzn7gYozpv5uYq96lCZlSSqlBLbukFqdDGJEQ0fPJgMMhvHHX6eSU1RHmtAaapo2IY2teBYVVDe3mfx2PoqrGdkOVoIu9DiY6ZKmUUmrQcrW4eXZTHrNHJeAM8f1X4pThcZw/rW0vy6kj4jhQVMOCX64ht+z4F4o1xrA5p5xxQ2OO+7UqOGhCppRSatAqqGiguLqRq+amn9R1PPPIAF7ZduS4X7/zSBVHKhs4VyfsD1qakCmllBq0CqvtifTxJzbM6DF1eFtC5r0vpq/e2VWIQ+BsXdJi0NKETCml1KBVVGUlT6lxJ3fnovcNAWW1Tcf9+rd3FTJ3dKLeQTmIaUKmlFJq0Cq0l5pIiT25CpnDIey+/wJmjow/7oQst6yO3QVVnDtVhysHM03IlFJKDSq7C6r43dt7qWlsZldBFVFhISRGhfb8wh5EhoUwJCb8uBOy1bsLATh36rAezlTBTJe9UEopNah8Y8VnZJXU8thH2VQ1NHPd/PReW14iKTrsuBeI/WB/CWOGRDNmiG/roKngpBUypZRSg0ZuWR1ZJbUsGT+EaSPiGZkYyd3nTOy1608dHsfRqoZOt1Fyu49d5DWntI7MfcUsHJvcazGogclvCZmI/FtEikRkh1dbkoi8IyL77X8T7XYRkT+LyAER2SYic/wVl1JKqcHlxc35fP6hD2hqdvPAG3sIC3Hwq8tn8PRtC/ngnrNOeCHXzlw+Jw2A9/YVt2t/5P0sJt33BnVN7Tcg/+f7WbS4DV9cOKrXYlADkz8rZI8CF3RouxdYY4yZAKyxnwNcCEywv24DHvZjXEoppQYJYwx3P7OFbXmV3PfiDl7bXsBd50xo3R+ytyVEhZGWEMneo9Xt2v+WeRBXi+HpT3L57Vt7+ePqfQBsy69kwZgkpo2I90s8auDw2xwyY8w6Ecno0HwpsNR+/BiQCdxjtz9urE271otIgogMN8YU+Cs+pZRSwe/T7PLWx89szGV6Why3nTHWr+85ZXgse462n0cWFRZCWS38/u291Da1AHDtqaPYdaSSW5f4Nx41MPT1HLJUryTrKOC5xzcNyPU6L89uU0oppY5bc4ub17YV8PjH2cRGOHnz7tP50uIM/nTtbEKPY4ukEzF5WBwHi2tpbLYSr6ZmN3nl9VwzL53paW2VsL+8ux9j4IYFOlypQPy5k7xdIXvVGDPdfl5hjEnwOl5ujEkUkVeBB4wxH9jta4B7jDEbO7nmbVjDmqSmps5duXKl3+LvSzU1NcTEBO8eZsHeP9A+BoNg7x8Efx89/fsg38Uj263lJ84e5eTGqX234OqGgmYe3trI/YsiGBUXQnmDm29n1nPz1DDOTHfy1O4mVudYc8nOGOnky9N9jy3Yv38Q3H1ctmzZJmPMvM6O9fWyF4WeoUgRGQ4U2e35gPdGYiPttmMYY5YDywHmzZtnli5d6sdw+05mZibB0pfOBHv/QPsYDIK9fxD8ffT0743ntgG5hDiEe65YxMTU2D6LYWRRNQ9vXUfMyEksnTPSuuMy8wNOmzODs6YPI35sOasf/giA+69dQsZxLHcR7N8/GBx97ExfD1m+DNxsP74ZeMmr/Sb7bsuFQKXOH1NKKXUimprdrNlTyMUzhrPlp+f2aTIG1jZKYU4He+yJ/aX2QrFDYsKA9huRH08ypoKb3ypkIvI01gT+ISKSB/wP8ACwSkRuBQ4DV9unvw5cBBwA6oAv+SsupZRSwWtXaQs//m0mJTVNXD4njdiIk1+B/3g5QxxMSIlpXSC2rNbaLzMp2krIIkJDuGjGML/d6akGJn/eZXldF4fO7uRcA3zDX7EopZQKPm634eWtR3h9ewHnTk3l4pnDeXRnIxERkfz7lnmcNTlwe0MuHj+E5euy+NUbu/nwQAlAu43D/3bD3ECFpvop3TpJKaXUgFPb2Mz3nt3KGzuOEhkawtu7Cvn+c9sQ4NFrp3PmxKEBje/8aaksX5fFP97LIjbcyU8unkJ8ZN9X69TAoQmZUkqpAeWznHK+u2orh0tr+cnFU7h5UQb/99puXtySz/UTHQFPxgBSYttW/3//nmUkRIUFMBo1EOhelkoppQYMt9tw7/PbKK5u5LEvz+crp48lNMTBzz4/jc33ncv8Yf2jzpAc05aAaWVM+UITMjWgNbe4/XLd+qYW7nzqM3YXVPV8chDYkFXKRwdLAh2GUt2qaWxm8a/fZV9hDb+4bDqnT2hfCRORAEV2rKiwtsSwP8Wl+q/+8aeE6jOuFrffV6nuC8XVjfzy9d28sDmfn14ylS8vGdOr19+WV8Gr2wp4dVsB2Q9c3KvX7g8OFNWwPquUEIew6XA5z23KA+D9HyzTO79Un3G7DSW1je2G97pS3eDiK49tpKCygbMmp3DJzOF9EKFSfUcTsgEgp7SON3cWkFtWT1WDizvOHEeIQ/j3B4fIKavjF5dNZ+zQGBqbWwh3hnR6jVWf5vKvDw6RXVrLf245lUXjh7Q7XtfUjNPhIMzZ/5O17XmVXP2Pj2myq2P3v7qLWaMSmDMqkU2Hy2lqdnPauOQTunZpTSOrdxeSW1bf2pZx72ukJUTy+K3zGTe0/6weXVzdSFOLm9gIJ//5IJvkmDBuWDCK9Vll/OatPRjgyrkjuWHBaBpcLew9Ws1nOeW8uOUIW3MrWq8TE+5k8rBY9hyt5up/fMxTX13IGB/WRmpwtZBVXMuU4bHkldfT1OLuV5+P6p/WZ5WyIauMvPI6NuWUk1Vcy9mTU3jk5nldVpK251Vy0783UF7n4kcXTea2M8b1cdQnJjoshKGxfbdDgBrYNCHzsxc25/HYR4fJK69jVFIUt50xjrMmp3SZ+BhjeG17ARV1LoqqGymqauDZTXm0uA0x4da366UtR9q95rK/fsj504bx7KY8Hv3SqSydlEJzi5s1e4pwuw0V9S5++N/tzEiLJy0hkusf2cADl89gQmosU4bHUljVyLXLPybcGcIrdy4hPqr/zncoqKznxn9voKnFzarbT+OZT3NYtTGPv2ceZFh8BI9/fBiw9oa76+wJpMT1/Je3tyfX5/CH1ftan58+YQhjhkTz8tYjfOvpzTx56wISowM3Obep2c3ugirWZ5Xym7f20uxuv/XZhwdKWL27kGHxEYQ7Q/jxCztIigrj7+uyWpOwjOQofnLxFBaMSaa0tpEFY5KJDAth15EqbnhkPXet3Myzd5zWmtwXVzeSU1ZHemIkYP2Mrttfwq9e39268CVAmNPB9p+d1+UfBWpwe3dPIf/5MJv391tD43ERTqoarO2D1uwp4tGPspk3Ookpw2MpqGxg0+Fy4iKdbM+r4vGPswlxOPjV5TO49tT0bt6lf9n80/PQ0UrlK03IToIxptu5ATvyK/n5K7uoqHMxZXgcJTVN3PHkJqLCQvjhhZO5eOaI1oUCyxvcVDe4+Md7WTy09kDrNRKiQpmRFm9XOkaxI7+Kb63czOWz05g7OpHwUAe/e3sfz9pDTm/tPMrs9ESuWf5xu1+WQ2LCWHX7aeRX1HHO79dx73+3tx4LDRFcLdYv9juf/ow/XTu7Na7+or6phbK6Jr6+4jPqGltY8ZUFzB2dyNzRicSEh/LvDw8BsHBsEsnR4Ty7MY+Smkb+ceM8XC1u1meVMnlYHEnRYezIr2TP0SounZVGRGj75CGnrA6AH19k3aJ+tf0//8Xjh3D7E5t4aO0Bbj9zLDuPVFFV7yI9KYqZafE4+2AYuL6phfP/uK41xqnD47hq3ki251dy3tRhrNtfzFMbcpg5Mp4nbl1AuNPBpQ99yNdWfIYInD05hahwJ/ddPKXTRHXqiDjuu2Qq31m1lZ++uJMHrpjB27sKuf2JTYCVcP14fhj/++pu/v3hIWLDnVw5dyQvbcnH1WJoanaTX17P2C6qZGW1TdQ2Nvs0JFrT2ExUaAgOh/42G0iamt3c8eQmSmsaOW/aML6xbDwAa/cW8eVHN5IcHcbd50xg0bghzB6VgNMh5JbVc+Zv1/LzV3Z1ed3Jw2L507WzmTSsb1fcP1kDYcRB9R+akPWgqdkaFtt7tJoH39pDVFgI1Q3NNDa72Xe0mrTESEprm6iqd3Htqel8bel4ahqbefDNPWTuLSY5JoznvnMa41Niqax38bfMAzzzaS73vbST+17aSVJ0GMPjI9h5pB4y3was9WvuXDaBCakxxyQMM0bGs/Z7S9u1rfjKAj7LqeDrKzbx4uYjbMgqI6uklgumDeOucyZQXtdEWkIkkWEhjE+J5T9fOhUBDpfW8Ul2GY2uFr573iSe2pDDig2HWfTAGobFRTAxNZaHrp9zzP9U3G6DyIlPVK1rakYQIsN8q6QYY7jwT+vILq0jKiyEv1w/m4Vj24Ykv3/+JJZOsib3LhqXjDPEwb3Pb+O17QU8/nE2j36UTVZxLQBDYsKpaXTR4HLz/Gf5/O6qUyiqbmRiagyxEaHkldcxb3QiXz1jbLsYzp82jFMzEtlwqJQtuRVsOlzeemzRuGQe/dL84/oMNh0uIy4iFIdDKKhoYMmEIT2+5q2dR8kpq+OeCybjNoar56W3Gw45d2oqi8Ylc/r4oa13dT1x63y+vWoLX5g9kivnjuzxPS6fM5KXtx7hmY25OBzw9Ce5gFVxfG17Af/zUQNwiBsXjuYHF0wiNiKUH144mT1Hq7nhkQ3klNW1S8jqm1p4/rM8dhdU8fr2AsrrXPzvZdMpqKgn3BnCWZNTCHEIw+IjWv8I+PhgKdf9cz0/uXgKXzl9bGdhqn5qx5FK3t1TRFpCJL95ay/v7y+mvNbF3sJqJqTE8Mo3lxzz/7RRyVG8+PXF1LtaeGvnUaLDnAyJCWPO6EQ2ZpezbHKKT0PoSg10mpB1Y+3eIu5euYUGVwuNzW13801IieFAcQ3GQFxEKLPSE/gsp5zHPj7MY/aQGcB5U1N54IqZrb9o4iND+eGFU7j3gsnsKqji4cyDvLqtgKToML4wPpSwhGGkxoVz1zkTCTmOyoCIMHd0IvdeOJkf/nc7kWEh/PqKGVwxZ2SnlZtlk1JaH9+8KKP18f9eNp2bThvNI+8f4pmNuWSX1rHk1+/idAgv3rm4deLtj17YzifZZdy4cDR/XrOfmAgn31w2gaWTh/LvD7L58pIMUmIjMMawv6iGLTkVrNrcQGF0Dq9tP8q6fcXERjj51lkT+OLC0V0mZsYYqhubeWlzPtmldUSHhfDSnYsZn9L+r+TIsBDO6LDu0HnTUlm1MZefvrSTsUOj+d1Vp5BVUsOmw+Vsza3k9jPH8thH2Zz+4FrAGsZ76Po5fJJdxudPGdFpPKeMTOCRD6xK3Bdmp/HFhaPYnFPBL17bzVm/y2ThkGbmL2pud3dVfVMLm3PKcTiEjw+WUlHXxJHKBt7ZVQi0Ddu8fOdiZo5M6PR9PZ/Fa9sLSI4O4/YzxnZaOQpxCJfMbB97SlwEK76ysMvrduaeCybz/v6S1mRs8rBY7r1wMuNTYvj5K7tIjArl/kuntSbkyTHhTEixKqy/eWsvH+wv4fSJQzlUXMN7+4pZu7eYMKeDRHso/L4XdyACxtBuePjiGcNZOmko339uGwCvby/QhGyA8QyLP37rfJ74+DDb8ipIjY/g7CkpXHvqqGOSMY9T0q2ffe8/tIBu/5tQKtiItWvRwDRv3jyzceNGv10/r7yO+17cwaikKCJCQ7h1yRgQa8G/stomIkNDWpOJiromtuRWkFtWx5HKBs6cOPSY/7l0p7d2t+9pGNVXbrdhxSc5rNldSObeYn5z5UyumpdOfVMLU376ZqevcTqEZrdhUmos185PZ/XuQj48UNrunKGx4cwfk0RJdSMbDpUR4hC+sWw8F04fxr7Cai6ZOYLS2kbW7Svhe89ubffaV7+5hOlp8T73oa6pmZLqJoYnRLS7s7S5xY0zxMGRinp++N/tvLevuF0f/nnTPJZNTjnmesXVjazdW8S4oTHMGZXQ+jm/tq2AlZ/m8P7+EobGhvPLL8xg9qgEvv3Mltb5Mh4OsTYeziqpbdeenhTJ2u8u7XLo86Ut+dy1cgunZiTy7B2LfP4MTpSrxc11y9dTVN3Iu989E2eIw2r789t8/cLZx2xJY4zh56/sYtPhcrbnV7Y7du7UVP5wzSxiwp0UVjWwPquUxeOHcLi0lvVZZWQkR/P6jgJe21ZwTBwXzRjGfZdM5bmNeTz/WR7ZpXWcMXEo/7553jGfVYvb8Pr2Ah7OPEhuWR3PfW3RcQ9x9dZ/h/2ZP/v4w/9u462dhXx237l+ub4vgv17GOz9g+Duo4hsMsbM6/SYJmT9Q3/9AXS7Daf+32rOmDiUP1wzi7d2HuX2JzbxtxvmsL+whknDYklPiiSvvJ4n1x9mdHIUHx0sbR0ivHTWCD43cwTL395MU2gsK29b2PpX8tq9RdzxxKZ21ceOpo2I47YzxtLY7OaquSP9sp6P223IK6/nhc35zB6VcEy1zVf/fGENj+w2FFY1tmv/zZUz+TirlCMV9Tz91YWICFtzK7j0rx/idAj3XzqdH72wnUdumsc5U9sSnRUbDrMpu5z7L5vO/a/sZNXGPFbetvC4Ev2T0dziprappd2ilr78nD7yfhbZpbV866wJRIaF+LS5c31TC099ksPi8clMTImlobmFv2ce5O/vZbXeTetJ+AGuXzCKlNhwquqb+dbZ49ldUM03n95MSU37z/6aeekU1zSydNJQFo1L5vnP8gFrCHpW+rHVl/7632Fv8mcfr//neupdLbzw9cV+ub4vgv17GOz9g+DuY3cJmQ5Zqm45HML0tHhe2JzPkYp6QhxCfGQo505N5aIZbesATRsRz/nThgFWtSS7tI6jlQ0sHJuEiOAsiuDMMxe1S6iWTUph+8/O5/XtBeSW1bG3sJowp4Opw+OYkRbPzJEJRIQ6/L6oosMhjEqO4q5zJpzUdSYkhvDC1xew6IF3AbhlUQZfPWMsaQmRXDWv/Z1hGcnWnJhzp6Zy5dyR/Or13azYcJjMfUVEhzmJiwzlt2/vxRjYX1RDcXUjC8Yk9VkyBuAMcRAfefyTkk9kmDEyzK5A26LCnHznvEnMGJnAi5vzOXtKCpfPGUlVg4sfv7CDVZ/mtiZn7+4ppLS2iaGx4fzismmcO3UYS379LgWVDazZU0RJTSPv7ilq934PZx4kPSmS6+aP4utLx7e2F9W52ZFfyeRhsX1yo0ZXGlwt7DxSyaGSOqrqXazamMs/b5rXr9aIc7W4WbO7kI8OlpKWEMlZk1P46GApl87qfMhfKdU9TchUjy6fk8Z7+4rZcKgMgJtPG93t4rIiwpgh0cdMxO0ssQpzOrhsdlrvBhxAIxIi+dO1s2huMVzRzST6+KhQfnX5DBaNSybM6eCrZ4zl9+/sa3dOZGgI501LZX1WKQ4RLp0VPJ+Tr86dmsq5XlXDuIhQ/nLdbCouncamw+VUNbh4flM+kWFOlt84tzVhWXX7aQCkJ0XR4Gph3b5iSmqaGJ8Sw6RhsbzwWR5PbsjhwTf3smBMMuNTYlizu5AfrKuHdR+wcGwSD1w+k4w+nky+IauU3729j0+yy4459rGd+OSU1TE6OapX/lA5UFTNC5vzSU+MIiEqjPyKekYlRTEjLZ6EqFAOFNUQERpCVnENs0clMjQ2ehsWoAAAErdJREFUnOLqRl7eeoTHPspuveMX4Fdv7AHQteiUOkGakKkeXTorjfOnDaOpxc1Lm/PbVcbUsXxNnK6bP6r18bfOnsCpGUm8u6eQkYlRLBybPOBu8e9LCVFhnD3FStS+MPvYxNe7khQRGsJ5dvXW45bFY7j61HTOeHAtN/1rA7VNLQCMiXdw3ikZ/OuDQyz9bSZXzR3JzPQEpo2IY86oxF7tg9tteGjtgf9v786jrCjvNI5/n2526G5A2aHZFBQUEXELgsQAjqIejeOGilviqKPmaMzoOGr0YIxnxiFxiVEZR41GZxz1oKIjw0lcEDWKCgqoLAoqqIgLNogs3b/5460Ll73p5datqt/nnHu6760qfB9v9XvfW/UurIqmApk27wtemv8lXSpacP6IPvRo34qBXcsxg1PufpVHZ37C0+8sY/qCFezTrZzzDuvNmnU1/OnVxYwe0InVa6s58YBuDOy6436WZsbC5VWsXLOeayfPZV4tlwfrWNacw/bcnalzPmf1umr26VbOf4wfyuH9O/DB51XM++w7Wjdrwoh+Ox8x7JzbmjfIXK20aFpKi6alnHlor7iLklqH9t2tzisMuF3XqlkTrhk7gIdf/5gBXcqZsXAFp/fdwNlH7815h/Xm7pc+5N6XP9o4x9/kfxy2zX5nW6qpMeYvr6JLRUsmvfQhT81exter13Fw7/asq66ha0VL3v+iauOIxPy+cT/ZqyMTTx681eTMA7qWM3PJN7RqVsrgHm1ZuHwVl/33pkEvuTkH/3PGR4zdtwt/fX85PXdrxSVH7MnI/h14c8k3TJgyj5VrwoTTTH0JCHMQ3nrqYIZUtmN51Q80LS3hvc++48HXljBn6XeMHtCJIwd25uOvVnPXix/yf3O/4Oh9uzDu4EoG99g0sGWfbhW7NODGObc1b5A55zLr+P27bXbL/IUXXgDCdCHXHjOAsYO6sGj5Kq6ZPIcbnp7LuIMqGTuoy2ZTm+R8WbWWZ9/9jEdnfsLcZZuuOg3t2Y5l365h/vIqqquNlxeu4MCe7TnjkEpaN2/CFWP689WqdaxYtZaBXcu3eSvy1lP3592lKxnZvwPlLZpSU2PM+vRbqmuMoT3bsbxqLROmzGPKO5/x8sIVjBrQiadnL+PiR94iN26rsn0rjtirI2/MX4o1a8kVY/pzUO/27N4mzGWXu6o4qHtb+ncu50+vLuaasQM2Ttvz8xF9aFpast2pK5xz9eMNMuec244hle0YUtmONeurue0vC/jVY+/wq8fe4d6zhtK/cxklEl0qWvDN9+s55/7XmbP0O3q0b0m/Tm3Yp2sFZw/rxaDubampMUpKhJmxdkPNVo2azhUt6Fyx/WW+tuyTWVKizW6hdipvwe2n7c8Zh/Rkr85ltG3VjKuO2ovfTZtPZftWtG3VlOP260rbVs144YWvdzqCbXCPtgzuMXiz12ozWtY5V3feIHPOuZ0Yf2gvTj+4Jzc+M4/7ZizmvAc2TbezR8c2tGnehDlLv+Oqo/bi3GG9t1rdIjeRr6RGu8IkabNRuN3atuSWk/ZrlP+Wc67heYPMOedqobREXHfMAC4c2ZfZn6zk69VrWblmPdPmfcEbi7/htIMqueDwvnEX0zmXUN4gc865WpJEx7IWjB6w6fbi+SP68vXqdbRp7tWpc67uvAZxzrl6ynV8d865uopvKmrnnHPOOQd4g8w555xzLnbeIHPOOeeci5k3yJxzzjnnYuYNMuecc865mHmDzDnnnHMuZrLcQmcJJOlLYEnc5WgguwMr4i5EI0p7PvCMaZD2fJD+jJ4v+dKcsaeZddjWhkQ3yNJE0kwzGxp3ORpL2vOBZ0yDtOeD9Gf0fMmXhYzb4rcsnXPOOedi5g0y55xzzrmYeYOseNwTdwEaWdrzgWdMg7Tng/Rn9HzJl4WMW/E+ZM4555xzMfMrZM4555xzMfMGmXPOOedczLxB5twukKS4y+Dcjvg56pLAz9OteYOswCSl9v+5pG5xl8G5HZHUP81/g5G05wO8LnXpk9oTuphIOk7S5XGXo7FIGiXpTeCCuMvSWCQdK+kR4CpJPeMuT2OQdLykCXGXozFIGi3pb8DPSGm9J2mspCnABEnD4i5PY/C6NPmyUJfWlY+ybESSmgC/BC4EKoEhZjZLUqmZVcdbuvqJLjc3BX4P/Ai43swm52+3lJxckkYBNwHXAQcCFcDzZvaMpBIzq4m1gPUQvY8lwDnAVUBP4Agzmx5rwRpAlK0JcC1wGnClmT2Rvz1F5+gBwB+B64Fy4AjgFTO7P+nnKHhdmqLzNLV1aUNI5TfFYmFmG4APgL2Ay4G7o9cTXYEAWLAOaAVMNrPJkkok7ZfbHm8JG9QoYIqZPUd4D8uAcyW1TnoFEr2P1cBCYH/gIiAVV8mibOuBGuCxXGNM0nBJTeMtXYMbBUw3s2eBJ4HPgUslVZhZTdL763hdmhqprUsbgjfIGpikSyXdLOnk6KVnzOwHM/s90FHSuGi/RH4g5OU7JXppAjBc0i3AW8CNku6RdGR8payfbbyHrwDDJLUws+XAD0ApcG5shaynKOMkST+LXnrRzKrMbBLQWtJ50X6JqyPysp0fvXQX0EXSfZLeBf4JuJfo/UtiYyUv48+jl54HjpXUzszWAOuBlcCVkMwPda9LvS7NmsRVtsVKwWXAKcBM4AZJZwPt8na7HPg3gOibe2JsI9/1ks4zs0XAZMI311OAccAc4ARJu8dW4DrYznt4FvA+sAx4VNLzhFtCTwJlCW2wnE14nx4HzpT0z0CfvF2uAy6PPtwT9a11i2ynS7oGWEs4R5sBJwHHRdt/KqkyaY2VLTKeIelfgMXAVOBBSdMJ7+fNQFtJrWMqap14Xep1aWaZmT8a6AE8Bfw4+v3vgInAmVvs8zxwRfT7qLjLXM98twEnR8/b5O03AngYaBV3meuZ8Sjgd4QP8VLCLb2x0bbTgUlxl7eOGR8EToh+HwrcAFy3xT6PEa6ulAEnxV3memSbAFwVPW+dt19v4M9Al7jL3EAZc3VKJTA6+v1w4L64y1vHjF6XmtelWXt4i7QOtrzFkdeynwkMB7Bwj3wBMFBS/7zdLwT+VdLnQFEObd6FfO8BB0jqb2ar8g4ZDXxPuBxdlGqZ8X+B+YTOp3uY2dtm9ky03wHA3wpU3AaRl/Ft4BgAM5sJvAp00+Yj864Efks4hzsXspx1sYNsM4DekoaZ2eq8Q84CWgLfFLSg9bCTjP0kDTezj81sWrTfWGBR4Utad2mrS7eUxrp0S1moSxuLN8jqpmX+E9t0W2ch4dLrvtHzFwmjSMoAJA0GJhFuNQwxswcKU9xdtiv5ytmU71RJcwgj9a624r7dtSsZy9iU8WhJrxMyPl6gstaJpNLop2CzjDOAEkkjoudzgM+ArtH+ewB3Em6fDDGz2wtZ7tqoR7YTJc0m3NK70MyK9oNuFzMuI2o4Sxoh6UVgT0L/uaK1g4ypqEt3MV8i69JdzJjIurRQvEG2CyQdIulx4A+SxuSdiE2iXV4HNgBjJDUxs3mEb25Do+1fAReZ2UlmtqzQ5d+ZBsi3hPAhN95Ch82iU4+MB0bbFwAXmNmJZlaUV1ckHSppEnCZpDKL7gvkZVwAzAVOUZg24FOgE9Ar2r4SuNjMflps52k9svWOts8nvH/jzeyLQpe/Nhog42JCPXOCma0ocPFrRdIwSQ8A10hqn5cx10E/6XVpffMloS6ta8bE1KWF5g2yWpI0knDV4AnC8OszgHYKc6dsADCzhYTLtH0JczpB6FC8JNr+iZm9W+Ci10oD5XvVinj+qnpmXBxtX2BmbxW25LUn6XDgDuCvhKtCV0saAxunDgCoAqYDzYFbogq0HeFDDjP70swWFLrsO1PPbCui/d41s1cLXfbaaqCMH5vZ3EKXvbYk9SH8HT5PuDoyQdLRsKmDfsLr0obIV+x1aX0yLo62F3VdGgdvkNXeIOANM/sz8BBhIr9Vucuzkm6UdC/wJqGD5kEKMy5/TRj9VOzSng+ykfEAYIaZPQLcSLhycpqkThAyEjoJryRMmNqO8OG+EijK2z550pwtJwsZDwLeM7P7gSuAWYQpO7pAKv4O054PspGx4JrsfJdsknQI8LWZzY9eeokwPHkZYfLM94A7JU0FPiH0SbnOzBZHx48DmpjZtwUvfC2kPR9kNuMHwGBJXc1smaRVwG7A8QrDzPsQRh0uio4/lzD6sCqO8u9ImrPlZCTjsYSrKDPN7DXCraxLFKYc+VjSDMJVlFMlvUHC/g7Tng+ykbEY+BWyLUhqK+kZYBpwsqQ2AGY2izA8uSeh78JIQufaUcBqMxtnZgsVjTAxs1XFePKlPR9kOyOhj9R3wP0KfeV6EL69lpnZ/CjjoryMNcX2YZ7mbDkZydhF0tOEiXjbAfdJOtLMPiSM7D0p2vUDQp+4cuDdpPwdpj0fZCNjMfEG2dZaEy6pXhL9Pjy3wcxeBzoQ3ecn9PNoSzR0XslYiyvt+SCbGUdA6JdBmDTzt8D/mNkJhIpyZO7ABGRMc7acLGQcSljOabiZTQBuBXKrJ0wH9pV0sIXlj5YCI8xsJSQmY9rzQTYyFg1vkAGSxks6XFK5mS0F7gEeJcz9crCk3JD55oSlHy6KDv0J0D7aj2I9+dKeDzwjoY9GVwAzW2dmz5vZf0WHDgGey/07xZgxzdlyMpRxZPR39hfCJLY5XxGuAEKYd+ptYGJ0dXAgsERSKyjejGnPB9nIWKxklqhVQxqMJBHm7XmYsPjwIsI31V9YNFRcYaLMkwn3zR+MXhsI/Do6dj1heoD3Cp9gx9KeDzzjNjK+YWYP5R17GOEb7QrgH3L9OYpFmrPleEZbIampma2XdCkwwMwuyDt2ItCd0I1gvJl9UPgEO5b2fJCNjIlgRbBcQKEfQGn0sx/wUO414HbgiS32vYww2qkt0DJ6rSXQJ+4cWc3nGXeYsYJoiSDCtAlHx50ja9k84+YZ8/Z5mmiJI6Bj9LMJoX9c7FmymC8rGZPyyNQtS0mlkm4CblKY76c/UA1g4R74L4AfRdtyJgFtCJ1vF0vqZmZrLHRqLCppzweesZYZP5TU3cyWmdmzBS7+DqU5W45n3DyjmVVLagZ8CcyX9BtgmsLi9RusCAclpD0fZCNj0mSmQRadcG8SRoosJCzIux74saSDYOM97+ujR85YQn+jWcC+Fvp+FJ205wPPWMuMswkZPy1cqWsnzdlyPONWGW+IDmsBnE3ok1RGuMpSlLOzpz0fZCNjEmVpHrIa4N9tUz+i/QlLjVwH/JGwsGsJYf2+IyT1stBn4wfCifdSPMWutbTnA8+Y9IxpzpbjGbfO2J1w+/UhYKKF6WeKWdrzQTYyJk5mrpARvg08qmjtQsL8U5UWZhoulXRJ9I2gO1AdVZKY2ZMJqSTTng88Y9IzpjlbjmfcPGONmX1qZq9bWJcxCR/kac8H2ciYOJlpkJnZ92a2Nro3DjCacD8c4Bxgb0lTgEeAt2DjyJNESHs+8IwkPGOas+V4xq0yvgnJypj2fJCNjEmUpVuWQOjICBhhjbinopergKuBfYCPcn2MzCxxc4KkPR94RhKeMc3Zcjxj8jOmPR9kI2OSZOYKWZ4awqLSK4BB0beAawmXZV+2Iu7wXUtpzweeMekZ05wtxzMmP2Pa80E2MiZGJieGVVjQ95XocZ+Z3RtzkRpU2vOBZ0y6NGfL8YzJl/Z8kI2MSZHVBll34EzCaJG1cZenoaU9H3jGpEtzthzPmHxpzwfZyJgUmWyQOeecc84Vkyz2IXPOOeecKyreIHPOOeeci5k3yJxzzjnnYuYNMuecc865mHmDzDnnnHMuZt4gc85lgqRqSbMkzZU0W9IvowWUd3RML0njClVG51x2eYPMOZcVa8xssJkNJKzddxTw650c0wvwBplzrtH5PGTOuUyQtMrM2uQ97wO8AewO9AQeBFpHmy82s1ckvQbsDXwEPADcBtwMjASaA38ws7sLFsI5l1reIHPOZcKWDbLotW+B/oQFlWvM7AdJewKPmNlQSSOBK8zsmGj/84GOZnajpObADOAkM/uooGGcc6nTJO4COOdcEWgK3CFpMFAN9NvOfmMIizD/ffS8AtiTcAXNOefqzBtkzrlMim5ZVgPLCX3JvgD2I/St/WF7hwGXmNnUghTSOZcZ3qnfOZc5kjoAdwF3WOi3UQF8ZmY1hIWWS6Ndq4CyvEOnAhdKahr9O/0ktcY55+rJr5A557KipaRZhNuTGwid+CdG2+4EHpc0HngOWB29/g5QLWk2cD9wK2Hk5VuSBHwJHF+oAM659PJO/c4555xzMfNbls4555xzMfMGmXPOOedczLxB5pxzzjkXM2+QOeecc87FzBtkzjnnnHMx8waZc84551zMvEHmnHPOORez/wfqK00FUzAAJQAAAABJRU5ErkJggg==\n", "text/plain": [ "

" ] }, "metadata": { "needs_background": "light", "tags": [] }, "output_type": "display_data" } ], "source": [ "symbol = 'TSLA'\n", "\n", "# get symbol data\n", "symbol_data = get_symbol(symbol)\n", "assert symbol_data, f\"Symbol {symbol} wasn't found.\"\n", "\n", "# start and end of a three year interval that ends today\n", "end = datetime.datetime.today().date()\n", "start = end - datetime.timedelta(3*365)\n", "\n", "# get stock price data\n", "S = pdr.data.DataReader(symbol, \"yahoo\", start, end)['Adj Close']\n", "\n", "# plot data\n", "plt.figure(figsize=(10,4))\n", "title = f\"{symbol_data['name']} ({symbol_data['exchDisp']} {symbol_data['typeDisp']} {symbol_data['symbol']})\"\n", "S.plot(title=title)\n", "plt.ylabel('Adjusted Close')\n", "plt.grid()" ] }, { "cell_type": "markdown", "metadata": { "id": "vT41T2BlUp-y", "nbpages": { "level": 3, "link": "[7.1.3.2 Yahoo Finance](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.3.2-Yahoo-Finance)", "section": "7.1.3.2 Yahoo Finance" } }, "source": [ "Note that `S` is an example of a Pandas time series." ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 350, "status": "ok", "timestamp": 1604434602479, "user": { "displayName": "Jeffrey Kantor", "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64", "userId": "09038942003589296665" }, "user_tz": 300 }, "id": "KFhofDVYUwlB", "nbpages": { "level": 3, "link": "[7.1.3.2 Yahoo Finance](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.3.2-Yahoo-Finance)", "section": "7.1.3.2 Yahoo Finance" }, "outputId": "c537f549-7526-4f7f-81f8-9ad1aa27d205" }, "outputs": [ { "data": { "text/plain": [ "Date\n", "2017-11-06 60.556000\n", "2017-11-07 61.209999\n", "2017-11-08 60.877998\n", "2017-11-09 60.598000\n", "2017-11-10 60.598000\n", " ... \n", "2020-10-28 406.019989\n", "2020-10-29 410.829987\n", "2020-10-30 388.040009\n", "2020-11-02 400.510010\n", "2020-11-03 424.140015\n", "Name: Adj Close, Length: 754, dtype: float64" ] }, "execution_count": 44, "metadata": { "tags": [] }, "output_type": "execute_result" } ], "source": [ "S" ] }, { "cell_type": "markdown", "metadata": { "id": "5iLfbLfjWibx", "nbpages": { "level": 3, "link": "[7.1.3.2 Yahoo Finance](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.3.2-Yahoo-Finance)", "section": "7.1.3.2 Yahoo Finance" } }, "source": [ "Pandas time series are indexed by datetime entries. There is a large collection of functions in Pandas for manipulating time series data." ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 294 }, "executionInfo": { "elapsed": 456, "status": "ok", "timestamp": 1604434643668, "user": { "displayName": "Jeffrey Kantor", "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64", "userId": "09038942003589296665" }, "user_tz": 300 }, "id": "bHkK6378WyFP", "nbpages": { "level": 3, "link": "[7.1.3.2 Yahoo Finance](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.3.2-Yahoo-Finance)", "section": "7.1.3.2 Yahoo Finance" }, "outputId": "f3959276-e9ac-46ba-f433-ad94fbb33717" }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 52, "metadata": { "tags": [] }, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEECAYAAADTdnSRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eZhkZXn3/3lq767e9559n2FghmEYhh0kLIpo3PK6hrgGjTG+0Wii+cWEqFnexLglalSMAkFjxI24IBFBEBCYGWBghhlm33vfu7r25/fHOc+pU9VV3VVde/Xzua65pmt/TtU597nP996ElBKNRqPR1BaOci9Ao9FoNIVHG3eNRqOpQbRx12g0mhpEG3eNRqOpQbRx12g0mhrEVe4FKDo6OuSqVavKvQyNRqOpKnbv3j0kpexMvb9ijPuqVavYtWtXuZeh0Wg0VYUQ4kS6+7Uso9FoNDWINu4ajUZTg2jjrtFoNDWINu4ajUZTg2jjrtFoNDWINu4ajUZTg2jjrtFUIMeHpumfCJZ7GZoqpmLy3DUaTYKXfeZhAI7/4y3lXYimatGeu0aj0dQg2rhrNBpNDZKXcRdCbBRCPGv7NyGE+FMhxO1CiDO2+19ZqAVrNBpNJXFufIafP3+u3MuYRV7GXUp5UEq5TUq5DbgYCAA/NB/+nHpMSvmzfBeq0Wg0lci3nzzJ+7+9h0gsXu6lJFFIWeZ64IiUMm0TG41GkzuVZjA0sxkLRJASpkPRci8liUIa9zcD37Hd/oAQYq8Q4j+EEK0F/ByNZtEwGawsg6GZzWQwYv5fWb9VQYy7EMID/C7wPfOurwBrgW3AOeBfMrzuNiHELiHErsHBwUIsRaOpKcZnIuVegmYelFGfqlHP/WZgj5SyH0BK2S+ljEkp48DXgZ3pXiSl/JqUcoeUckdn56xe8xrNokcb98pnwvTca9W4vwWbJCOE6LU99jrghQJ9jkazqNDGvfKxPPcKk2XyrlAVQviBG4H32u7+JyHENkACx1Me02g0WTKhjXvFo4z7ZIV57nkbdynlNNCect+t+b6vRlMMBidDAHQ2esu8kszE49L6W3vulY8ly1SY564rVDWLig9991n+/N7nyr2MOYlq4141xOPS0tqnQpX1W2njrllUHOibYGQ6XO5lzEnMZtwrLUinSWYqHEWaP5f23DWaMjEZjDA0FSYUrezCoGg8sb5QpLLXutix57ZXmuaujbtm0XBiOABAMBIr80rmxu65B6OVvdbFjipgAu25azRl49jQNEAVeO42417hJ6LFjt1zrzQJTRt3zaLhuGncK91g2j33Sj8RLWYC4Sgf/M4zALidQht3jaZcHBuuPs89VOEnosXMj545y7lxYxTixp7G2uwto9FUA3bPXUo5z7PLR9TWCTKoA6oVy727T7G+q4Fj//BKVrb5K67gTBt3zaLhuBlQjctk77jSSPLcdUC1IhmYCLLn5Biv274UIQSdjV4GzAK5SkEbd82iYHwmwsh0mI4GozK1knX3pGwZ7blXJE8cHQbg6nVGw8OeZh9ToWhF6e7auGsWBUqSOa+3Eahs3T0aM4y7Q1T2SWixMTwV4uuPHCUelzxxZJgmn4vNS5oA6GnyAdBnavCVgDbumkXBcTOYurHbMO4PHRioKC/LjvLc/V5XRZ+EFhtfe+Qof/ezFzk0MMUTR4fZubodp0MA0G0a9/4Jbdw1mpJyfMjQ2zeYxv2j9+6t2B4zqkLV73Fpz71CiMUlP3r2DABPHx/hxHCAy9cm+iX2NGvPXaMpC8eHp1nS7KOpzm3d91L/VBlXlBnluTf4tHGvFH57dJj+CSNg+v09pwG4fI3NuCtZRnvuGk1pOTY0zaoOP153Ypd3mZfUlUYklpBlglqWqQh+sOcMjV4XHqeDZ06O0VrvZlNPo/V4ncdJk8+lZRmNptQcHzaMu8/ltO5zOytz97c0d4+TcDRe0Tn5i4GJYIT7XzjHzVt66G0xPPRLV7fjSHEOepp9WpbRaErJWCDMWCDC6vYUz91ZmZ67pbl7jVk6OqhaXu587DjT4Ri/f9lKljTXASTp7YruJp/23DWaUvLQwQGAqvPcG0zjrnX38iGl5K7fnuC6jZ1sXdbCkpbMxr2nyac1dw3cu/s0X3zwULmXUfOMByL8+b172dTTyOVr25M8d3fFeu5KczdORNpzLx8nhgMMToa4YXM3ANds6OCKte2s72qY9dyeZh+Dk6Gk9hHlRBv3MhCPSz77wEHuefJEuZdS8wxPh4jEJO+7di0NXhc+t3P+F5WZhOae8NyllOw+McKpkUA5l7bo2H1iFICLV7YC8JptS/n2H16GELMdg+4mH3EJQ1OVMekr7wHZmtx55tQoZ8eDOB2CWFxahRCawhMIG5JGvccw6l6XY9ZjlUY0RZZ5+OAgP9l7lqePj3LDed3c8fYd5VzeomL3yVEavS42dDXO+1x7OqTKey8n2nMvA//z3DnA8NBGA5Vxlq9Vps0qVBWctHvuMxVq3GMpAdW/uW8fJ0cCLG2pY3CqsppT1Tq7j49y0crWWZkx6ai0QiZt3OdhaCrEz54/V7D3i8UlP3v+nOVJDlZYJ7laoxo990See+JE9L8fvpbtK1srrq1stSCl5Hu7TnGgbyLr14zPRHhpYJKLV7Rm9fxKa0Ggjfs8/PeuU7z/nj2MThfGw376+AgDkyF+7+JlgDbuxWY6bHjuSuKwZ8hUqnG395ZRNPnctNS5GdNXegvi8MAUH713L6/4/KO845tP8cKZ8Xlf8+ypMaSEHauyM+7tfg9up6iYjBlt3DHO6g8dHEjbO3vEDI6cGZspyGf9ZO9ZfG4Hb7pkOUDF9YCuNQIh03P3zg4vVWqKYTTFuDf6jP9b6t2Mz0SIV3Av+krlrCmVvO6ipTx3aowPfHvPvK/ZfWIUh4ALl7dk9RkOh6Cr0Ue/lmUqh3uePMk7v/k03999ZtZjY+Zl8NkCGPdoLM7Pn+/j+k3drGr3A9pzLzbKc/d7ZmfJBMLRiqz+jJmpdA4zI+PS1W0ANNe5iUuYCldmN8tKRkklH7phA2+9dAWnRmfmPUnuPjHCpp4m66ovG7qbvLXhuQshNgohnrX9mxBC/KkQok0I8b9CiEPm/9ld15SBiWDEyjefTtMCdixgGPdzBTgbH+yfZHg6zE3nd+P3uvB7nNq4F5mE5p44QH/0x1fy9stXEpeVmUOuPPdty1v461dt5rNv2gYYxh2M3H1Neh4/PMT+s7N1deVNdzV56W7yEYtLhueQWqOxOM+eHMtaklH0NFdOIVNexl1KeVBKuU1KuQ24GAgAPwQ+BjwopVwPPGjerjhOjQR4w5cft37kkTR6ptI4C+G5qyj6irZ6AHM0V2XsCLXKdCiK2ynw2AKp25a3sKrDuHKqxIwZpbl7nA7eddVqmnyGUbeMuw6qZuStdzzJK7/46KwYWf9kkNZ6Nz63k67G+QOfB/snmQ7HrPz2bOluqk1Z5nrgiJTyBPAa4E7z/juB1xbwcwrCwb5JXvulxxiYDHH3u3fS0+RjOE2amSXLFOAHUy1DVVS9ze/RqZBFJhCOJXntCpU9E0jR3YORGPe/ULjsqIWgPPfU+oeWeg+QuJrUJGN3lL791Mmkx/rGQ9Zx193knfX8VFTAdVuWeruip8nHdDjGZLD8v1Ehjfubge+Yf3dLKdUR0gd0p3uBEOI2IcQuIcSuwcHBAi5lfr779CmmQlF++P4ruGJtB+0NnqTKsvGZCK/78mMcHjB6fhfEc58IIoThsYNh3Eemy78T1DLToWhavV3lu8+k6Nef/Ml+3vefe3ju1FhJ1gdGQP9NX32C7+06BSQ899SWxNpznxu7HJN6vA5MBm3GXXnumSVRdTWvnpstKte9EtIhC2LchRAe4HeB76U+Jo2IVdrIhZTya1LKHVLKHZ2dnYVYStacG59hWWsdazqNHhEdDV6GbJ77Iy8N8szJxAF+rgDGfWAiSLvfa6XjtdZ7dGpbkQmEY2kzZZQ3n5oOebBvEqCkI/jCsThPHhvho/fuJR6XRGNxhGBW4UxLvWHcx2b0PpOO/ecM495r9nix0zcetDz2zkYvQsxtgMdnInicjqS6iGzotmaplj+WVijP/WZgj5Sy37zdL4ToBTD/HyjQ5xSMs+NBq8MbQHuDh2Gb5/7oocSVhM/toG8imHdDoP6JID3NXut2q9/DyHS4IjM2aoXpcHrPXckyqZp7xPyNS+kdx2271W8ODxGNy7SDRJTnrmWZ9Lx4bpKlLXWs7WxIquQNR+MMTYXoMdv1up0O2v3etJ67lJKvPXKEl/omaapzp+0hMxdd5lX54FSNeO7AW0hIMgD3AW83/3478OMCfU7ehKNxPvOLgxzsm7B6QQB0NngZnAohpURKyaOHhqzHNvU0EZf556T3TYTobkx8Zmu9h1A0zkyF5lvXAoFQes29LoPmHjazZ4ZKWOYfs53cH9jfl7HfkM/txOty6CrVDPSPB1nWWmckKtgM95mxGeIykcgAhhEeSOO5H+yf5O9/doCHDg7SXJd7661GM/g9FSx/umrexl0I4QduBH5gu/sfgRuFEIeAG8zbFcGjhwb5t4cOE4zE6U3x3MPROFOhKEcGp5JSH9U4rXPj+UkzAxNBum0Nhdr8xo4wqj2xojEdjiaV8Ssyee6qsKmUnf1isYRxf+jAIJGYxOVIf2i21Lu1527yw2dOs/vEiHV7aDpER4OXrsaEowZwYngagJXtCePe6ndbyRJ2To8kjnH7vN1sUTnxU6HyO2x5G3cp5bSUsl1KOW67b1hKeb2Ucr2U8gYp5chc71FKIjZppddmaDsajMupoamw5bWrAbjqsTNjC7/UisbiDE+H6WxIyDIq+yGb1gYv9U8yUqAWCIuJjNky7tmau5TSujpLlzlVLJTnvqmnkTNjM+w/N55xSlRznVsHVDEK0P7i3ue5/b791n0j02HaGzx0NnoJR+NMmN7zSbNN8kqb557ue7ztrl28565dSc/JFZ/bgdMhmAqV/zdadBWq9sIFu3Fv9RuGdmTaMO6rO/z821sv4i07V/AHV6wEkoOqz54a479S0q3mYto0IqqUHIxsGSCrdMibPvcIr/7X32T9eRqD6VB6z73OMztbZmImahn7ksoyZnbMDecZSWVPHx/NOLy7pc6jA6rAE0eGCcfiPH9mnMMDk0RiccYCEdr9XisbbdBMdTwxHKDO7bTuB6NXT6q89cD+/qTbCzHuQggavK7akGWqDXvQtMPmRbeaXvTgZJAnjgxz9foO2hu8/MPrt9DV6KPR60pKr3rtlx7jYz94PuvPDYSTW8/aP3M+j1xJBYXqb7NYCISjjAbC1hWSHUtzt3nu9u93uISyTNz03HtbfJy/pGnOHv9NdW7GZ8pvOMrNwwcHLS/5B3vOWFe/ynOHRIzsxHCAFW31ScHRbK6AFmLcwZBmakKWqTaGp0J4XQ6+euvFXLC02bq/1Uwz++WLA8xEYly9Pjk1c0lLXV6yzHQoufWs/TPnk2XswSGdWZM9vzk0RCQmuXpdx6zH6tyzjfuzZm77lqXNc5amFxp7Xvv1m7rMvzNr7uM6fZaDfZNsXdrC1es7+NEzZyxD3tHgSWSsmPedGgmw3CbJgHGSDEXjluMUSZMJpyqDc8Uw7lqWKTlD02GWttTx8vN7ku5X3t3/PHcWl0Nw2Zq2pMdXd/g5Oji14M+1PHeb/ttS70GI+QOq/bZKurkKLzTJPPjiAI0+F5esbpv1mNMh8LocSZlKTx4bprPRy8UrWxmcDJXsRKqMu0MIrjONeybPvaUufSBwsTE0HaKz0cvrty/j7HjQmrnQ3uCls8GQW5VxPztm1LTYUV65kmbU1fM7r1zF67cvBaDBt7BBdQ0+V0nrJDKx6Iz78FSI9obZl+mNXhcOYTSS2tDdaKU0KTZ0N3B8eHrBbWItz92m/zodAr/HxeQ8+pzdcz80MLmgz1+M7Ds3zvYVrUk93O3Ue5xWtoyUkiePjrBzdRtrO/1MhaKcHi2NDBaztRu4cFkL7X5PRs29uc5NIByzUjYXKyPTYdr8Hm7a3E2D18UdvzkGGHGspjoXHpeDwckQE8EIk6FoUnwNEpkwE2abAHUiuHR1u9V7JrbA1sp+LcuUh+GpMO1+76z7HQ5hee9LU87yABt6GolLrHYEimy9u3SeOxjTdtJ1o7Rjr6Q7PjSd1edpYDIYtao601HvcVmyzEQwSt9EkAuXNXPxSsPT33WiNEleKlvG6RA4HII371yeJBnaUduzmDNmrOBpgwef28nNF/RYJ7sOvxchhFG3MhninCml2gsWYXYrBxVA72z04DEzlRZ6Am30upiqsd4yVcGwmS6VDnXgLG2Zbdw3dhu57i/1J3vOkVh2xl1ly6Rmbvg9rnn7c9uLpyrBI6gWpoLROXtx13mczESM71610W2t97Cxp5FGr4tdx0dLss64TZYB+OjLN/HFt1yU9rlNur+MlV3WbiZEvOuq1QB4XA6azMKjTjPXXSVBLGlJ9txTjfugpdl7uXqDEW+7fG37gtZnOGzlP04XJipVKSp7ot2f3ri7zSBW6o4AsKrDj9spOJhi3KPxOJ4szpGB0OxsGXU7MI/nPjAZZEmzj7PjQV3NmgOTwegsec1Ovcdpee7qIG+uc+N0CC5a2cruE6Ux7tEMjcLSoa4uxxdxOqTKZFLH8Xm9Tey9/SbGAxErI6az0cvJ4QBnx5VxT3bYmkw9PeG5G+/Z0eBlZbufA596RdIw9Vxo8Lq15l5qPv/LQ0gJ125M36QsYHpxqTsCGP0o1nY28FLfZNIEl0g0N889taAmm7P8wESI7mYfPrejYkfDVRqhaIxwLJ5UV5BKnTu9cQfYsbKVg/2TJfGQrYBqFsZdd4acbdzByGxZntJeQHnuTnP8nZ1EQNU45oemQtR7nJbztVDDDomAarnHIS4a4/7CmXHuePQob9m53NJUU1HBtd7m2cYdYEN3Iy/1TyX1I4nEs9PllHden9LEykibmt9z72r0Uud2VuRwiUpEBannNO62gKoqDFKe8Y6VrUgJe04W33tXee7OLJpUtZhGaTG3ih6eNiSUTPIqGJ77yHSYkyMzdDd6Z2UfpcpbQ1OhpLqXfGjwpu9bVGpq2rifG5/hFZ9/hAN9E3z8B8/T3uDlYzefl/H5yotLp7kDbDTLw/tsPWaiOWjuHpdjVuaG3+uy5nxmon/CGDRQ53ZqWSZLprIw7oYsY2ruKZ77thUtOB2C3SXQ3WMZhnOkY0lLHW6n4EgeabnVTsJzz2yMVSHTwb6JpMpUhdvpwO9xWvq9YdwznyxyocFbGc3Datq4P7CvnwN9k7zi84/y/Jlxbn/1+XNWnX385k04bMM0UtlgBlX32Pq8pyt+SEemoRH1Htec2TLBSIzxmYjhuXu0cc8W5bmrAy0ddW4XwUhyi1+1f9R7XGzubSpJxozy3LORZTwuB+u6GtPOCV0sjEyHcTrEnMey6uF0dHDaavMx6zmNXiuQOjQZLpzn7lPNw8p7dVWTxv2uJ47zjd8c45gtbfD6TV28cktP5hcBt16+iqP/cEtGD0plzOyxBdqiWepq0+Fo2gZWDV7nnLKM2vm6Gn1JMoJmbtSYs6w994AxnMHnThwSF69s5dlTY1mfwBeKuvrLJqAKsLm3yRpMsRgZng7RWu+Z82TYZbbzjsYlbRk8/K5Gn5WJNjQVoiODU5crHebJpNwFhzVp3P/6x/v41E/2W97Nmg4/n3ztBTk33k9lWWsddW4nu2zGPd2BL6XkO0+d5Kd7z1lFEoFQLG0DK7/X8B4zFUyoOY9dTVpzz4XJkPLc5zPuiYBqc33ycIZLVrURjMTZV2QvWeW5O7LcPzcvaWJwMrRoh6sPTYXnlVDsV9+ZtPnOJsNzj8bijAQK57mv7jSGrx8tc01KTadCPnV8hD+4fCWffM0FBXk/h0OwobuB505b3Y3TGvfdJ0b5uNlUzOUQ7FzdxuNHhtMO21XGZ+Nf/ZwvvW37rLYI6uzf1ejD53bOW82qMVDf01z9Qeo8TkJR48Q6PhOZdZm/Y1UrYFyp5TooORdUTD4bzR0MZwWMnimpWSC1zEQwwpd+dZiTw4E5g6lAkvHPJMt0NXp5eCJoTkPLLMfmSnejER87Nlhe415znntq+tFlaxZWiJAJpbsr0gVUv/X4cRp9Lu55z6W85+o1Vj/pdL65kmqicckf37OHn+w9m/S4mhbT3eSl3uPUqZBZMpWlLAMwY8Y1Uo27akBV7Dm3iQrV7J6v5npmW0BXK3zzN8f56iNHOdg/aRUwZcLrclpFiZmMe3eTj+lwjBPm8dlZoICqwyGMXlRDmYPep0cDWc1xyGsdRX33MpCa//uK8+fW2XNlfXdD0u1omlTIp46NcOPmbq5c18HHbk5UGz53amzWc+1SzfYVrXzwO8/wc7MJEhjVqS6HoLXeo7NlcsAKqM5p3I3HPvGjFzgxHLDSDBVCCDwuB6Eia+6pFarz4XIq4754+svMhGPc+cRx63amQkQ7Kqia6bnq5K3k20LJMmBIM8fmkGXe9NXfcs0/P8R//OZY0X7HmjPuqkfEW3au4NcffVlWGQi5sHWZcXn+MrMQKp33NBWKWr3aAS5a3sKmnkY+fOOGWc+1a8LfetclrO7w883HjxOMxJBS0j8RoqvRi8MhqLNpxJq5mQpF8blnp57aefn5Pbxh+zJ+ub+fM2MzaQ9uj9ORdaHaQklUqGZ3OLrN3ifZpuHWAvfuPpU09yAr424a78yyjCFpFcW4t/s5NRLIaLiHp0NICZ/8yX5e+YVHOTkcKNhnK2pOc1fZJa++sJeV7f6Cv/+lq9t49M+vo28iyMMHB2f9ePG4JBCOJRltIQT3/+k1ad9PVcS1+T3Ue1xsXdbCA/v62PSJ+/nUay9gYDJIpxn597mdBLVxz4qJYHTONEgwDv5/eeOFBCMX8OSxESsbyo7bKQjHivudJypUs3u+e5F57tFYnK8/eoztK1o4PDDFRDA6rywDCeOeKR++q8n03M3Mo0Jly4DRpyouDckv1cGQUhKMxPng76zhgqXN3P3bE3Q3F+6zFTXnuQ9OqQBk4b8sMAz18rZ6K20t1XtSBUlzZWnYUfqpuoRc0uKzWhXc+fhxo/WAuS31Os89awYmglnvAz63k2s3dNLTPDs46XEV33OPy+yLmABrvmq2abjVzv37+jg5EuC91661pLRM3rgd9fu3ZdDSu6xCp0l8bkfaOpSFoo7rdDGykNlt0ut2ctP5Pdz97kvxugr32YraM+627m7FJJP3pPrEpDYIy4QK4t2ytRdI7mszE44ZrQdMD6PO7SQal4vGY8uHU6OBWQMaFoLb6Sj6921VqGaruTsWl+d+7+7TrGir58bzuq06hGyqSV9xQS9vv3xlRqPdXOfG43IQjsXpaPDmnSptx2v2pglFZv9G6j51AigWNSfLDE2FcTvnrl4rBMq4p3pPqiotXU57OtZ0NvDwR17Gynaj6ZG99cHAZJBITFraoGpmlO5ST5NASsnp0RmuWpe+QVwulCSgmkOFKiw+zX00EGF1hx+HQ9DZ6OX4cCCrxl4Xr2zl4pWtGR8XQtDV6OX06EzB0iAVan3pPfdY0nOKRc1ZiMHJUMHPwulQl8ap3pPqt56tLANGO2G1XrtxV8Ha7iYlyxjvqQuZ5mY0ECEQjhXEczcCqpVVobrYNPdgOGZ57J9/80W899o1nNfbVJD3VtJMoa/0faZXHkqz76iWF9q458jgVKjgZ+F0uB3pc42ns6iMnIte07iv60qkXCrPvc5jfKY27nNzetTIPEgdirwQ1GV7Mcm1QtVyLBaJ5j4TiVkDzZe21PHxm8/LOj4xH+rYKrhxn8NzD1qee3HNb80Z96HJwrXunAu3S10ap3ru6YdyZEuD18WFy5p5++Urrfvsmjugg6rzcGrE6NpZLZp7PIeukJBwLFL3vVolGIlRV8Bgpx11bBWqgEmRMO7pPHfj+C1GENVO3sZdCNEihLhXCHFACPGiEOJyIcTtQogzQohnzX+vLMRis2FwKmRlnhQTK6gVL6znDvDjD1zFrZevYvsKI6e+u2m25q7JjPLc083CzRW3UxR9GHVsodkyi0Rzn4nEiiZhqGOrkGmQkPDK03rulixT+QHVLwD3Syl/TwjhAeqBlwOfk1J+pgDvnzWxuGRkOkxHY2HPwulIBLVSs2Xy89ztfOtdO3nq6Ih1JaLSv/aeGmP7isyBosXO6dEZmuvcc/aVyRaPy1n0qUe5VqhamnuWg2KqnWARjXtnsTR35blHk437S/2TVouRYmvueVkgIUQzcA3wDgApZRgIFzuYmYnRQJhYXJbGc88Q1FLdCOfqaZItTT43N2zutm5vWdrM5Wva+dwvD/GmS1YU7VK12jk1GmB5W/5eO4DHKYofUM1hhirYMrUWgecejcWJxKQlSRaaVWah44oCxGfsJPLck/edmz73iPW3r8JlmdXAIPBNIcQzQog7hBCqLPQDQoi9Qoj/EEKUxM1UrQc6S9ApTx2I6QKqTocoSg6rEIJbL1/J+ExkUU/imY/TozMsaynMwVqSgGoOM1TBkG+EWBzZMkHzxFos437JqlZ+9sGruWBpc0HfV3nloWhmCbXSA6ouYDvwFSnlRcA08DHgK8BaYBtwDviXdC8WQtwmhNglhNg1ODiY51LsBUylkGVme0/haJzTozP4Pc6ipWKuNtu9ztWUaDFj5LgXpoAJFhZQPTE8zWOHh7J+fq4VqmAEVRdDV0iVGVYsQyiEYPOSwqRV2lFeebqAqqLSA6qngdNSyifN2/cC26WU/VLKmJQyDnwd2JnuxVLKr0kpd0gpd3R25l9wkvDciy/LOB0Ch0juCvm3/7OPHz97Nm1r30Khip1ODGvjno6hqTDBSLwgaZBgGPdcAqrxuOTaf36Yt93xJFJmtyeoc0e2FapgBFUzZctk+7nVgApIFlufLjTeOQKqior23KWUfcApIcRG867rgf1CiF7b014HvJDP52SL5bmXwLiDobvbvaffHh0GKOpAjXqPi+4mL8eGCt9FrhZQmTKF8tw9rvSeeyAc5Y5Hj84ysL86MGD9fWZsJvVlaUlUqGa/LpdDpO0t8zOQdpcAACAASURBVJWHj3DDZ39dM33/1XZUW3zJ63IgBITm+B28VVDE9CfAPUKIvRgyzN8D/ySEeN687zrgQwX4nHkZmgrjdTloLECmSja4HSLpwFfeYrrugoVkVbuf49pzT8vpUZXjXiDNPYPn/ot9fXz6py/y5LHkAdqHBhKxkEP92cVFEhWq2R+O9pNOLC75yPee40sPHeYX+/o4MjjNd546mfV7VTIq7bfYwcdCI4QRdwvOcdVX8amQUspngR0pd9+a7/vmuAaEECVrPaBwuxxJntvodJhLV7dx57vSqlAFY3WHn1/s67O2W5PgVBE893QB1SMDxsn1YN8kV67rsO5XA7fBSHu7blPXvJ+RqFDNfl0uR8K4908EuXf36aTHv/TQEd5cAxlVSnOvxu3wuZ1zeu6eIveHqvoK1dvu2sWffvdZwNDcS6G3K1wOR1IR02ggQm+zr+j64AVLmxkNRKzxfZoEp0dnaPN7ClJnAEY9Q7rApRqhdrBvMun+6VCMRq+LrkYvL2XpucfjEocgpxO1obkb67KfUADefdVqhqZC3PXE8azfr1JRnm+1ae5gXG3MFVAttmNW9cbd5RTW+LrBErUeULhTglqj02Fas+gznS+XrGoD4Onjo0X/rGph7+kxDg9MGmmQBfLaATxOJ7G4tNIVFUfN4ccH+1ONe5R6r5M1ndlLZzEpc+6V4nYmHAs1nWuDOQLyvdes4ZoNnfz7r49Y7TCqlWJnyxQTr9vBd3ed4u4njpfl86vvG0vhvJ4mjg8HmApFS++527y6cDTOZMp4vWKxvquBJp+L3SdG5n/yIuF3/+0xbvjsIwVNg4REDyF7bCUWlxw1U1Ff6p/kf/f387iZ+jgdjuL3uuhq9FnZW/NheO65GXeXI+FYqBkCt7/6fH778evpavLx4Rs3MBqI8ONnz+T0vpWGFVCtUs8d4BM/3leWz69+4262/tx3Zpzh6XDBGwDNhT0HemzGmO9YCs/d4RDsWNWmPfc0GJ574aoNlS5qb916ZnSGcDTOzlVtBMIx/vCuXbz1DiMbeDoUxe9x0dHgZWgyO+Mejcusq1MVblum1kzE8M7rvS5rmtSFy5pxOQRnRrPL2KlUqjVbBiD1fJ169Vdsqt64qwKExw4PIWVpctwVbofD0j1Hp43+I631xR0SotixqpXDA1NJQ4M1xhVUQWUZ1+w2E2rm5ruvXp303GAkxnQ4Rr3HSUejh+lwbJYeno5YXOY8yN3tFFaNhTX9y2YAhRC0+T1Vv3/MVLHnPphyci91w7+qN+69zT5a69386qCRX1xKzd1lO8DUQdRWAlkGYMdKQ3fffWKUSCyuJRobV6xtL9h7pRuMsf/sOA4B16zvTEp73X9ugkA4SoPXZfU3Gpqc37jGF6C5u2xXjZkyStobvAxN1YZxr8aA6rDtxCqlLPkchqo37kIItq9o5YUzhjdVyEvy+bAXMY0FSifLAGxd1ozH6WDX8RH+57mzvOErT2RdNFOL2NPK1nUVrs5Ava89133/uQnWdDZQ53Fy6+UruXq9kQq599QY06EY9V6XVUg3mIXuHovLnKpTwdDc1b6nhrL7PckZQh0NHoans5OGKpVgWPU+r25TNRWKlrywrLq/MZOLVxl9yVwOwflF6BORCXsR0wkzLbFUVw4+t5Mty5p5+viINZyifyJYks+uRNTM2u/84WUFfV93Gllm39kJaz/7/ctWcte7dtLZ6GXv6XFTc3dannvqpXk64jJ3WcZjq7FQ2TL1KXN72/0ehqvccw9G49S5i9erqVSMBSLWVcgrt/Tw77+/veifWRPGXfU2X9Fen/NBkg9+r4uJoKG1//z5c1ywtKmkmv+OVa08f2acEyNG5sZIlR/I+RCJSd515WouL6AkA7MDqiPTYc6NB5OcCCEEFy5r5rnTYwTCMfxel7UfZJMxE43lHlC1tx8IhI1OpKlFMW1+L8NZZuxUKjO2+anVxp3v2mlJhKOBsCXL/N7Fy3jFBb1zvbQgVOe3lsL2Fa28/qKlfPltxT8b2lnWWseZ0RlODgd47vQ4r966pKSff8nKNiIxyS/39wNUffAsHyKxuJW2WEg8ruTWzvvPGvLf5t7kFrEXLmvhyOA0U6bn3ub3IER2nntMLiAV0iYJToeMIG6qd9veYAR1q7nPTCQWt4La1ca1Gzr58I0bAKPAsdTxg9I0YSkyHpeDz75pW8k/d1lrPaOBCP/1tNHH45atxT8b27l4pXHFMmE2Khte7MY9l85bWZIaUN1/bhxgVpvYrctbrL/rvS7cTgftfg994/NLZfH4QoqYRFJAtT5NqqBqfT08HWZpS+EyiEpJOBa3foNqpMVMsBgLhK3JYKXK/Kneb60CUNN+7v7tCbavaClpMBeM4K1qAQzGpd9iJBaXxCVFMQKpAdV9ZyfobfZZIw8VW23DHlTrg3VdDbw0kFzBmo6YzK2XOxitL6wipnB0VjAVoN1vSEPVLM1EYrLoPViKidpPRqfDluden+a3KgbV+61VAMqYTwajvPrC0koyis29CQ+y2oNnC0V5sGpwdCFRAVXVPGy/LZhqp9XvsUa1qXzzjd2NvNQ3ac1IzYTqLZPTuuxFTOFY2iKfduW5V/F+EYlWt+feXOdGCFOWCZc2Z796v7UKYLlZLCME3LKltJKMorc5cbk9UuVpbwtFBRaL4eHZPfeZcIwjg1NJJ1Q7W5cZ3rvyzDb2NDEdjs2bohqNx3Nq9wspRUzzeO7ZtkEoBIOTIc6NFy4lt1ixlFLhdAiafG7GAgnP3ecpjdnVxj0P2vwe6j1OLlvdTldT8ee2pmPbioTWu1gDqmqAdTE8955mHx6Xg/966iQH+iaIS9i8JP28zW2m7t7gVcbdyLc/0De3NBOLZz8/VWHvCjkTjs1KgwSb517C/eKSv/sll//Drwr2fuFY7ie+SqO13s1IIFLyPjnV/a2VGSEE//R7W/nEqzaXbQ2v3trL3e/eyWu2LWFkkWruEdODLcble0eDl7+8eRMPHRzkL76/FyBjLcW1GzrpafKxutOYc6uM+8G+iTk/w6hQzW1d9n7u0xkCqvUeJz63o6ia+2cfOMgD+/qK9v6RWLyqNXcwgqpjtlTIUmXLVPe3VgG8auuSogzYzRYhBFev76Sjwbto89yV9uwugucO8PYrVnHdxk6rP3um3jXruxv57V9eb2WmNHhdLGutszz3Rw8NpjWEC6lQtfeZN7JlZssyQgja/d6iau5f/NVhbrt7d9HePxKTVS3LgOG5j5qyjNspShZDqIlUSI0hEamc5mrsw5EPKmukWAeNEIJ/fet27nriOO1+T07Vkpt6Gq2BHrd+4ykAjv79K5NkmIVUqLqdDqLxOAOTQYamQjTXpW9YZ7QgKI5xt1ftDk4mt9su1JSwSCxOo6+6zVRrvYeX+qcIhEt7bGrPvUZQKVeLUXdPZMsUb3du8Lp4/8vW8aZLVuT0uo09jRwdmiYUTRQSvXB2POk5C6pQNbNlPv2TF5ES3npp+nW1+YvXX2ZiJmL9/eihwaTHAgVqkhWJyarOlgEjk2osECYYiZW0u2V1f2sai0o37gf6Jljz8Z9yYB79eSEoecJTJFkmHzb2NBGLS44MTFse6EMHkg3hQipU3ebJ4L7nzvJHL1vL2s6GtM9rbyieLDNmM+6p+51qy5EvtaC5t9a7mQ7HmAhG0sZGikV1f2sai/Ycjfu+s+McGcxuxmch+OX+fuISvv7IsYK/t+W5V2BWxSYVVO2fsDobqvmrioVUqKqrlNUdfv7oZWszPq+9wWgeJmXhB0WMBRIGPJqSyz8xU5jxfpFYvGixlFKhqlTPjgW1LKPJndYcjfstX/wN1//Lr4u5pCRU4609J0cLbmisgGoF9iBZ3eHH7RQc6Ju05pmOzyR7tQuZodpgXgV86jUXzGkwOvxewjFjBGShGZ9J7GuxuEz6XQvmuVd5ERNgjd48Nz5T0olS1f2taSyU5z48bXhpz50aSxrePR+337eP8z5xf7GWx2lz3NuxoemsmmnlgvLc3SXsCJotbqeDtZ0N7D87QTBirHMixbgvZIbqG7Yv5Yfvv4KrzF7ymVCZPQfOzd8GIVfU9DEwjLt9FGHqNi6UcExW5Ek7F9R0toHJkNbcNbnT5HPjdAhGpkP819OneM2XHuNRc2hzNnzr8ePMRLIbC7cQTo8GrL+PDE4X9L2jFey5gyHN7LLNu0313BcyQ7Xe4+Iis9X1XFy1vgOPy8H9LxQ+F92uuUfjMqn7ZCE190o8aeeCkmWkLO24wMo8GjQ543AIWus9PHdqnE/9ZD9g9LyZj0iKd3+0wIYXDClm7+lxLl9j9LZO1ZzzJaG5V6YR2NjTZJWeuxzC6uKpWMgM1Wxp9Lm5Zn0H979wbt4eN7kyHggjhNF+Ix6XSTNCxwMFNO7VLsv4E2mqPi3LaBZCm9/Nbw4PWR0M7aPhMqEyKXqbjfYJhwcKa3iDkRiv//LjhKJxti5vxud2FPwEEilynnu+qIZiAL0tvtmyjMy9iCkXXnvRUs6OB3kkJV0xX8ZmIjTXuY1B8XGZlP6YegJbKEZvmcr8XbOl1TZXuao8dyFEixDiXiHEASHEi0KIy4UQbUKI/xVCHDL/n//6UZM3Kh3ywzcZAwJSvfJ0KP272+yNcyiLFrXzYZd2XjyXSH3c3NvEmo4GjhY4SydRoVqZRqCnOVHcs6S5jlA0niRhxBaQLZMLN23uoaPBy7efPFnQ9x0LRGipM+TAWDyeNAC6EJq7lLIm8tx9bqdl1KvKuANfAO6XUm4CLgReBD4GPCilXA88aN7WFJlXbV3Ce65azRt3LAcyG3d7VsPApDFMQnUYzNdzf/LoMJv/+hc8fHAAgOdOjQHw/T+6gldtXcKaTj+HC2zco1ZvmcqUZboaE03llpoBTrsmHZe5Nw7LBY/LwY2bu3jq+EhBM5UGJoM013twOQSxOEknrNS4wkJIdPuszN81F1RQtWry3IUQzcA1wDcApJRhKeUY8BrgTvNpdwKvzedzNNnx+5et5K9etdkaS5ZJllGeLiQ8d+V1HR2c5qr/9yseMo0zGCeDLz54iBPD88spt//Pfut9AJ47PU53k5eLV7bidAjO623i1MhMQQ5+hdrOSvXwum0dQ1XfGZUHHonFOTs2Yw3ULhablzQzFohwNovJUNlwbGiap46NcMXadhzKc7cZ90K0PKh0uS0XVFC1mvLcVwODwDeFEM8IIe4QQviBbinlOfM5fUB3uhcLIW4TQuwSQuwaHCysHriYsXqQZ/Dc7aXwyrirNL1DA1OcHp3hVy8mjPuZsRk++78v8b7/3DPn54ajcUuGUV70c6fGuHBZoi3xFnNi0b4z47PfYIEoD69SjYB9BugS07irk9v+sxOEonFrZGKxUD3oF/q9TwYjTIei/ObQEB/53nO87suP4XI6eOeVqwzPXUrLQeho8FpXhPkQiVb275oLKqhayjz3fDvyuIDtwJ9IKZ8UQnyBFAlGSimFEGmvBaWUXwO+BrBjx47Cl9AtUqy5n9H0X6ky5ADHh40UxdQUyOdtRkAZovkGLQ/aWssGI3HGZyIcHZrmDRcvs+5Xxv35M+NcsW7uHO1sKeYkpkKjjLuSZXafMFIkt69syfiaQnBebyNCGGMCbzq/J+fXv+fOXTx5bASARp+L6zd18dZLV9LV6DM190S2zKr2ek6OBOZ6u6xQzkm1B1Qh4bmXUnPP17ifBk5LKZ80b9+LYdz7hRC9UspzQoheYCDjO2gKjtMhcDpERs3d7rkrT3smxXC/eG6CaCyOy+lgyMyo8c5zkPVPJLy1YCTG86eNE4Tdc2/1e1jWWsfeAnrulR5QtbPEzEpSAcdnT43R2+xLmqhVDOo9LtZ0+Nl3dmG9fZRh37mqjbvfsxOvK2GknA5jcIjy3Fe017Pn5GjegWK1/9aS5l41AVUpZR9wSgix0bzremA/cB/wdvO+twM/zudzNLlj9PvOZNyN+5e21HFoYJJgJEYwEk9K2QtF4xwyg6tKuvHMY9wHbMZ9JhLjudNGMHXLsuTJRVuWNvNCQY17ZQdUIXFiVB6cuhrqmwiyvK00g9XPX9LM/rML+95Xttezc3Ubd7072bCDYdxjMuG5r2zzE5fk3Y2yknsG5YpKh6y2PPc/Ae4RQuwFtgF/D/wjcKMQ4hBwg3lbU0I8Tkdmzd2UZS5a0UIkJi1Du7wt2XtU0oyawTm/554syzx7aow1nf5ZvcYvWNrMieFAQQpd7nnyBP/48wNAZXvuD/7Ztdz1rp201rvxe5wcMgd/jE6HabPlQReT85c0cXY8yOgCgp2BcIw1Hf60AUFXiiyzst04WQ1MFMa414Is01oGWSbvb01K+ayUcoeUcquU8rVSylEp5bCU8nop5Xop5Q1SypFCLFaTPR6XI2O2jJJltpvl60r3Xd5qHJTL2+po8LosWWXI9NxTO/+l0j8RxOUQtPk9BKMxnjs1xrZls7Vkpbun9jXPFSkl33zsuHW7UitUAZa11nPNhk5cTgc7V7fx2BGjNcRoIGI1fSs255uzXxcizcyEYxmDgQ6HMNoPmLKMchLy7SEUjtZQKqS/9LJMdY840WTE7XTMK8ts6G6k3uNMGHdTHuhp8rGkuW6W5z5fYUr/RIiuRi8Oh+D40DQDkyG2Lps9TNoeVL0yj6Dq3tPjSXn5hZj8UwquWNvBQwdf5Nz4DGOBsKXHFhs1+3Xf2fF5G47d+o0nGZkOc8GSZq5a30EgHMWfZpQfGCdV1X6gzu208vrzzZiJFnE2bqlZYsZU1NDyUqCNe43iNif1pEMZ9zqPk009jZZxX9pShxDQ1eSjt8nH3b89QTQWtwKq6UrKg5EYD744gN/r5OjQFF1NPqZCUSsAd+Hy2Z67Cqo+n6fu/oM9p/N6fbm4Yp3RY+eBff1E49KqLC42rX4PS5p983rugXCURw8Nsay1jp+/cI7v7joFZE7jcwjDc5+JGN69Grc3lMeQkFhc8oM9Z4DaMO47V7fx0w9exXm9pZu3rI17jeJ2ioyau0pp9LocnL+kmT0njcBng9fF+q4GNvc2say1zgqqzuW5P7C/nw9+5xnr9i1bejkxMk3MlHAy7cxbljZbss9CCEfj3PfcWa5c185jh4cX/D7l4LyeJlrr3fx0r1EK0lIizR2MYqZ988hhfWah04dv3EA0Lvnze/cCmasrXU7Dcw+EDc/d63LgdAim8+gh/9+7TvGtx48DtWHchRCWLFYqtHGvUTwu5xyau3G/z+1k85KE8a33OPnZB6/GIQTHzGrU58+MM2Bqp6FonFA0lpQtofT4b77zEoLhGBcub+H//pdh7P0eZ8aKvC3Lmvn5C32MByI0L0CW+NWBAUYDEd5z9ZqqM+4Oh+Dyte383GzD2+YvjSwDhjTz4IF+AuEo9Rlklj4z66mnyZd0tZbJuDvNxmFB03MXQlDvceY1RzVkS831uKpDbqs0qv+UqEmLZ65UyCTPPWHcfR4nLqcDh0Owut1Pg9fFnhOjjEyHrUvt1DbCqqf3Nes7uXlLL0ta6iyD3lSX2WgtNKgai0sisTjf33OazkYvVxeoEKrUXL62A9XmpZSe+/lLmpASXpxjeIeqV+hu9tFUlzgB1GU4GTiF8bvMhBMDoP0eV16zAdpt7RhqwXMvB/pbq1GyCah63Q42dDdahSb2SL7DIdi8pIlfvtgPwIZuYwBzqjQzHgjT5HMlFasozz41BdLORnO2aK6Nym6/bx9/8I2nePjgAK/a2mvNEq02rlzbbv1dqlRIgPPNk+pc+e5948bVWE+TjyZf4jesz3AV5nI4rFRItQ/Ve51M5+G52zOfaiHPvRzob61GcTsdGdsPWMbdZcgmazv9wOzL7guWNFtBsfVdhjFODaqOzcxO5fO5jd3KbhhSaav3IET2M18VL/VPsuvECJGYZE2Hse415vqridUdfquHfmsJjfuSZh8t9e6MQdVD/ZN8b/cpGr0u/F5XsnHPKMuoPPe4VaTT4HURyENzj9jSbrUsszC0ca9R3C4HoXnaD6iiJBXoSc3B3WR61/a/h6eSc5dVT287dZYskzmk43I6aK5zMxrIzbiPBsJWFpC6dP/ZB69m39++PKf3KTdCGLq72ylo9JUu9GUE9poyGvf33r2bo4PTlgOQLMtkNu7ReJyZcJQ688Re78nPc4/FE/uulmUWhv7WahSP00EkU0A1ojx34+ffsaqVeo+TxhRPe4PNuL9sYxcuh2DXidGk54zNRGiuT/XcTeM+h+cOhveeq+c+aqtqVUPBfW4nfm/15QZ86IYN/Ntbtxe1l3s6zl/SzMG+ybSynfrtVKuJBtv3mikAa7QfIEmWyVdzt6fxauO+MKrviNBkhceVOaAajMbwuBxW0c+bL1nBjZu7Z3lm67sarL+7m7xsX9HKYylDt8cDYVam9EaxZJk5NHcw8q5z8dyllEml8+1F7oFebJa31Zesr4ydTT2NhGNxTgwHWGf7jcHwuJ0OwXffexlAUkwjYyqkNYkpbgVd670uAkML99yjGWo0NNmjT4k1ypwB1Ugcn61fh9MhkqYFKezesBCCK9d18PyZccZsBnlsJkJLSiqjCqjOJze01nsYmc6+v8xUKJrUAqGjhNV+tUSHeVJMd2KdCkW5flNX2pzsudoPqElMCc/dyXQenruSZS5d3UZXY3WfxMuFNu41its5V2+ZON4se1z8/mUreNulKwC4an07UsITR4y88nhcMj4zW3NXBni+qTNtfndOTaxGbScCl0PMK/to0qMCuOm++8lgdJY8p5jLc4/G4maFqtLcXQRCC/fclSzz1VsvrtqMqHKjv7Uaxe10EM7YfiA2b4dHxadfu4W/e90WALYua6HB6+I3pjQzEYwg5ew8bXVS8cxzULb6PfRNBHnjV5/ISp+1e5ptfk/JtepaQV1pjaXpyjkVima84vK5MgdUg9EYsbhMeO5ew3Nf6MxW1VdGG/aFo7+5GsXrmjvPPVvjbsftdHDZmjZLd1fGIVWWsYYszPMZKr/7qWMjPPLS/GMWRwK1o7eXE5W6aj9ZzoRj3PXEcSaCkaQgqp1MJ1OnQzBlpsiqq7V6j4u4TKTd5ory3Cu502elo417jTLnsI5IfNbAhWy5cl0Hx4cDnBoJWD1nUhtfWZ77PMbdnt/9wL5+6++pDPnRdq1f6+0Lx+9x4nYKq7oY4MED/fz1j/chJTTkmJrpdAjrN1O6vN9r/L/Q/jKqN5E27gtHG/caZe4K1Rhe98J+etWi9/EjQ5wenQGMXuV2VD9vNS80E/bGZo+aVwMvnpvgwr99IO2kJhV8vWJtu9WLXpM7Qgia6zxJJ8shW+/1VM/92394Kbe/enPG93M5hOVpK11epU0utL9M1Nw38hnTt9jRqZA1imr5G4/LWZfTRrbMwjz39V0NdDZ6+YvvP2/1h1nWmmzE33ftWrYsa+HaDZ1zvtcrt/TyxJFhWurdfOepk8Tikl+/NEgsLjkxHOCCpckZG0cHp3A7Bf/57ku13p4nrfXupAC1vd4gVXO/Ym0HV6zN3MPHboDt2TLAgjNmInGJ2ymqpkd/JaI99xpFSSKR+GzvPR/PXQjBrZetBIyOkZ2N3llZMS6nY17DDoac86W3bWddVwNxafStedrsAz+e0sNmcDLE9/ec5tUXLtGGvQC01ifXGAzbjHsmzT0TduNuae7me0wvMGMmFpe6p0ye6G+vRlGZKukGdiw0oKr44PXreeeVqwCs/ij5oDT7oamQVQE7EUw27l9/9CjhaJwPXLcu78/TGEFwe7bMSB7G3W6EUz33hVapRmJxrbfniTbuNYrbnDuZrgWBYdzzm+WoNO9Mwc9cUIHV3x4bsTx2u+c+NBXi7idO8LsXLmFNZ0Pa99DkRmu9h4P9k9ac0yTPPceAqsMmnaiAap1l3BequUtcNTA7tZxo416jqInx6aYxhSLZ57lnYps5Pq+xAD1dlOf+wD5jeIXTIZJaC9/x6DGC0Rgf+J31eX+WxqDNzDa67e5dQIrm7s2tOMxuhJXnrpyHTIV08xGNS53jnif626tRVLOldAeXUaGa30+/rLWOT77mfP71Ldvzeh9IGPcnjgzT3eRlRVu91Vp4ZDrMXU8c59Vbl8zqg6JZOKrq+MRwAEiRZQrguSvnYaF57lEty+SNzpapUbxzee7RhWfLKIQQ/MHlq/J6D4WSZaJxySWr2jg1OsOvDw7wpYcOMx2KMhOJ8Se/o7X2QrKstZ637FzOgy8OEIvLpOCqylHPFleabJmEcV+gLBPXsky+aONeo7itgOps4x6MLDxbphjUeZzUuZ3MRGLsXN3G+Ew/E8Eo//yLg7idglu29LK+u3H+N9LkhNflJBiJMRYIIyV87OZNXL+pK+d4TFIqpCdZllHtpXMlEovj1tkyeaG/vRrFk0GWicbiROMy74BqoVHSzCWr2pLG8zkdgo/dvKlcy6ppvG4HwWjckmSWtNQt6CSalApp7lfKeVioLBOLS13AlCd5G3chxHEhxPNCiGeFELvM+24XQpwx73tWCPHK/JeqyYVMB5eSafINqBaaVr+bJp+Ljd2NVh/4rcuauetdl86qgNUUBp/LSTgat0YptvsX1tJBGWGvy2HVICjnIhtZ5tRIYFaDsUhMB1TzpVCyzHVSyqGU+z4npfxMgd5fkyOZPPfUKUyVwss2dBGKxnA4hHWgv3rrEnaubivzymoXVXDUN2G0kUjtEZQtSnO393t3OAQep2Nez/3kcIBr/vkhPnTDBv7vDYlsqGg8bqXzahaG1txrFFWhOsu4q+HYWfZzLxUfeflG6+9h05Psbcm/QEqTGXWCPzsWBPL33OtT9imPK/NMAYUqVvvJ3rNJxl3LMvlTCPdNAg8IIXYLIW6z3f8BIcReIcR/CCF0l6cSYwW0Zhn35OHYlUiPWfW6ss1f5pXUNspzPzNmeO6teRp3X8owD6/Lvods4wAAFFxJREFUMa8so7o/DqUMXtcB1fwpxLd3lZRyO3Az8MdCiGuArwBrgW3AOeBf0r1QCHGbEGKXEGLX4OD8/bw12ePJkIqmjP18U5LKycdvPo9vvuMStiybPepNUzjUrNuzYzM0+VwLHkRtyTLuNMZ9nmyZmYixf46mDA7RFar5k7dxl1KeMf8fAH4I7JRS9kspY1LKOPB1YGeG135NSrlDSrmjs3P+RlOa7PFmkGWCkcr33Os8Tq7b1FXuZdQ86gR/dmwmr+EnjkzG3e2cV3NX+2MqukI1f/L69oQQfiFEo/obuAl4QQjRa3va64AX8vkcTe54MhQxWZp7haVCakqPXXNfaDAV0gdU1fvPJ8sEbZ69vSYjGtcVqvmSb0C1G/ih2XPZBXxbSnm/EOJuIcQ2DD3+OPDePD9HkyOZPHcrW6aCipg05UF57lOhaF7G3Wlq46lSn8c1f7aM3fj3jQdZ3makvUZjUhv3PMnLuEspjwIXprn/1nzeV5M/ngy9PaohoKopDT7bCX6hmTIASj1Jp7nPly1jl2XO2Yx7JBZfcAxAY6C/vRolY567lmU0JvZ9oBCee/0sWSYbzT3xuL2/jU6FzB9t3GsUl9OB0yHSGHfDU/JpWWbRY98HCqG5p8oy2WnuicdHbZ0pIzpbJm/0EV7DeJyO2QHViPbcNQb2faC9YeHGXbX8nRVQdc+fCmn33Edsnns0rvPc80VXqNYwHpeDUEqqWTWkQmpKg93TbvMvPBUyU557Nu0HZiIx3E6B0yGSxv7F4hKn9tzzQhv3GsbjSuO5R3W2jMagYAFVZ6YiJmdWsozP5aTR50oaGBKJSdxac88LfYTXMN40qWhBLctoTAoWUBUZ2g+4s0uF9LqdtPo9SZp7NBbXRUx5or+9GsbjcvCDPWf4/C9fsu6bicTwuBw6E0GD2ylQu0EhAqqpjcOyS4WM43M7aK33pGjuOs89X7Rxr2FUOuQdjx6z2ujOhKOzUtY0ixMhBD63E7/HmVevIUfGCtXs2g/UpfPc9Zi9vNHGvYZRQdOpUJTTo0bnvxnzYNJowAiqtuWRKQOJkY6pxt3jchCLS6JpRj0qgpGYsYZ6t6W5SymJxSUunS2TF/rbq2HsmurBvkkAAmFt3DUJvC5HXpkyABcua+avbjmPK9a2z3pvmHvUniXL+D1MBKPWGEhAD+vIE23caxiPLd3xQN8EYF4Ga1lGY+JzO/PKlAGjYO49V6+ZFaRPNe7DU6FZA9tnTM+91+zhf3YsSDRmGHen9tzzQn97NYxds3zR9Ny1LKOx84Hr1vGOK1YV5b3VtK9QNEY8Lrn407/kz/77uaTnBCMxvC4nazsbADgyOEUkbpwAtOeeH9q41zD20u4kWUZ77hqTN1y8jGs2FGeWgsqjnwnHmA5HAbjvubNJzwlFDVlmjc24K89dZ8vkhzbuNcxM2DDuy9vqODY0TTASY0Zr7poSsbTF6PB4ciRAIJy+mMkKqPo9tNa7OTI4zbGhKQCcOs89L/S3V8OoA+qy1e3E4pLDA1OGLKM9d00JWNdleOOHB6aYCkXTPscw7oYZWtvZwH3PnuH3/v0JGr0udq5qK9laaxFt3GsYy7ivMbIYDvRNas9dUzLa/B7a/B6ODE4RCCV77vG45FcH+pkKRfGZgdjtK1uJScl7r1nLo39xHRt7Gsux7JpB95apYQKmzrltRQtel4MD5yas7ASNphSs62yY5bkf6Jvg/ffs4ejgND1NPm7Y3A3An798Ix++cYPePwuENu41jPLc2/0eNnQ3crDf8Nx1haqmVKztauD+F84xbTPu//7wEU4MB/jCm7fxyi29VhGUy+lAtzwqHFqWqWFu2WrMKW/yudnY08gLZ8aJxqWWZTQlY11XA6OBCKdGA9Z9L5ydoKvRy2u2LdWj9IqI/mZrmP/3hq3s+cSNOByCTT2NjJr9snVAVVMqVFB17+lx677DA1N0NuZXFauZH23caxi302F1+zuvt8m6Xxt3TalY2+kH4LlTY0n3dzZo415stHFfJNgzD7QsoykVS5rrqHM7OTo0DUCD1wjzac+9+GjjvkjoaPDSYXpL2rhrSoXDIVjbZXjvdW4ny1rrAKx9UVM8tHFfRJzXa3jvWpbRlJJ1ZmsBv9dFo0977qVCG/dFxMZu07hrz11TQlRQtcGbGArSnmcPec38aOO+iNhkBlX9Xl3eoCkdyrjXe1zasSgheR/lQojjwCQQA6JSyh1CiDbgu8Aq4DjwRinlaL6fpcmPV23tJRSNsdmWOaPRFJuE5+7iz1+xkcGpEFevL04nSk2CQnnu10kpt0kpd5i3PwY8KKVcDzxo3taUGZ/bydsuXWnNvNRoSsHKdj8uh8DvdbKuq5Efvv9Kmuvc5V5WzVMsWeY1wJ3m33cCry3S52g0mgrH7XSwZVkzy9vqy72URUUhxFcJPCCEkMBXpZRfA7qllOfMx/uA7nQvFELcBtwGsGLFigIsRaPRVCL3vOdSPfC6xBTCuF8lpTwjhOgC/lcIccD+oJRSmoZ/FuaJ4GsAO3bsSPscjUZT/dR7dBC/1OR9KpVSnjH/HwB+COwE+oUQvQDm/wP5fo5Go9Fosicv4y6E8AshGtXfwE3AC8B9wNvNp70d+HE+n6PRaDSa3Mj3Wqkb+KEQQr3Xt6WU9wshngb+WwjxbuAE8MY8P0ej0Wg0OZCXcZdSHgUuTHP/MHB9Pu+t0Wg0moWjw9cajUZTg2jjrtFoNDWIkLIyMhCFEIMY+nyudABDBV5OOaiV7QC9LZVMLW2P3haDlVLKWf0cKsa4LxQhxC5b24OqpVa2A/S2VDK1tD16W+ZGyzIajUZTg2jjrtFoNDVILRj3r5V7AQWiVrYD9LZUMrW0PXpb5qDqNXeNRqPRzKYWPHeNRqPRpKCNu0aj0dQg2riXEGE24dFoionezzRQRcZdCFE1a10MCCGWlnsNhUII8btCiLXlXodGU0gq2mCaB92Hy72OfBFCvEII8WPgU0KIqi66EELcIITYDbyv3GvJF3NbngC+AfSWez35IoR4tRDiO8DHhBAry72efBBCvFYI8alyr6MQlGtbKjJbRgjhAv4M+CNgBbBdSvmsEMIppYyVd3XZYV4ae4F/B9YB/wT8jnnfJ6SUVVM2bW6LG/g8cAVwu5TyR/bHZSXuSGkwt8UPfAdoBD4F/CnwX1LKe4QQDillvJxrXAhCiBuAvwf+GrgEaAYeklL+tJq2ybxCfxfwMWAl8DtSykfLu6rcMfczB/BOyrQtFem5SymjwEFgE/Bh4Kvm/VVh2MEYLyilDGIMKrlWSnkf8AOME2rVGHawtiUM1AM/klL+SAjhEEJcqB4v7wqzx9yWKeA/pZQvk1I+CPwCY6g71WIE03AD8BMp5f0Yx0sj8C4hhL+atslc6yHgIuD9GCffqsPcz2LAYcq0LRXjuQshPggsAfZIKf9bCOGWUkbMx44B/5+U8tv2+yuR1O2w3f9G4EvAPuBR4BdSyt+UZ5XZYduWZ6SU3zV16a8Bz2AYk1PAOeD7UspflG+l82Pblt1Syu/Z7ncAbwG2A38ppQyVaYk5keZ4+V3gj4HXSCmDQogvYHiLD0op/7Wca50PIcTvAaeklE+at+3H/tPAv0spv1ENVyDm77IFeFJKeYf9qrbU21J2z10YfAh4E7AL+FshxDuAVtvTPgz8M0ClGvZM2yGE6DafMoAhy9wAnAXeIYSY1cmtEkizLbcLId4tpTwC/AjjiupNwFsxxiq+TgjRUbYFz0Gabfmk+bt0guUpHgNuqQbDnmE/eztwAGO/+m8hxENAE8ZVY2OlJiMIIbqEEL8Gvgh83LbOqO3vvwY+LIRorQLD/g6MY+L7wK1CiI8Da2xPKem2lP1HN89q1wF/JaW8F/gQsBV4ue05PwReEkJ8BCx9saLIsB0XAq8wH39YSvm8KTk9jyFxzJRrvXORaVuEEG80vcA3SykPSikngWcxDEmgfCvOzHy/i/mcx4HTpvdb0aTZng8D2zC26T3A3wCfkVK+EwgDqyvVKEopBzBOQK/AuAJ8r/mQkFLGTa/358CLwG1CiEYhxP8p03Kz4Xrg/5nS2J8BPuBt6sFSb0tJjXtq/q3t7LwLuBrA/GIOAecLITbanv5HwD8JIfqAsqbh5bAdLwHnCSE2pLzFTRiGvezGPYdteRG4WAix0dSsFTdiGPZgCZY7Jzn+LucLITaZz2vC8Hwr6qowy+35Ocb2XAKsk1I+I6X8qfm8i4EnS7TcOZljW/4V2A88ANwihOg1DbuDhH36C+AfMOxCT4mWnDW2bXkGeBWAlHIX8ASwVAhxpe3pJduWUnvudfYbNo/iMMbl4xbz9q8xov2NAEKIbcDXMS53tksp7yzNcjOS63Y0CSE8QohbhRB7gVXAxyskQJzLtjSR+E3eLIR4AUPX/csK8Q5z/V0azOdNAMswBr5XErlsTyOJ3+aVQoinMH6b75dorfORdluklBHzavZxjBPsB9XjUsqYGef5CoYcuL0S4gdCCKf5v4Ck3+UxwCGEuMa8/QLGFckS8/nrgC9Tom0piXEXQlwmhPg+8CUhxE22L0cN6H4KiAI3CSFcUsr9GN65ygkfBt4vpfw/UsqzpVhzOvLYjovNbJNTwB9JKf/AvCQtGwX4TU5QO9sChtT0rVKuOxN5bM8l5uOHgPdJKd8gpRwt9frtzLEtIsWbHwLuAzYKIZYJITrMK6oh4ANSyteX89gHEEJcLoT4OvAhIUSjLVCqfpdDGAkTbxJG2vZpDIdhlfn4OCXclqIbdyHEyzDOVj/ASG/8faBVGNHiKICU8jDGpeZajJxQgBDm2D0p5Skp5fPFXutcFGg7HpZSPlbipc+iQNvyhKyA/OM8t+W4eh9ppK2WnUJsj5TykJRyT2lXPpt5tkVKKaUQwiuE8EopY1LKRzCM4wsYGWXdUspxKeVL5doGhRDiWuDfgF9heOJ/KYS4CazUbYBJjHV7gc8IIdwYiSHD5vMGpZSHSrXmUnjuW4GnpZT3AP+JUQwzpS5lhBCfFkJ8A9iNETXfKYwKyBGM/ONKIZ/teKBMa85ErfwmUFu/Cyyu3+aTwB2Y1cFCiPdhBFW/CmwtpSHMgouBx6SU3wE+jeGRv0WY2XBCiE8D38bwzj+BYdQfNW+XR0aWUhb0H3AZsMF2exvGjvc3QD/wMPAfGKlcV2B8Ietsz28AWgq9rsW6HXpbKndbam17CrAtN9hvV9i23ALcBSwxb38RuAfjZLTB3Ja1tuc7gMaybkMBv4wW4KcYlyZ/BTTYHttp/qhvMG+/GyNAeqH9yyj3D1pL26G3pXK3pda2pwDb4iz3Nsy3LcB6DFnmAYwg9Q+BjwIfSXl9xfwuhZRl/BiXhX9i/n21ekBK+RTQianXYuhWLcAoGKlEsjKyLaB2tgP0tlTqtkBtbU++21IJWWOK1G25hv+/vbMJjauK4vjvWEuJrUZEJYiLUGhF6kfRUkVFK6LgB6hQFZRUi6AoioiuBEFQqKtCpRbdKRUURRci0q5EqCJUSyKIGyXdFNG6ENRaP5Lj4pxJhtpmZqzOu3Pf/wePzNzMnbzfGzhvcu695xLjGMSagm3AO+5+JzE+sKnTsbTP5aSCu5ltMbPrzOwMdz9ELE1/m5jzfIWZdaYArSCmOj2aXW8AzsrX0fQFqcUD5JJdi3OBunxa5LKx4+Luf7j7R+7+Vna9DNjTeZ8SXLoZuLZMTl+aIHJM88C3xB3uCc+CWBaT9u8GPnf33dm2jsi9TRCLRR5z96//I4+BqcUjz0kuBbpAXT4tdtnv7m909b0G2EFM03zY3Q8O9+z7ZMB81LL8uZaoqgewjFhl9t4xr32SGFU+ExjLtjFgddO5qFo85FKuS20+cmEcWJlt5wG3NO3R6+jrm3suPHg+L8CHxErFze5+f/7+FKJo0T3u/nG2rcqLcjWLNdkP9fxj/yO1eIBcSnWBunzksuByFbHi93KPxUnF0zPnnpP3vyDmbX5DXJw/gevNbCMs5Jqey6PDrUSebRq4uOkPtxYPkEtSnAvU5SMXYNFlhnAZicAO9E7LECPfU13PdxFFvB4gamND3CQmiEGIyWy7Hbi26X9NavOQS7kutfnIpUyXvp37uCinEctpO3mq+4Bt+XgaeDwfbwDebFqodg+5NH/ObfGRy2gfPdMy7n7E3X/3xbmoNwKH8/FWoqTtB8SelAfgn+U9S6AWD5BLqS5Ql49cynTpl1N7vyTIwQgnaiq8n80/A88AFwGznrk1z1tgidTiAXIpmZp85DKaDLKIaZ4o/PMjcEne5Z4F5t19nxcwaNIntXiAXEqmJh+5jCID5q2uJC7OPuDBpnNK//aoxUMuZR81+chl9I6BVqia2fnAFLDdR2Az4RNRiwfIpWRq8pHL6DFw+QEhhBDlM+w9VIUQQgwBBXchhKgQBXchhKgQBXchhKgQBXchhKgQBXfRSsxszsymzewrM5sxs6ey5OtSfSbN7N5hnaMQJ4OCu2grv7n7endfR9QZuZnYLWgpJgEFdzESaJ67aCVm9ou7r+p6vhrYD5xNbMqwm9h2DWJbuE/N7DPgQmAWeB14CXiR2CR5BfCyu786NAkhlkDBXbSSY4N7tv0EXEAUkpp396NmtoYoAbvBzDYBT7v7bfn6h4Bz3f0Fi42gPwHucvfZocoIcRz6rgopRItYDuw0s/XAHLHX5vG4iSg+tTmfjwNriG/2QjSKgrsQLKRl5oAfiNz798ClxLjU0RN1IzZ52DuUkxRiADSgKlqPmZ0DvALs9MhTjgPfeeypOUVsqAyRrjm9q+te4BEzW57vs9bMViJEAeibu2grY2Y2TaRg/iIGULfn73YB75rZFmAP8Gu2fwnMmdkM8Bqwg5hBcyB37TkM3DEsASGWQgOqQghRIUrLCCFEhSi4CyFEhSi4CyFEhSi4CyFEhSi4CyFEhSi4CyFEhSi4CyFEhfwNWdwIdwsk/JUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light", "tags": [] }, "output_type": "display_data" } ], "source": [ "S[\"2018\"].plot()" ] }, { "cell_type": "markdown", "metadata": { "id": "h_E3HjKLKe4k", "nbpages": { "level": 3, "link": "[7.1.3.3 Quandl](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.3.3-Quandl)", "section": "7.1.3.3 Quandl" }, "pycharm": {} }, "source": [ "### 7.1.3.3 Quandl\n", "\n", "[Quandl](http://www.quandl.com/) is a searchable source of time-series data on a wide range of commodities, financials, and many other economic and social indicators. Data from Quandl can be downloaded as files in various formats, or accessed directly using the [Quandl API](http://www.quandl.com/help/api) or software-specific package. Here we use demonstrate use of the [Quandl Python package](http://www.quandl.com/help/packages#Python). \n", "\n", "The first step is execute a system command to check that the Quandl package has been installed.\n", "\n", "Here are examples of energy datasets. These were found by searching Quandl, then identifying the Quandl code used for accessing the dataset, a description, the name of the field containing the desired price information." ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "executionInfo": { "elapsed": 2902, "status": "ok", "timestamp": 1604434608640, "user": { "displayName": "Jeffrey Kantor", "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64", "userId": "09038942003589296665" }, "user_tz": 300 }, "id": "eHst1cE07yIC", "nbpages": { "level": 3, "link": "[7.1.3.3 Quandl](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.3.3-Quandl)", "section": "7.1.3.3 Quandl" } }, "outputs": [], "source": [ "%%capture\n", "capture = !pip install quandl" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "executionInfo": { "elapsed": 2079, "status": "ok", "timestamp": 1604434608641, "user": { "displayName": "Jeffrey Kantor", "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64", "userId": "09038942003589296665" }, "user_tz": 300 }, "id": "GE77au7sKe4l", "jupyter": { "outputs_hidden": true }, "nbpages": { "level": 3, "link": "[7.1.3.3 Quandl](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.3.3-Quandl)", "section": "7.1.3.3 Quandl" }, "pycharm": {} }, "outputs": [], "source": [ "code = 'CHRIS/MCX_CL1'\n", "description = 'NYMEX Crude Oil Futures, Continuous Contract #1 (CL1) (Front Month)'\n", "field = 'Close'" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 293 }, "executionInfo": { "elapsed": 2425, "status": "ok", "timestamp": 1604434609533, "user": { "displayName": "Jeffrey Kantor", "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64", "userId": "09038942003589296665" }, "user_tz": 300 }, "id": "g1aV1OqgKe4o", "nbpages": { "level": 3, "link": "[7.1.3.3 Quandl](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.3.3-Quandl)", "section": "7.1.3.3 Quandl" }, "outputId": "a8ed3726-ff52-441a-f751-f9dddc2b463d", "pycharm": {} }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAEUCAYAAACbEhpTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3gVVdrAf+9N7yEJhIQAoXdQQEABBRQVsKyyupa199VdV9fPsnZXV9e1rauy9oJr76uiIghIUXqvoYQQCOk9N+Xe8/1x5t7cm9wUID3n9zx5MnPmzJlzZubOvPOet4hSCoPBYDAYDAZD28PW2h0wGAwGg8FgMPjGCGoGg8FgMBgMbRQjqBkMBoPBYDC0UYygZjAYDAaDwdBGMYKawWAwGAwGQxvFCGoGg8FgMBgMbRQjqBk6NSLykIi824zt/1VEXrOWk0VEiYh/cx2vMyMi/xGR+1u7H4bmRURuEJHnWuA4fxSRfzSi3vsi8pvm7k97QESuFJGl9Wz/VERmtGSfOgJGUOsEiMg+EckUkTCPsmtFZJFolojIgzX2uVxEdotIqIi8ZQkY59ao86xVfqW1fqWIOESkuMZfooiEW/241GP/CBHZLyK/rafvZ1j9KxKRLBFZLCLnNNnJOUasMW8SkVIRyRCROSIS7dqulPq7UuraRra1T0TKap67BvZp08KfiIwTkW9FJF9EckVkpYhc1QTt1nohKKVuVEr97VjbbklE5BIRWW1d60MiMk9EJjVBu2+JyKNN0cc62t8nIqc1su5QEVluLT8iIn/y2BYoIp9Y7SkRmdJAW4HAfcA/a7TxkIjsEpESq603RCTZ2r5IRHz+BkXkFRHZISJO13PMg1eBS0WkWz39GQmMAr601n09A1+ob0xHQ0PnX0SmWOfz8xrlo6zyRU3Qh6N59vwDaLb7sqNiBLXOgx9wa81CpSMeXwvcJiLDAESkK/A0cK1SqtSquhO43LWf9eO8ENhdo8kVSqnwGn8HlVLFwA3Ac1b7AE8Cq5VSn/jqsCXAfQy8AyQB8cADwNl11G9RYUVE/oJ+8PwfEAVMAHoD860XytFwds1z10Td9YklqDfLc0BETgQWAouB/kAscBNgvqgBEbkdeA74O/re7gW8BJxb335NdOyW/K2MAVZ7LK+tsX0p8HsgoxFtnQtsV0qle5R9ApwDXIL+HY4C1gCnNqK9DcAffPQJpZQdmIfHc88HNwD/Vd6R42s+A2+puVMLnf8s4EQRifUouwL9LG8VlFIrgUgRGdtafWiXKKXMXwf/A/YBdwO5QLRVdi2wyKPO/wG/oIX394H/eGx7C3gKOAx0scrOQj/ElgJXWmVXAksb6MtbVvtTgBygex31BNgP/F89bV0JLAOetdp6FHgIeNejTjKgAH9rvQ9acCgC5gMv1Kg/AVgO5KMf4lPqOHYkUAxcWKM8HP2AvNpad/enZl/quE6nNVReo839VpvF1t+JjTgHi4DHrHNXhhaiBlvnIxfY4TkuYCaw1Tpn6cAdjbzvlgIvNlDnOiDFOu5XQKLHNgXcCOyyrseL1n0xBLADDmvM+R731qPW8hTgAPAXIBM4BFzl0fYi9IeI57201GP9JGAVUGD9P6mR1yMYeBd9P+Zb+8b7GHeU1fcL6jk3QWhB7qD19xwQ1ND4gOuBSqDCOsb/PPp9F7ARKAf80c+F3da13Qqc5+P6bPPYPhqYCzite6cYuLOBa/wv4Apr+SAQXke9A9Txe/Oo8wZwn8f6aVY/etazj9e1rudevdJH+aXAT/XstweYVNd9VOMe+cS6NwrRz99E9D2fi/4NXFej/kfoj9QiYAsw1trW4Pn3uD/+A9xslfmhf78P4P3sr+9eXwT8Df2sKAJ+AOLqefZcaZ3Lp4A8YC8wo0bfXgUebMwzxPzpP6NR6zysRv/o7qhj+zPol+AnwES04OaJHa3ev8havxz9EDlSbkM/RD5Bv/Dr+ooeBPS06tXHePTDMh4tfDTEe+iv7Tj0A+gK1wYR6QF8gxb4YtDn6lMPDaAnJ6Ffyp95FiqtOfwWmN6IvjQFJ1v/o5X+el/RyP0uQ7/QI9CC5Xz0uemGvsYvichQq+7rwA1KqQhgOFpLVi8iEop+cNd5/URkGvA4WjObAKQCH9SodhZwAjDSqneGUmobWoBzaS6i8U13tEDUA7gGeFFEujSi7zHo++B5tBbwGeCbGpqJurjCOmZPa98b0S/UmpyIvn8+97HNxb3oD4fj0FqicehpPxc+x6eUegX4L/CkdX48NdAXA7PQ90sVWkibbLXzMPCuiCRY5+ECtMBwOfrD5BwgRyl1Gfol7dL+Pumr8yIyX0TygZuBf4tIIfp3ekBE5tUz7voYgf6QcHEasFIplXaU7TXENvS5r4VoU5I+NfpTH+eifw/R6OvzAVqYSgR+C/zd+k24OMeqE40W6F4AaOz5t3iHao3gGcBmtLDsGkNj7vVLgKvQz4ZAqt8hdT17xqPPSRx61uR1ERGP9uo8pwbfGEGtc/EA8EdfgodSygFcDZwH/FEpVeRj/3eAyy0brFOAL3zUmWDZI7n+vKZGlVJ56K/DUGoIOTVwPSgONTCmg0qpfyulqpRSvl6IbkSkF/qlf79SqlwptQT4n0eV3wPfKqW+VUo5lVLz0QLuTB/NxQHZ1suuJoes7UfDFx7nztf5bSreUkptsfp/JrBPKfWmdR7XAZ8CF1h1K4GhIhKplMpTStWaJvJBF/Tzpb7rdynwhlJqrVKqHLgHPVWT7FHnCaVUvlJqP/ATWmhpLJXAI0qpSqXUt+iv/kGN2G8WsEspNdc6H+8D26ljyt3HMWOB/koph1JqjVKq0Ee9WOq+f1xcavU/UymVhRakLqtxrCMd3/NKqTTXb0Up9bHSpglOpdSHaO3lOKvutWhhb5XSpCilUhto341SarrV1nqlVCTwBHC3UipaKXW009/RaM2Oi1gafkYcC0VoIbauvrjqeFLzGTjBKl+hlPpCKeVEPx8mAncppexKqfXAa3hPsy61nkUOtBbtiIUbpdRyIEZEBuH747ox9/qbSqmd1j3zEQ3/BlOVUq9a/X4b/REW77G9iOpzZ2gERlDrRCilNgNfo6c7fG3fYi1uqWP7UqAr+kv/6zoEo1+sB7Hrr5/nRhH5PXoq7ke0fVdd5Fj/E+qpA3AkX9KJQJ5SqsSjzPPF0xu4wPMhC0yqow/ZQFwdtiYJ1vaj4Tce5645Pck8z1tvYHyNcV+K1tgAzEYLq6minTlObET7eejpmfquXyIe59/SRuagNUQuPDWupeip5caSU0MQauz+Xv2ySK3Rr7qYC3wPfCAiB0XkSREJ8NU36r5/6upHqlXmbuMoxuf1exHtNLTe47oPp/ojoye1bVAbhYjcYrW3ARhmLf8NuM86Vp0G+g2Qh9YCu8ih4WfEsRCBnhL0Rb5HHU9qPgN/sco9z30ikFvjg7jmPVbz3g8+Stu2ucAtwFRqa3Abc68f6W/QXV9V2zh77hNB9bkzNAIjqHU+HkTbnTTmpeOLd9F2MUc87Wk9nJ+1jn8DcKGITK6j+g70g212A82qGuslaG2di+4ey4eALuLh/Yo24HaRBsyt8ZANU0o94eO4K9B2Pud7FopIONpYfkED/T4S6htTzfE3VN/XfmnA4hrjDldK3QRgaVTORU99fIH+qq4X6wG9gvqv30G0kAi4p5Ji0XY0DR6iEXXqo75z5NUvi14e/apzX0u79bBSaih6evwsfBuju+6f+oTxmv3ohce0VQPUdX7c5SLSG20vdAsQa00hb0abQIC+L/rVaqH+9vVGpV6w2lsMTEOPI10pFWXdX5mNHEdNNgIDPdZ/BMaJSNJRttcQQ9DCZi2sD77dNfpTH57n7CBa0+Up5HneY0fSVkPMRTtMfOshOHn2o757van64Emd59TgGyOodTKUUinAh8CfGqpbB8+j7a+WHMW+LwBfKKV+UkodAu4EXhWRIB/9VMDtwP0icpWIRIqITUQmicgr9RxjPXCyiPQSkSj0dJqrzVT0VObDol36J+Gt4n8XOFt0SBA/EQm23NxrvQSUUgXoqah/i8iZIhJgTdl9hLY7mXskJ6YB1gMXWccYi7ZncZGF1lz1rVHf5zmog6+BgSJymXWMABE5QUSGWOfpUhGJUkpVog2hna4dpf6QCncCV4rI/7lsXkSHB3DZob0PXCUix1n3wN+BX5VS+xo+JRwGko7Bu3Y9cL7o8DP90TZeLr5Fn49LRMRfRH4HDEWfJ9e+Pq+HiEwVkREi4oc+V5V4nC8X1v3zANqu7DdWPwJEZIaIuGyO3kdroLqKSJxVv7Ex/w7jfU/4Igz9ss2y+n4VWqPm4jXgDhEZI5r+lnDX2PZBT5NtQDsh+JwyF5EgEQm2VgOt3534qou+Nqe4VpRSP6LtKz+3+ukvOuzPjSJytcd+/la7rr8A69iB1rEFCLC2eb4XT0E7TdWFV38ai9I2dcuBx61jjkTfg015fV3H2mv18V4fmxu61+vD17OnMTR0Tg01MIJa5+QR9EP6iFFK5SqlFliClC9OlNpx1E4QHRByEh5OCkqp19BfdA/UcaxPgN+hbecOoh9Oj2LFLKpjn/loQXQj2mmg5gPnErSxay5au/iOx75paIPfv6IfQmlWf33+TpQ24v0r2sOpEPjV2udUy+aqqbgfrdnIQwuH73n0oRTLg9OaUprQiHNQcxxFwOloJ4KD6KmLf6C9DkHbRe0TbQx+I3paFBHpibY32VRHu8vR2pRpwB4RyQVeQb8cXC/Z+9H2cIesMV7kqy0fLERP0WeIyNFMMz+L9oo8jLaj+a9Hv3PQmrC/oKfW7gTOUkq5jlPn9UBr1z5B3w/b0Boln0K7Uupp9MfIfVTfb7dQbfv5KPrDYiP6HK+l8TGoXkfbFdZp66iU2ooOw7MCfR5GoL37XNs/Rt9b76Gv8xdoJxvQTiCuaUyfDkqibUJzrHt0NPpe9MUOtMNFD/S0cRm1tTwu/gcMFu/4gr9F31MfoqcpNwNj0do2F3Osdl1/b1rlP1jrJ6HvzTIsI3lLgJuJvj/q4hV0rLW6BMv6uBhtBnIQPSX5oPWbaAwNnn9PlFJLlY9QP4241+trs9azp6F9ROQEoFjpMB2GRiJ1v28NBoOhbkTbGw5TSjWksTMYmgwRuR4YqpT6czMf54/osB93NlDvPeAjpVRzOv90CETkU+B1y/nF0EiMoGYwGAwGg8HQRjFTnwaDwWAwGAxtFCOoGQwGg8FgMLRRjKBmMBgMBoPB0EZp0STWLUVcXJxKTk5u7W40ipKSEsLCjsoBs11gxte+MeNr35jxtV868thcdOQxHunY1qxZk62U8pWusGMKasnJyaxevbq1u9EoFi1axJQpU1q7G82GGV/7xoyvfWPG137pyGNz0ZHHeKRjE5E607OZqU+DwWAwGAyGNooR1AwGg8FgMBjaKEZQMxgMBoPBYGijGEHNYDAYDAaDoY1iBDWDwWAwGAyGNooR1AwGg8FgMBjaKEZQMxgMBsMxU1bhYH1afmt3w2DocBhBzWAwGAzHzH1fbOY3Ly7jcKG9tbtiMHQojKBmMBgMhmNmXVoeAH98bx0PfbWllXtjMHQcjKBmMBgMhmMmLiwIgJX7cnlr+b7W7YzB0IEwgprBYDAYjpms4nKvdXulo5V6YjB0LIygZjAYDIZjwulUpOeVceHYJHdZbklFK/bIYOg4GEHNYDAYDMfE4SI7FQ4nI5KiuWCMFtaMoGYwNA1GUDMYDAbDMXEgrwyAnl1C+M3xPQAoKa9qzS4ZDB0GI6gZDAaD4ZhIyy0FoGdMKCGBfgCUGhs1g6FJ8G/tDhgMBoOhfZOWqzVqPaJDqHQ4AR0A12AwHDtGo2YwGAyGYyItr5T4yCCCA/wIDdDf/6VGUDMYmgQjqBkMBoPhmEjLLaVnl1AA99RnWYWxUTMYmgIjqBkMBoPhmDiQV0bPGC2ohVqC2oG8Mr7fktGa3TIYOgTGRs1gMBgMR83JT/5Een4ZfePCAAgJ0ILay0v2ALD54TMIDzKvGoPhaDEaNYPBYDAcFWUVDvZbHp+nDY0HwGYTrzoFZZUt3i+DoSNhBDWDwWAwHBU7DxcBcNbIBIYkRLrL7zxzEEH++vVSaAQ1g+GYMIKawWAwGI6KNal5ANw7a4hX+R+m9Of1K04AoMhunAoMhmPBCGoGg8FgOCpWp+aS1CWEhKiQWtsigrVdmtGoGQzHhhHUDAaDwXDEKKVYuTePE5JjfG7vEhoIwLebD3GooKwlu2YwdCiMoGYwGAyGIyY1p5Ts4nLGJnfxuT0xOhiAz9amc9nrK1uyawZDh8L4TBsMBoOh0Tz8vy2MSormcKEdgLG9fWvU/P2q9QDZxeUt0jeDoSPSrBo1EdknIptEZL2IrLbKYkRkvojssv53scpFRJ4XkRQR2Sgioz3aucKqv0tErmjOPhsMBoPBN/ZKB28u28efP1zPvM0ZDO4ewcD48Drrr7nvNC4e15OKKmcL9tJg6Fi0xNTnVKXUcUqpsdb63cACpdQAYIG1DjADGGD9XQ/MAS3YAQ8C44FxwIMu4c5gMBgMLceerBL38vq0fJK6hCAiddaPDQ8iNiwIe6UDpVRLdNFg6HC0ho3aucDb1vLbwG88yt9Rml+AaBFJAM4A5iulcpVSecB84MyW7rTBYDB0VtJyS7n9w/Wk53s7BQT4NfwKCQn0w6mg0mEENYPhaJDm/MoRkb1AHqCAl5VSr4hIvlIq2touQJ5SKlpEvgaeUEottbYtAO4CpgDBSqlHrfL7gTKl1FM1jnU9WhNHfHz8mA8++KDZxtWUFBcXEx5e99RBe8eMr31jxte+aarxPbi8jNRCJ1N6+rMorTou2ounhhIWULdGDeD7fZW8v72CK4YGEugHE3sEHHN/XHTk69eRx+aiI4/xSMc2derUNR4zj140tzPBJKVUuoh0A+aLyHbPjUopJSJNIikqpV4BXgEYO3asmjJlSlM02+wsWrSI9tLXo8GMr31jxte+aYrxVTqcpH43D4DygCggB4Dzj+/BrOnHNbh/2i+psH0zb2+tAOCW86YQFdo0wlpHvn4deWwuOvIYm3JszTr1qZRKt/5nAp+jbcwOW1OaWP8zrerpQE+P3ZOssrrKDQaDoVNQWlGFvdLRKsdesjPLvfzL3hz38sDuEY3av6BUC2hdLOHsQH5pE/bOYOj4NJugJiJhIhLhWgZOBzYDXwEuz80rgC+t5a+Ayy3vzwlAgVLqEPA9cLqIdLGcCE63ygwGg6FTcPGrv3Lt26tb5difrU13C1lKQXiQnoiZ1D+uUfu7krKfOTwBgHmbMpqhlwZDx6U5pz7jgc8tjyB/4D2l1Hcisgr4SESuAVKBC6363wIzgRSgFLgKQCmVKyJ/A1ZZ9R5RSuU2Y78NBoOhzbD1YCEb0vIBWLUvt85MAM2Bw6lYvDOLs0clsnx3Nqk5pbxzzTiGJUYS5O/XqDZuPKUfpRUO7ps1lG83HWJvTknDOxkMBjfNJqgppfYAo3yU5wCn+ihXwM11tPUG8EZT99FgMBjaMtsOFXLL+2sJ8BPCg/x5YWEKb189rsWOn5JZTHF5FeP6dOG3Y5LIKLAzuteRRUeKDQ/isfNGAJDUJQR7RetM4RoM7RWTmcBgMBjaKDP+9TMA0wZ3Y2xyF578bgcbD+QzMim62Y9daK9kxe5sAPrGhTOq57EfMzjAD3uVEdQMhiPB5Po0GAyGNkZabin3fr7JvX7t5D5cNqE3kcH+vPhTSov04Z5PN/HQ/7YC0DMmtEnaDA6wYa80WQoMhiPBaNQMBoOhjXHbh+tZnZoHwM1T+3FSP224f+XEPjy/YBc7MooY1Eivy6Nlw4F8RiVFcemE3sSEBTZJm8H+fuSXVjZJWwZDZ8Fo1AwGg6GNUWaF4jh9aDx3nD7IXX7VScmEBfo1u1Ytp7icA3llnD6sOxeO7dnwDo0kOMCv1cKMGAztFSOoGQwGQxvj+F7aHuy5i47zyqXZJSyQ35/Ym683HmRvdvN5T663vEzH9WlaD9MgM/VpMBwxRlAzGAyGNkZZhZMe0SGEBta2Trl2Ul8C/GzMWVS3Vm1Nai57sooBrR37aUdmnXV94Yp91jU86Ij2a4jgAD/KjTOBwXBEGEHNYDAY2hBvL9/H+rQ8QgN9xynrGhHExeN68dnadA7k+Y7yP3vOCqY9vRiAK95cyVVvrnILX42huFzn8wwLaloz5rjwIHJKKvhyvUkuYzA0FiOoGQwGQxvBXungwa+2sDurBKeqOw3y9Sf3RQReWbKn1ralu7K91jenFwIw6uEfGt0Pl6AW3sSC2nWT+zAuOYY/f7ieQwVlTdp2a7Ejo4jbP1pPZqG9tbti6KAYQc1gMBjaCDklFe7l/bl158RMjA5h9ugkPliVVktAeHvFPvdyTWGvtKKqUf0oKa/CJjqcRlMSERzAH6b2Ryk4mN8xBLV7P9/EZ2vTeWb+ztbuiqGDYgQ1g8FgaAM4nYp5mw4BcPaoRF65fGy99W+a0o8qh5NXf/bWqvWIDnEv59m9BbWMgmqhLi23lAe+3ExFlZNn5u9k4fbDXP/Oam6cu4aScgfhQf5ejgxNRVSIzhu6O6tjpJIqtTIt1KcBNRiOBRNHzWAwGFqRvdkl3Dh3DYeL7O4YY1eelMyY3vWnauodG8Y5oxL576/7uWlKf3ess0IPW7TM0tqCWt+u4QCc/uwSyiodzB6dxPMLdnnVmz06qcmnPV1EBut27/xkY5OG/mgN7JUOdmUWAVDlNIKaoXkwGjWDwWBoJXJLKpj61CJ2HC7yCgSbGB3cqP1vntqf0goHby7b6y4rtFe6tVaHS71DYWRY06QfrUpzx2rbmF5Qq92MwrImdyRw4epbR2BDWj6VDi2glZuwI0fMngIHr/qwszR4YwQ1g8FgaCWe/mGHe9lTgImPaJygNiA+ghnDu/PW8n0U2rWgV1BWyaDuEQT62Ugr8hYeDllTnz9uO+wu+2l77dAda1PzCQ9uJo1aBxLUXNkjekSHtKtAvimZxV7T4K1BWYWDR1bYeezbbe571+AbI6gZDAZDK5GSWczQhEg2PHA66+6f7i632RpvG3bz1P4U2auYuyIVgMKyKrqEBtAlLIC9Bd6C2ger9uN0KnZnFXOclWR9oYegdtqQeGyiMyM019RngJ+NG0/ph59NUO3MrkspxefrDriFnJV7cxkYH073qOB2lWz+tGcWM+HxBa3ah8/XVYdo2ZlR1Io9afsYQc1gMBhaiQN5ZQzqHkFUaAA2m3DNpD7MuXT0EbUxvEcUUwd15bWf91BaUUVBmZ76DA30Z48lqE3sHwtAWm4Zr/y8h91ZJT5t4O6ZOZjTh3YHINCv+V4P0aEBOJzKbYjfXli5N5fbPtzAhMcXUFBaydrUPMYmxxAcYGNZSg5n/3tpu9KstSaHPbyVTf7X+jGCmsFgMLQSOSXlxIVXJzy//6yhzBiRcMTt3DJtAHmllQx94HsOF9mJCgkgp7jcvf2lS8a4l5+Ytx2AIQmRtdrpGxfGReO0gf+y3dm1tjcVLseHl5fsoawdCWs7DldrfkY98gNF5VVM6h+HzfKO3ZRewLZDhe46TqdqV+NrSUrKq0PFtCdtZGtgBDWDwWBoYYrslSzYdhh7pbNJjOs9tWNKQWRwAIX26hdhVGgA/5g9wmufmSO6u5d3PjqDvY/PRESYPKArUSEB3D594DH3qy6SrBAizy/Y5WUv19bZeKC248VpQ+JZvz/fvb4rs9i9/ObyfQx54Dt+2JLRIv1rDzzzww5OfXoRP2ytvu4m/2v9GEHNYDAYWph/fr+Da95eDTSdF+SnN53oXu4ZE+peDvLXj/nfndDLHWPtN8cleuURDfS3uWOm+dmEDQ+ezvUn92uSfvnCs3/tyUptUw1B7akLRhHob+Px2SP4/YRegHd4lLWWs8GfPljHZh/eta1BlaP1hKJCeyXPL0xhd1aJV0BnM11cP0ZQMxgMhhZEKcXKvbnu9abyghzRQzsHhAb6cfaoRG44uS+xwcLmh89w13GF5BiRpOt2jQgiopmcBuqjZ0wo9581FICKqvahTSkpr2JXZhF/mNKPh84eys5HZ/DbMUkAnDUykYfPGQ5oz9qUzGIcTsXG9HxGJkURGxbEde+sJquovL5DtAhlrSAU2SsdXPv2Kh77ehsAr9YI5lzeTu6B1sIEvDUYDIYWJL+0ku0ZRYjoacp+VgDaYyXQ38ZXt0wkOS4MP5twz8whnBh6mAAPp4BcK0XVyKQoAJbdNQ3VSjqtWSMS+NvXW9uNoPbaz3txKpjYP46J/eNqbfezCaGBfry+dC+vL93L6F7RpOWW8adpAxiaGMnsOcu58d01vHfdeIL8/VphBJrWsJn7ZM0BftymvYu7RQRx2pBuXtuNRq1+jEbNYDAYWpACa2rs6QtGsfPRGQzvEdVkbY9MiiYyuG4N3VUTk0mODWWEdcxAf1urCQ2B1pRsRTswJC+yV/LsjzqX5/G9ouus5+nFutayW5vQN5ZhiVE8fcFxrEnN477PN7dqWJLW0Kh9tDrNvXz6sHhEhJX3nspzU/VUfLkR1OrFaNQMBoOhmcgqKic4wEaEh/CUbwlqUSEBbmGlpXjw7GE8ePawFj1mXbgFtVa0mWosayxbM8DLtq8+Zo9OYvrQeLc93qyRCezI6M/zC1MYkhDJ1ZP6NEtfG6KlQ6JsOVjg5YRx15mDAegWEUx0kI0gf5uZ+mwAI6gZDAZDM7A9o5Azn/sZgK//OMmtOXNp1KJDO06E/qMhwE87L7hSMLVlVu/Tgtpj5w2vt97/nTGIhdszWZOax4zh3TltaLzX9j+fNpDtGUU8+s1WBsSHM3lA12brc120tKD20ao0Av1t/HznVCKDAwgJ9Nbghgb6uX8TBt+YqU+DwWBoBq55a7V7+ax/L+X1pTofZ4GHRq0z4wqo2x60KSv35TIqKYpLx/eut97NU/vzyY0n8vUfJ9US0kBnnHjmd8cxoFsEt7y3jr3ZJbXqPPDlZp6dv9O9XlHl5M1lezmYX3bsA8HbHqy8Baadv92cwfQh8cRHBtcS0gDG9I7h513NF7OvI2AENYPBYKhBlcPJ4p1ZFJRV8hnsUXwAACAASURBVMqS3UflrVdzn799vRWAglJt0N+Rcl4eDSJCoJ+tzTsTlFc52JCWz9jkmEbVF5F67Q7Dg/x57Yqx2ASue2e1V57LSoeTd1ak8q8Fuyiu0JrGL9en8/D/tnLrB+uO2batyuH0CjSbWdg0XqgH88u8wo/YKx1Me3oRU59aRFZROWOTa2fBcDGpfyzp+WUcyNPhOgpKK1tEgGxPmKlPg8FgqMH3Ww5z83tr3eufrU3nuz+f7LOuUsodg8yTE/p0YVlKDldP7MMby7Q2rdLhNBo1DwL9276gtv1QEeVVTsb6SLl1tPSMCeXFS0dz2esr+fMH63n18rH42cTtlQuwM08LK+vStFPCqn15rNidw0k+PE4bQ5XDyYlPLPT6gJj85E+sf2A60aGB9ezZMJe9/iu7s0q4ZHwv1uzLw6EUe7KqtYVDfWTBcPdhoJ7+/Xj1AUorqnj1573cdtpAbj1twDH1qSNhNGoGg8FQA89UQQDbM4pwOGtrM/729VamPrXI57ZiexUnD+zKfbOG8IcpOnjs+rR8CsoqCQnwa9UQDW2FQH8bFY62qT2Zv/UwLy/ezbkvLgMgOS6sSds/qV8cD509lIXbM3nqhx2AtxZ2Z54WYDcdKHCn+9p+DMnLtxws9GrfFQj5/i+3HFV7pRVVJN/9Dcl3f+MOXvver/vZcbiIFCs7gytG35DEugW1fl3DGZIQyb8W7OLVn/UHzY7DhXXW74wYQc1gMBgsMgvtOJ2KrQcLSI4N9dq2Pi3fa33h9sO8vnQv+3JK2XKwdtT57OIK4sIDsdmEG6wo/xf8ZwXLUnKMNs0i0M/GD1sOt7l8mEoprntnNY9beVEBukcGN/lxfj+hN5eM78WcRbv5cn262w7N3yak5Dsor3KwPaOQkwfEEehnI/MYAuZ+6BEiA+CXe05l9ugkftmTc1TtbTlYLUzVdAjp1zWMhKhgFt85lfeuHV9vyBiAc0YlupcHd49oFw4mLYkR1AwGgwHYkVHEuL8vYObzP7unmPp1rdaivLpkj1d9VwBPgGUp3i87pRTZxeXEhQcBOtdmRLDWLmw9VEhCdNO/9Nsj54/uQWZRObd4TDO3BPuyS3hj6V5SMov4bO2BWrZfNYXyqJCAZvHSFREeOnsY45JjuPOTjby5bB8icMn4XuwtcLJufz6VDsXIpGi6RgSRWWR377s5vYDku79hp4f2d+dh3xq3bzcd4r1f93uVhQT60bdrGFlF5ZRWVPncry6ueGMlF/xnhVfZhWOT3JkasorKGZoQSUxYYKOmaq+bXB2qJDIkwCsNl6EFBDUR8RORdSLytbXeR0R+FZEUEflQRAKt8iBrPcXanuzRxj1W+Q4ROcP3kQwGg+HoeHXJHs54bgmgp5dKKhwM7h7BO9eMZ8U90zh5YFc2HPB+ee/MKGJcnxgSooKZu2Ifk59cyP4cPQW0J7uE8ionceHVtj/r7p/uXp90lHZGHY3bpg9kTO8uLNieyeKdWS123JeX7OGRr7dy2jNLuP2jDaz2iJO2Pi2fj1YfcK8/OXsky+6e5tMOsSkI9Lcx5/ej6RoRxJrUPK6Z2IeTB3TFoeCat1YRFujHhL4xxEUEeU1dvmJ9OLhCh3y3+RCnP7uEeZsO1TrGuv15tcqC/G30smK8peaU1tpeF99tPuS+VleelMyfpvUHIDo0kKmDdMaBQnsV4cGNN4H397Px7jXj+eiGE4kKCTDhOmrQEhq1W4FtHuv/AJ5VSvUH8oBrrPJrgDyr/FmrHiIyFLgIGAacCbwkIsa4w2AwNBn/XrgLgBtO7usu6xsXTo/oEBKiQujfNZwie7XWYX1aPqtT80iICiY6NJCDBXbScsv4dvMhHE7Fpa/+SlRIANMGV6fK8fezkV2sjcVPHtjy8bPaIgF+Nv577XiAFk1avje72Gt9qzWNV+Vw8psXl/H+yv1EhwbwxPkjmD0mifBmzocaGx7EvFsns+b+07jvrKGcYHmYllQ4uPW0AcSGB9EtIsjLS9PlJenS9O3I0GPacrCQ3VnFvL9yP4t3ZnH8Iz+wN7sEf5vw9/NGuPcXEZJjtcY4Nad2mBBfKKW48V2t/bx9+kAeOmcYQQF+Vns6JpqLIz1nkwbEMa5PDJHBAV6/NUMzC2oikgTMAl6z1gWYBnxiVXkb+I21fK61jrX9VKv+ucAHSqlypdReIAUY15z9NhgMnYdKh5OSCgd/mNKPm6b0Y3iPSG6Z2p+T+sW664QH+1NcXoXTqVBKcfVbqwAd3iDSQ3PwxLztLE3JJqPQzh1nDKJ/twivY7kEtON61p2GqLMR5G/DJi2Xg9Je6fCyrwLYm13CrsNFXnHNPrrhRC4a1ws/W/No0moSERzgzmARFRpA1xB93Nmj9XRiN2vqs7zKQUl5lVvr5IqL5m8FED5YUMapTy/mns828fQPO8grreTHbZl0iwjy0vAC9IptWKOWUWDn+Ed+YMnOLPZ51AsOqCE+KAgOqBbUEqKObno/MsTfTH3WoLnDczwH3Am4nlaxQL5SyiUuHwB6WMs9gDQApVSViBRY9XsAv3i06bmPwWAwHBPpeWU4nIo+cWFEhwby9R8n16rjEsaKK6rYn1PqDqPQPSq4VrDOK95YCUDPLiG12plz6WgK7ZVeidI7OyJCcIBfiyXm/nbTIYrsVZwysKt7Cu+t5fv4asNBnr5wFACf3HgiA+Mj6mum2bl3fDCRycOItewce8aEkldayRVvrOSXPbnueiWWgOsSKD9bm+7eVuwRMy3Q31Yrdl9USABdQgPYedhbw+jJ+rQ88korufyNlVw8ricA5x3fg8smJAPQ1/KG7d8t3EujdsrAbrXaagyRwQEUlVfhcKoWE5LbOs0mqInIWUCmUmqNiExpruN4HO964HqA+Ph4Fi1a1NyHbBKKi4vbTV+PBjO+9k1nGN9XP2mj6Ly0nSwq3u2zXnqa/sKf/9PPLNhfhb/AjaOCGBqTh3+ik+/3CYUV3gbpmbs3s+iQb4FsRxOOoT7ay/WzKQebUvazaFFmw5U9aGh8WaVO5u2t5HeDAgny1y/9l38tIz5UGBVWyGKPurklFTz3tZ7W2799PcX7WleY9q8qxZaxjUUZ2nKoKlsLXZ5CGsD9X2ymS+EetqXW1kLtySrBT8ChYF9OKbu2bHBvc523xBAHn649QLwji3EJtUWCxfuq231/ZRrBfnB2tzx+Xa7TowUrxX0TgokrSmFPtv4NTO/tT07KOhal1D9GX9cvM10f77sFiwgLaL+CWlP+9ppTozYROEdEZgLBQCTwLyBaRPwtrVoS4BL/04GewAER8QeigByPchee+7hRSr0CvAIwduxYNWXKlOYYU5OzaNEi2ktfjwYzvvZNRx/fJ/MWorr0BHZy3mmT6BoR5LOe7MzizS0ries3Akd2Kn27lXDHRacAMBN4UilGPvQDRR4ajAtmTG02A/TG0l6uX/F33/BrhoNXxk0k6gi8Kxsa37Pzd7IwbRfJvXrywNlDyS2pYMd387l9+kDOGpnA8+u0qHb79IE8M38nG7IcjO8Tw3lnTGhz125YUTlPrf4RgAl9YwgN9Gfhdi3Yfn4wnMN2O6CFnGsm9XGnLDtvdBKfrNHOEadOPpH7ly0EcLc9dIyd695ezdztJdx58Wm1+rHsm60EpaSSEBXMvpxSRvaMYdrUE73qTPVYnj61qtH2ab6uX9bqNN7fvpERo8e7p2bbI03522u2Twal1D1KqSSlVDLaGWChUupS4Cfgt1a1K4AvreWvrHWs7QuV9pn+CrjI8grtAwwAVjZXvw0GQ8cnp7ic7zYf4u4lZTz74056xYTWst/x5AQrBc6mA/lkFNiJrxFTS0T47raT3cbaIQF+rf6ib4/klVY0XOkI+N/GgwC8tzKV8ioHhwp0nLKB8eH0igllSEIk/5g9wiuO11UT+7TJa9c1IoieMSGcMyqRD64/kdevGOvetmB7JpvTC3n5sjHMu3UyZwzr7t7maQ/pChczeUC113G3iGDOGN6dovIqn3aCOSUVxIUHufOcRjTgzXmsjhcxYfp3mFVcd8y4rQcL3Q4gnYHWSCF1F/CBiDwKrANet8pfB+aKSAqQixbuUEptEZGPgK1AFXCzUqptRUc0GAztiifmbedjS8swc0R3Hj5neL0v59BAf4IDbBTaq8gotDOoe237pR7RIVwyvhfJsaH0buIo9p0FT5uqo2Xn4SIE6B0b5k5jZK908t3mDHeg4a4RQfj72Zh3a217xEkD2m7olEV3TMV1l/q6X10CWmahnbBAP8oqHZxoOcX0iA4h0N/GuvunU3PXGCuFVG5pBYHlNqb88ydeuHQ0Uwd1I7ekgpiwQJIsm8vmDp3R29KipeWWMqaOtF0zn9fTrvuemNWsfWkr1CuoiUgR4Gl4Ida6AEopVXdeCA+UUouARdbyHnx4bSql7MAFdez/GPBYY45lMBgMDbHxQAHH94pmatcy/nTBmEbtExkcwOFCO4cLy+uNUn+0uRgNeHn7FZRWciC/lGGJdSc4r8mylGwufe1X+nYN491rxnttu/WD9Tx23nBAa5Fq8p/fjyYtt6zZQ3EcCzWN6+MjgwgN9PfyVgXoFhnMpofOwKkU/n421j8w3e3A0iWstubYVZZXUkFuSQUlFQ6uenMVr1w2huzicmLDghjXR4cMOXN491r7NyVJXULxs0mdwXs9gxNXOZz4dwLHnHpHqJSKUEpFevxFeP5vqU4aDAZDU5FbUsHOzCKmDurGyK6NfykHBdj4cr2eSuseVduj03D0jEzSwlihvVpQ+8vH65n1/FKvsoaYuyJVt1NW5Q4Oe4EVLR9g6a5sEqOC3dohT84cnsB1HnH02gO//vU07ps1xOc2m03cQkx0aCBh9Qigrmn/pSnZXPfOanf59XPXsDm9kD5xYcSGB7Hl4TO4ZlKfupppEoID/DiuZzTLdvtObeVpB3qowO6zTkej0aKoiIwWkT+JyB9F5Pjm7JTBYDA0FZsOFLAnqzr8wM+7slDqyIPOpuWWuZf7djVTm03Ji5eMBnREewCHU7lTdC2rEf6kPkqsVEjZxeXuZOqXjO9F98hgRvWMZm92CUMTo9qkDdrREhJw7PHfXYFvn5i3nfIqnQy+j8f0/SnWbyUsyL9Fzt3E/nFsSMvnpnfX1Erv5RkM90BeWc1dOySN+pwUkQfQ05KfWUVvicjHSqlHm61nBoPBcIzsySrm7BeW0icujHm3Tmbw/d8B2l5nRI8ofvYdjcMnT10wii0HCxiZFMV4axrI0DS44m+5jNm/9UiDtHB7JjNGJDSqHV82bpEhARzfK5pdmcUczC9z22x1FIKaQFCLCQskMtjfLSgDLPyL9mpWSmvnWpKJ/WJ5fsEu5m3OoNBe5bYtBCjxuMbp+Z1DUGusRu1S4ASl1INKqQeBCcBlzdctg8FgODaUUtz2kY4bVVxexcWvVsfN/udvRx5xMM3fjkniwbOHcd7xSR1KI9MWCA3UOoMyK+jtRo+8qt9tyahlg1UXpeW1/cwigv3JKakgJbOY0goHPbu035APvmgKjZqIeGnQZo/W97iItLiQBjA2OYaeMXp6OqvIe3qzyGMqPL2TaNQaK6gdRMdCcxGEj1hmBoPB0BbYkVHEhMcXsCFNv/CzispZt18vX3lSsjH4b2ME+etXkUuj5jmlVVbhYE5DkVMtisurvKLjg3YC2eKRR7SHD/u09kxIYNOkvh6aGElCVDCf/eEknpg9ouEdmhE/m/CP2SMBvPKbVjmczJ6zwr3uynfa0alXUBORf4vI80ABsEVE3hKRN4HNQH59+xoMHZln5+/k0a+3UuFQDVc2tCg/7chk9pzlHLYe8IlWzsHo0AD+ddFxPHTOsNbsnsEHNpsQHGBza9T251a/gKcPjWfpruxatkoulFIU2SsptFeSnl/G7NFJLLCm7UALga9cPpYwS6AZltix/OBcQu7xvY4tf+y9s4by5S0TGd2rS5tIcebS8G04UC1kv/LzHveyTTrP1GdDNmou9481wOce5YuapTeGds/Wg4Wk5pQ02qakPaKU4l8LdgHwGsD8b7h7xmBuPKXfEbWzJjWX2LAgkk3MrSbjrWV7eeTrrQzuHklZpYO92SUMiI/gYIGdc0Ylcu5xJk1wWyUkwI9XluxhcPcIdns4f0we0JV5mzPYnVVcK8k9wFcbDnLrB+sZ0UN7jnYJC6Rf13D3dhFhYv84tjxyJpUOZ5sQQpqSxOgQ/n7eiGMOmxEe5N+mQpMkRIUwKimKp3/Ywbu/pPLVLRP5dtMh/GzCkIQI4iOCScmqO0dpR6Kh8Bxvu/6A99EBatcC71tlBoMXM5//mZv+u7bOr9/2jFKKH7ZkuDU1njwxb7t7ObPIzordOcz9JbVeLcDsOSuY8tQi7JUO1qcZBfWxUOVw8sCXm3nof1uZNjiej288kdOHxQNw5cRkzhqZcMSCtKFlySvVtke3f7QBe6XTXe6Kov9zHd6fu62gtpus6c0bT9EhNn66Ywpzr/EO2dnRhDQXl4zv5Y7o35GYOSKBKqciPb+MlxbtZnN6IXefOZiv/ziZIQmRHMgrI6eeDAYdhcZ6fc4EXgZ2o4Pd9hGRG5RS85qzc4b2S2ZRea00O+2dhdszuX7uGrerekxYILkl1SlvVuzOYXTvaP762SZ3aAFBxwWKDgng1CHddLDUqGC2HqpOf+LyRFxxzzQSTHyuI6bQXskt761jyc4srj+5L3edORg/m3DH6YMY3yeGqYO6MXVQt9bupuEo6RkTSp+4MH7elc1VE2vH8PLzcOyYNTLB7ZjQJy7My0De0P6YOSKBx62P4J93ZQFwguVxPXVwV174KYXVqXleKbM6Io3Vcz4DTFVKpQCISD/gG8AIagafbDxQwP82bKMHVZyiVLv2ktufU8qy3dkctOwhFu/UD4w3rjyB31ixmgAufvUXkmND2ZdTbV9z3xeb3csXndCTD1alcdeZg3nJh3F0fmmlEdSOkLTcUq5+axV7s0t44vwRXDSul3tbgJ+NaYPjW7F3hiPhgbOGUmSv4tkfdwI6zp0rT+XkAXF8vPqAz0j0Lru2W08dwPSh5np3JHrGVHvo7jyspzm7Reh8pa5npefHckelsYJakUtIs9gD+M7vYOi02CurXePnLEphreVl17XnPq5u5mjWzcn1c1ezPaPIK5bPjaf0Y1hiJH0ibSR268KyFB1F2yWknT+6Bw+cNZTjHpkPwPg+MXywKg2Af3ynvxBfvGQ0JRVV3PnJRkBP3YQH+Xs9nAx1syY1l+vfWUOlw8k7V48znpztHNczwiWovXN19bRlr5hQyiodlFQ4iArxFtTslQ4ig/25bfrAluusocXoER3i5TTgSizvmurt9IKaiJxvLa4WkW+Bj9C5Pi8AVjVz3wztCKUU93tojzYfLCQ4wEaITbH5YEGd+x0qKOPfC1N4+Jxhbc5+ZNfhIkRge4b+Jikoq6R/t3BevGS0Oyn3gyeFcMop4+lzz7cADO4ewfaMIiKDA4gODWTlvaeSXVTB5oMF/Lo316v9WSO1w8WX69NZlpLDnZ9sJNDPxs7HZrTgKNsnX6xL585PNpIYHcwbV55AXw/jcUP75qtbJpJf6p02KtiKFVZe6QCPDybQ4TuaKkSFoe3x/W0nk1loZ9rTiwEItLxcgwP8CAv0I6e4kwtqwNkey4cBl89zFt5x1QydnPdW7ufjNQe4ZWp/Xl6ym4oqJ0ldQvBzlNd66Hpy16ebWLIzi5nDE5g0oOk0Ih+u2s/QhCiG94jk49UHOGtUte1KY5n+7JJaZbedNtAtpLnwnNadPjSe7RlFbu+pbhHBdIsIJsvD4HVgfDh3nTnYvf7yZWMZ/uD3AFQ4nKh2PlXcnCilePbHXTy/YBfj+8Twn9+P8Zlk2tB+GZlUO8yEK6irp5OBC3uVo0mCvhraJuFB/oR3DeeaSX3oXsPuOTo0kIKySg4VlGET6XB20S4aenPNB75XSvnOjmowAGv35/HQV1uYOqgrt08fyPq0fJamZBMbFkhVWTl5pXV/8ZRZufkC/JpOMFmeks1dn25i+tB4rp7Yhzs/3cj6A/n8/bxjD+I4vq/v1EEXj+tJeaWTWEtoqGnEnGDF8po8II6514z32hYe5M/ex2fyn8V7+Md3OtdecCd78dgrHQ2O2V7p4I6PN/D1xkNcMCaJx84b4f66NnRsXPdGWWXtzANlFQ3fO4b2z/1nDa1VFh7kT3F5JSc+vhCAfU/MaulutQgNCWo9gY9FJABYgHYeWKk6YuwFw1GRVVTOTe+uISEqhOd+dzw2m3DqkG4sTcmm0qGICBB+3Z9PTnE5sZZtgSeuBMA189XNWbSbxOjgI457Velwug345289zOzRen+Xx9DRYBP43Qk9AXHbR9Tk8fN1FO0qh5P4yOBaMY0GdAvnpUtHM2WQ70TgIkJ4sP45FtorG3zxOJ0KETqE5m3t/jzOf2k5z198POeMSvRZJ7PIzvXvrGHDgXzunjGYG07u2yHGbmgcIYFaILf7ENSK7FVm6rOTEhHsT2FZ7fyuHY2G4qj9Qyk1DZgJbACuBtaKyHsicrmIGBebTkylw8nN762loKySly8bQ1Soth2ZNliHQjixXyyDYvQDdO3+fJ8Jk8utqQx/j3xySinmLErhiXnbcTqP7JtgU3oBe7JL3LGXbrdyPabllh11upGeMaE8fv5IHj+/YY2cv5+NGSMSagkRIsLMEfVPv0ZY06XF9vofPEopzpuznPPnLO8Q8epW7NYK+49Xp/ncvj2jkPNeXM6OjCLmXDqGG0/pZ4S0Tkawv2+NmsOp2JRewNCEjpVtwNA4woP92eCRF7YjPA990ah5A6VUkVLqc6XUDUqp44FHga7AO83aO0Ob5vFvt7Nyby7/mD2SIR4Pyt6xYcy7dTJ3njmI8Qla+PjDf9cw/MHv2XnY21nYXqUfvA4PgSyruJxCexWHCuy1DPAbYpsVn+xhK01QaUX1g/38l5b7/CL3hecPvqXsXyIsjVpRA4La5vRCNqTls25/Pk98t538eqaW2wOuvI7LUrLZnO7tePLT9kxmv7ScKqeTj2888ZijrxvaJ8GBLhs179/vvkInxeVVnNgvtjW6ZWhlIoIDvJ7xJRWNe763N47YwENEegFOpdTTSqkzmqFPhnbAl+vTeWPZXq6e2Mfn9OSQhEiC/P0ICxC6RQRRaeXEPP3ZJRwutLvruTRqDg/BKCWzOi3Iy0t2sz+n8Zqw7YeKiAjyp09cGIv/bwqzRiRwwyl9OWdUIplF5e7gsvXhdCqvKOhjk7s0+vjHgssBwZfm0ZPP1h0A4LQh3Xh58R6un7um2fvWXDicil/25DC4ewQxYUFc9vqvrEnN5d8LdnH7R+u55u1VJMeF8eXNkxhupQgydD5cGrW0XO9nwbZc/WKe0NcIap2Rmimvyhv5Id7eaFBQE5EnRGSotTwb+Bn4UEQea+7OGdom2w4VctenGxnXJ4Z7Zg5usP7AeG8vyeesOEmgvRzBW6PmEtQm9I1h0Y4sTv7nT+Q1MlbOmtQ8hiRGIiL0jg3jxUtHc8+MIdx+BDGW5v6SyuVvrATgpH6x3DerthFrcxDeCI1acXkVX60/yIzh3XntihMY1yemlpayPfHk99vZm13CracO4N5Zg8krrWT2nBU8PX8nn61N59QhOh1U96iO6c1laBx94sLwtwkr9+V5lW/PcTIoPqJO21FDxyYy2FtQs1fV9gruCDRGo3amUmqrtXwbcDowGjir2XplaLMUlFZyw9w1RIUE8OIloxsV++yicT291j9clUZKphYuXFMZVY5qQW3F7hy6R3o7Evzzhx2Adl7IKLDji+82H2LroULOGlk7IXxidHXE/8xC3/u78EwIPXt0Uot5lEUGaxu/Invd4Uz+9eNOckoquPKkZEDbA+aXVlJYzz5tlZzicl5evIeQAD/OGNadKQNrp3n6529HHnFYFUPHIyTQj2E9orym+dNyS9mc42BcH9+e2IaOT0Sw0aghIg8C8SLygIg8DvQDfgfcB0RZ5Se3QD8NbQCnU3Hrh+s4VFDGnN+PoWtE475iZw5PoGtEEDOGd+fXv55KaKA//1qgE124vD6d1tRnpcPJ0l3ZTBnUlXOPS+SKE3szLDGSL9elU+VwcsZzS5jw+IJaxziYX8YdH29kWGIkF3ukEXIR6G9j7jXj8LcJv/3PilpOCvZKB/3++i3nvbSMwrJqoSc8uOWEhIamPksrqnhj2T7OHNad8dZUzyBLW7klvdDnPs3N5vQC3v0lFYD80oo6BcbXft7jNW312doDjHn0RwDuOnMQNpvUiof24iWjiQ41MdIMmshgfy9t86nP6ACovUwmj05LiPUR59KslXdGjZpS6mFgCdAb6A+8o5R6BHgcSFdKPaKUqh0V1NChUEpxuNDOcwt2sWhHFg+dM4zRvRpvt2WzCb/ccyovXTqa+MhgThnYlS2W0bhryrPK+r9ufz5F5VWcMrAroYH+PHzucC4c25OSCgcFZZXudCFbD3oLJhvStFfpHacPqlPLN3lAV/5y+iD255ZSXOEtDKXlluJwKtbtz+eL9Qfd5TVtIJqT+qY+D+aXMeHvC3A4Fb85vjqExbAe2omjvulPpRRrUvO8ppebgu+3ZHDWv5dy3xebcTgVxz0yn2lPLapVL7+0gke/2cbvXl4B6FAbt3+0gbjwQKJCApgxoloD+ulNJ2ETHXfO5T1sMIDWOHt+CFRYL2UTS6/z4pp96NFFC+uNdRZrbzTmDr8aWA18h9akAfRCC2uGTsBXGw4y/u8LeH7BLi4cm8QlPjRWDeFnE3dIhfjIYDIK7V6elS4N1+KdmfjZhIkeWQqirbAf+WWV7oS87/6a6tW+S7jp363+VEKutkpqaK1S63BYaElBLcDPRniQPzkeWQxcvL9yP4X2KnpEhzC6d7WQHBsWhE3wuY+LTekFd88k1QAAIABJREFUzJ6znEe/2VpnnaPhqe93uJe/25wBQLaPdC4ur6yDBXYG3juP3ZklAPzzglFsePB0r2jiY3p3IeWxmay451QTG8vgRUQNjdrE/lqrfOHYnnXtYujghFkatWGJ+oO1U2rUAJRSJUqpOUqp15VSlVZZilLq6+bvnqEtsG5/dZyaR84dfswxrLpHBVFa4fDy7nRp1BbtyGJMry5uey3AnQw9v7QSPyve2hfr0imvqv56cn1pe+7nizBL8KopqO3LKam3fksxMD6cdWn5taZmDxfaiY8MYtnd0+gWUS3Y+NmEmLBAsurJd7c3W4/tzWX7+GTNgSbpp73Swa7MYnpYtn83v7fWva2m5s7Tfb7C4eSLdekA9Ozie8rKZjMx0gy1SYgKIauonC0HC7BXOlAKBkTbjEDfibnipGSe/d0oLjpBC+udWaNm6OSUWS/a1fed1iSG9bNGJhIbFsis55e6yxxOJ2UVDrYcLKwVE8llp5RfWkGxvYrEqGBKKxxsTi/kg5X7Sb77G37akQk0bFMWHqT7X1zu/YNOzSmt5UEEtY1Vm5uzRyWy8UAB/1qwy6s8t6SSmDDfNoGxYUEsS8nm8XnbfD6oDuZr54kTkrvw1883sW5/Xq06vnA6FT/tr/QZp+3TtVrgu/PMQSREBXPlScncPLUfAFe+qT1mKx1OHE5FaY1p5g9XpxEa6EdyrLEtMjSeWZaT0KznlzLq4R8oLq8ixN8I9Z2ZQH8b5x1f7fDVaTVqhs6NUooVe3KYNrhbk7nA94gO4ekLR7lDcwA4nJCaqzU//WpMX7qEpYKySoorqhiTrL289mWX8E9r+m1Zio5u79eANsalKvfUqM3fepi5v6TSKzaUC8cmeddvYY3alSclM7Z3F/61YBcfrtrP91sysFc6yCutICbMt7bwxil92Z9bysuL93CLh2bLxd7sYuLCA3nlsrHERwZx47trGvR8BZi/7TBvb63gecvxA7Tw9t3mQ+zMKCIkwI9zRiWy4p5TeeicYdxx+iD+MKUfP+/K5kBeKaMfmc8F/1nupVFzkRwbhn8jPIYNBhfJsaHunMDlVU42Hiighb+jDG0Ul6BmNGqGTsme7BL255YytYkNuycP8M55mV1czpnP/QxAn1jvhOYu4eqj1WkoBaOSdODTd1bso6DsyMJShPnwrLzfyg26N6uEJ387yqt+aAsnexYRt2Bz16ebuGHuGm56dw2ZRXZi69ConXd8EnOvGQfAj9syvWLOpWQW89HqA/TvFk6XMC2sFZZVccO7a9ya0rrwlR/10W+2ceO7a3l7RSrJcWFe0+AiwtlWrs65v6RSVF7F2v357gDHwQE27ps1BIDpQ032OcOR4e9no7fHsyEiyJ/juhlJzQBBlkNJp9aoichAEVkgIput9ZEicl9D+3VUiuyVPPX9DtakHll6o/bIT9v1lOKUgb6TiR8tfjbxmlb8ZtMh93LvOO8psVBruvKXPfp8n9RPOxpsOFDgtm1rLLHheho128P43tXGn04dUKt+a9hLjbGcBe48cxAAP+3IIi23jN71TBVOHtDVHabgfxurvVZveldnLXDFIhuSEMkzF45ifVo+5764lF11eIs6nYoft+pr/8ayvYAWvlzLAH3iavdnUHwEXUIDeHnxHnfZrR+sB+CrWyZx7eS+/PrXU7l5av/6ToHB4JOullb/nhmD2fjQ6ZyUaAQ1AwQFWIJaJ9eovQrcA7icCTYCFzVXp9o6/jYbL/yU4hYcOiplFQ5eXrKHAd3C6dkMsYqC/Ku1VSs9cnrWdAjw1Go9f/HxDE08+gTMceFBiMDhwnJe/CmFJ7/bjr3SwVUTk7nhFG1jNaZ3y6SMqot7Zw1h3q2T+cOU/uz5+0xOtbSZg7vXP+4ld05laEKk22EgNaeEXZbDxl1nVmeQmDEigbevGkduSQVnv7CUj1al1UpmvDG9gAyP6dEXFu5yax5d9I2r7WFrswkT+8cRHuTvnqZykdRFOx7ERwabkAqGoyLYeiHHRwYfs1OToeNgbNQ0oUqplTXK6k1IKCLBIrJSRDaIyBYRedgq7yMiv4pIioh8KCKBVnmQtZ5ibU/2aOseq3yHiLR6ftGQQD8ig/29clZ2BApKK72muz5bd4CsonKfAWSbgqAaL+vThsSz/O5ptep52jKdY02t/ef3o2vV+9O0hrU0AX424sKDyCgo45/f7+ClRbspLq8iwsMW7b3rxjd6DM1BcICfO8m9zSa8cvlYvv7jJGY0IiH5BWOT2HiggB0ZRZzyz/9v787j66rr/I+/PtmbpUn3faG0tJSlUDosA4UgUBaRRRGBoSA/RuYniGw6KiOCgzroOPzcEMUfKKLCMKIiyCpQ2SmLZSt0oQtdKHRv0zRJk3zmj3NOcpO2WZqbe889eT8fjzxy7/ece+7303NP87nf813mAPDtM/dn8vC2y3gdvc8QHvriTKaPHcC/3vcGV/33vDa3gx99ew0FecZnJgctkN9/LFj264fnHMR3P3UAX//4vnxu5oRd1uHbZxzAI1fO5K1vnsjDV8xsKdcKA9JTo8ORwpnuOyrxFv0tSWofta5+2teZ2d6AA5jZWcAHHb+EeuBj7l5jZoXAs2b2MHA18P/c/R4z+xlwMXBr+Huju080s3OA7wKfCdcZPQfYDxgJ/NXM9nH3rJ6R4ZUl3PfqSkZU9uPz1Xtnsypp829/epMH3/iAZ/71WMYMLGXFhu0U5edx0ZHje+X92idqs48Y12app46cMHU4v7roHzhq4uBud0qfMLiMV9qtGZj6H39xQT4PXn5UmxUKsik/z7q8IPkJU4fxzQfmt0m4Z03ddYI3tH8Jd118GLc8tZgf/HUhr6/czI/PPZj9R1XyxspN7DeqkhFl29u85sDRVew1uGyXx4tUlhZSGc5Xt++I/nz8gBF8YtrOy3qJdNdXTp7C2IGlmgxZ2ijKz8NMLWqXAT8HppjZKuBK4PMdvcAD0URZheGPAx8Dfh+W3wmcET4+PXxOuP04C9q2Twfucfd6d18KLAYO7WK9e80JU4exraGJ7z7ybk6us7gr0Rqa988L5rnaVNtAZWlhr91iGNxuCapjutEPLj/PqJ48dI9GDk4d2Z8l69rOm9b+G/r+oyr5x4mDyTUDw2WYVm4MEqz/+OQBHS71lZ9nfPG4Sdz9ucOpbWjknNteZFt9I0vXbmPvIWUMK2399z1xv2GdJmm7css/Teek/ZWoSc+VFxfwuaMndDq6W/oWM6O4IK9vJ2ruvsTdjweGAFPc/Sh3X9bZ68ws38zmAR8BjwPvAZvcPbrHshKIVt4eBawI368R2AwMSi3fxWuy5ssnTmmZN2rBmt0v35NLCsI+Rb94Zinra+rZWNvAgNKOJ5DtiR+ecxBHTBjU+Y7A9846MG23JPfdRV+vpPSZ6leYT36etSyxVdWva+fvsAmDuGbWZGrqG3l3zRZWb65jyvAKRpTn8bPzD+G4KUNb+vCJiMRNSWF+3771aWbfAb7n7pvC5wOAa9y9w5Gf4e3Jg8ysCvgjMKWj/XvCzC4BLgEYNmwYc+bM6a23ajG8Icje57z4GtuW7VmfiZqamozUtSsWra6lqtjYtH1Hy4LZ+wzI61H9OovvggnOC+EAwY72Gwo01MCcFbvdpcsK65rZf3A+504pYm1tMz94rZ6alQuZU/Net48Vp/MXaWp25i4LBmcsXTifOesXdPKKwPI1wfen3/31FQBs/TJqCrdTzrvMHg9blrzOnCUdHCAHxfH8pZPiy11Jji2S1hibGlm2YhVz5qxLz/F6KJ2xdTW7ONndr42euPtGMzuF1rU/O+Tum8zsKeAIoMrMCsJWs9HAqnC3VcAYYKWZFQCVwPqU8kjqa1Lf4zbgNoAZM2Z4dXV1F0Pbc6s3bee6555kzIR9qN7DDvdz5swhE3XtSG1DI79+YTnr697l7BmjufeV1mWGJo0ZRnX1zh33u6qz+Nydz9bO56xDRne5H1Y6nHlS6+MvfKp5jydfjcP528kjfwHg5P2Hc+Gp07rc8doWruWWeXN5eHnwBeT0449k/qsvxi++NIrl+UsjxZe7khxbJJ0xVr78FAMGV1FdfXBajtdT6Yytq3+d8s2spaOLmfUDOpym3syGhC1p0f4nAO8ATwFnhbtdCNwfPv5z+Jxw+5MezBnwZ+CccFToXsAkoP0I1KzoH95W6u6kq3Ez9RuPctPD7wIwfWzbqSlq6zsc3NtjZsYNp+2X0SStvaTNkF9VWsiEIWXcev4h3RodFy2vVdvQRHFBHoN3M8GuiEjcFBfkUb8jmX3Uuvq/+G+BJ8zsl+Hzi2jt+L87I4A7zSyfICG8190fNLP5wD1m9i3g78Dt4f63A3eZ2WJgA+E8be7+tpndC8wnmBLksmyP+IyUFQX9gVIHEyz+qIaJQ3eeXypXjBtURmlRPrUNTcwYN4BLNTFpzpl77fF79LrU6TNuPGN/LY4uIjmjpDCfusZYpAZp16VEzd2/a2ZvAMeFRTe6+6OdvOYNYKc2SHdfwi5Gbbp7HfDp3Rzr28C3u1LXTDIzKvsVsrE2SNReXLKec257kX87ZV8+d/Su55iKm8amtt9A9h5SxovXHsfm2h29Msmt9L49HRgRDe6dMW4AZ88Y0/HOIiIxohY1wN0fBh7uxbrkpKEVxby5cjN/W7iWf7kr6IT97Yfe4eKj9sqJFoloktNvnDqVT00f3TL/VfvVAST59hlawRc/NpHzDhuX7aqIiHRLSWF+m0m7k6TDr95m9mz4e6uZbUn52WpmWzJTxfh7c9VmLrxjLnUp2fwvn1+WvQp1Ud2OJrZsDz7Y/fu1TlIqfVNennH1rMkMryzJdlVERLolyS1qHSZq7n5U+LvC3fun/FS4+54vuJggqTNk9y8p4N0bT2LW1GHc+OB8xn/1LzR1c9HwdHJ3Xlm2gU21DTttW75+G4fc+Dhf/v3rAG0WSBcREcklxQnuo9ZpZ5Zw0tp3M1GZXPTlEyfz/Fc/xuDyIk7afzglhflcd+rUlu3ZWobI3bnkrlc562cv8JX73thp+wvvrWdbQxMvhYuh61aniIjkqiS3qHXajOLuTeFi6GPd/f1MVCqXmBkjq/rx4teOa1nWZFTKepUbaxsYEC7rk0lb6xt5fP6HACxbV7vT9k3tEki1qImISK4qLsinPqEtal396zwAeNvM5gItiyS6+2m9UqsclDoXV+oggmhEaKZtqAlud1aUFLB68/adtref+62yi0sNiYiIxE1JYR9uUQtd16u1SKAxA/uxYsN2NmzbuX9YJqwP3/egMVU8s2gd62rqGVzeOoHppnYJpG59iohIrgpa1JKZqHU26rPEzK4kmN9sCvCcu/8t+slIDXPUny49EoD3N+x82zETNoaJ2sxJgwH43UvvEyz0AM3NzpurNjEpZWLect36FBGRHFVSmEdDU3NWB/D1ls7+Ot8J7ACeAU4GpgJX9HalkmBgWRFVpYUsWVuTlfePWvJmTR3Oy8s2cvPjCxlQWsjsI8Zz/+ureGvVFv7r09OYOLScZxeva+lfJyIikmuKC4Il8Boam+lXlJ/l2qRXZ4naVHc/AMDMbicma2zmAjNj7yHlvJfhRK252fn1C8tYF/ZRG1JRzM/PP4Sjvvskr72/idlHwEtLNjCorIgzDx5FXp4xbUxVRusoIiKSTiWFwQ3Cuh1NfS5Ra+nI5O6NZmp16Y69h5Tx1IK1GX3PZxev44YH5gPBcOXSovyWkal//PsqLjt2b7bWN1JVWpgTKyeIiIh0JmpRS2I/tc7mUZuWuhoBcKBWJui6CUPKWbu1vs2i7b1pxYZaLrijtdFzYFkRUXJdkB/8/uYD89la10i5Bg+IiEhCpLaoJU1nKxPkt1uNoEArE3TdxCFBZ/3///QSHnh9Nc8sWkvdjiaq//Mpbnv6PZ5dtC6t73fVf89r83xAaev8bTd98kAAhvcv4emFaynO37OFu0VEROImalFbv60+yzVJP/217kUz9xlM/5ICnntvPZff/Xdm3z6XN1dtZtn6Wr7z0Lucf/tLvLUufYvIrtlS1+b5oPLWRG384DLGDSrlyXc/AmDusg1pe18REZFsKi4I0plP3fpClmuSfkrUelFxQT7nHz6O197f2FK2YM3WNvt8/5V6/vDayrS8XzTSc2hFMF9aaosaQFVpUcv8aiIiIkmRqS5G2aBErZdNHzsAT5nWZcXGnedV+6/HFvb4fRqbmmlscgaXF/PQFTMZWlHM+EGlbfYZO7D1+S8v+ocev6eIiEgcjB9clu0q9Bolar1szMC2ydKStdsYP6iUmz55AEMqijlmdAEfbN5OQw9HqixbX0tDUzNfPXkKg8uLeeTKo7nsYxPb7HPmwSNbHk8eVtGj9xMREYmL6WMHcP7hY8nPs5bJ3dPh+vvf4vuPLkjb8faEErVeNmZgvzbPH5//IROGlHPOoWN5+d+OZ2JVHs0OazbX7eYIXbP4o2C+tmi1gYFlRS2dKyNHTxrS8liLsIuISJKMqOxHU7PzmxeXp+2YTy1Ym7UVhiJK1HpZaVEBT15zDFceP6ml7LRprS1b5UXBtBmbtves79iqTcHC6+1b8FIV5Odx5sGjACgrUqImIiLJEU3Ncd39b6fleA2NzazcWLtTN6JM01/rDJgwpLxl0fPZh4/jjDBZAigvDBO12u53hFyxoZZtDY2UFhZw44PBJLcDSjueH+2/Pj2Nb52xvya7FRGRRNm8Pb0DClZurKXZYdyg7PZ/U6KWIf37BQlU+6UtSqNEbQ8+YDO/91RwjPCYsw8fR2erR+TlGWXFOu0iIpIsMycN4dcvLKeoID03C5evD255jh+sFrU+4bRpI3l//TY+d/SENuVlYQPYxl1Mm7Fs3Ta+9oc3uWbWPswYP7DNttTOkrUNTfz2nw/jyImD019xERGRHHDC1GGcNm0kc5emZ57Qpeu2ATA+yy1q6qOWIUUFeVw9azIV7ZZu6l9k9C8p4O3Vm3d6zTOL1/HCkvXc8dzSnbZ9tLV19uWKkgIlaSIi0ueNG1TKR1vraGzq+Zqfy9dvo6K4gIFlRZ3v3IuUqGVZnhkzJw3h/nmrqW1ou0rBynCkyYdbdl4SIzWxaz+6U0REpC8aXllCs8O6mp5P7r5i43bGDCzttEtRb1OiFgOnHDCC+sbmlmbWSDQ57sI1W3eaF2b+6i0tj9fVJG9tMxERke4a3r8EgA82b+/xsWrqGqns1/EAvUxQohYDE4YE97+XrG2XqG0IPmhb6xs545bnWJEyl0vqvh8/cEQGaikiIhJvw8JE7cMtPZubFKCmvpGy4uzfsVKiFgNRR8WoRW1L3Q7OuvV53ly1makj+gPw+srN3JUyid+aLXVMH1vFsps+zi3nTc98pUVERGJmeGWQqPV0EnmA2oZGSmMw56gStRjoV5TPqKp+LPhwK7UNjSxYs5VXlgcLuR8zuXU1gVeXty7uvmrT9pYPpIiIiMDA0iKK8vP4IA0tatsamtSiJq32GlzGX974gKnfeJSa+tZBBXulDAt+c9VmGhqbWfjhVpavr2W/kZXZqKqIiEgs5eUZQ/sX82E6WtTqG2Oxio8StZjYa3BrQrYlnPx2VFU/qqe0tqg1NDYz/4MtLU26h+7Vdm41ERGRvm5QeTHrdzE3ad2OJmbf/hJf+8ObnR6judnZ1tBEaQwmiO+1RM3MxpjZU2Y238zeNrMrwvKBZva4mS0Kfw8Iy83MfmRmi83sDTObnnKsC8P9F5nZhb1V52yKBhQAXHHPPAD+dNmRDK0o4eCxVcwYNwCA15ZvZFG4AHscRqOIiIjESWGe0dTcdqaEV5dvYMp1j/DMonXcPff9To+xPVw3tKwo2bc+G4Fr3H0qcDhwmZlNBb4KPOHuk4AnwucAJwOTwp9LgFshSOyA64HDgEOB66PkLklG7KK/WZSI/fHSI/n95/+R/iUFPP/e+pZ1PZWoiYiItFWQbzS2S9Tue21Vm+fNzc6zi9btNPVVZFs4r2miW9Tc/QN3fy18vBV4BxgFnA7cGe52J3BG+Ph04NceeBGoMrMRwInA4+6+wd03Ao8DJ/VWvbPl+H2HccSEQW3K2q9XNqCsiL++82HLcyVqIiIibRXk5dHQ2HZlgrqGpjbPb/3be5x/+0s88taaXR5jW32wf3kMBhNkJFU0s/HAwcBLwDB3/yDctAYYFj4eBaxIednKsGx35e3f4xKCljiGDRvGnDlz0lb/3lRTU9NS19NHNfPCktZt7WPIb2ztHDm63Hjh2aezPmNyZ1LjSyLFl9sUX25LcnxJji3SWzEuWVPL6hrnpt/9ldEVeYyuyOP91W0HFzz22mIAnnr5TfqtX7DTMZZvCRK1JQvfZc7mxd2uQzpj6/VEzczKgfuAK919S2pi4e5uZrtud+wmd78NuA1gxowZXl1dnY7D9ro5c+aQWtdVhQv48ZPBh6J9DL9aOpclm9dy0n7D+dnsQzJYyz3XPr6kUXy5TfHltiTHl+TYIr0V4/anHwN28LM3glV7HvjCUVQsXUC/DRta+p5ZSQWwidHj9qK6etJOx/jS/7wOrOSw6Qdx1KTur6Wdzth6ddSnmRUSJGm/dfc/hMUfhrc0CX9/FJavAsakvHx0WLa78kS6Ztbk3W4bVhH0YyuLwT1zERGROGq//vW6mnq272hiUHnr4uoba4NRofWNbW+JRn7/6koA8mJw06o3R30acDvwjrvfnLLpz0A0cvNC4P6U8gvC0Z+HA5vDW6SPArPMbEA4iGBWWJZY3zvrQH507sE7le8/KlilYEvdjkxXSUREJCc4bW/UFeQbdTua2/Tr3hAu2t6+L1t7e6XMyJAtvdk0cyQwG3jTzOaFZdcCNwH3mtnFwHLg7HDbQ8ApwGKgFrgIwN03mNmNwMvhfv/u7ht6sd5Zd/aMMbssnzi0AkjPGmYiIiJJ1G7AJ9sbmqjb0cSYgaWcMHUYP/jrIraGE8vXt0vUbn4s6K82cWg5k4aWM6KyX0bq3JFeS9Tc/Vlgd42Gx+1ifwcu282x7gDuSF/tctPYQaUAFOVrnmIREZFdaT/jRm2YqJUW5XPl8fvwyFtreHfNVmDnFrUfhX3EiwryYjOpvDo75ZBRVf248Yz9+diUodmuioiISEy1zdS2NTSyfUcTJWHftRGVJS2JWvsWtcg/jB/A+YeN691qdpGaZnLM7MPHMaoq+02xIiIicRTd+jxyYjA36bb6Rup2NNMvXGVgeMoE87vro/bT8w5h6sj+vVvRLlKiJiIiIokRrTZwwyf2oyDP2Lx9R9CiVhgkakMqWhO19qM+R1aWcOTEQVSWxmdCeSVqIiIikhjRjc+igjwGlRexZnM9DY3NlBQGKU/q6M/2tz6bHUZXlWaqql2iRE1EREQSIxpMUJifx+DyYlZurAWgX9ii1lGi1tDUTGFBDCZPS6FETURERBIjuvVZmJ/HyKp+vLQ0mNEr6qPWv6R1HGX7RG1HYzNF+dlf3zOVEjURERFJjNYWNeOoia3LP9WFy0eltqhtb2hs89p6taiJiIiI9J6oj1pennHs5NbprD7aEqz92T8lUdtW3zqYwN3Z0dRMcczmKo1XbURERER64KxDRgNQXJDXMlE8wNH7DAHaJmq1KS1qjc2OezAIIU404a2IiIgkxnWnTuVLJ05uWZx97rXHUZCfx8CyYFH21Fuf2xpaW9R2NAX91Qpj1qKmRE1EREQSIz/PKC9uTW+G9i9ps72sqHWwQENjM41NzRTk57GpdgcQvxa1eNVGREREpBeZtR0sUBsOMvjPRxfsNAAhDpSoiYiISJ/yw3MO4txDxwJQW99EY1Mzf5q3in86bByThlVkuXZtKVETERGRPuX0g0Zx+ISBQLBoe+2OJtxh9ID4raWtPmoiIiLS55QWBSlQbX0TtUVNbcriJH41EhEREell0aCCbQ2NlDYEj8uK47UqAejWp4iIiPRBpeHI0NqGRmrr49uipkRNRERE+pyWFrX6ppaJb1On7ogLJWoiIiLS50Qtapff/Xfue21lm7I4UaImIiIifU5q69m9r6zcqSwulKiJiIhIn7OrpaLUoiYiIiISA7tK1NSiJiIiIhIDhfm2U5lGfYqIiIjEQPs1PwvzLXYLsoMSNREREZFYtqaBEjURERGRWPZPAyVqIiIiIrEc8QlK1ERERETUoiYiIiISV32uj5qZ3WFmH5nZWyllA83scTNbFP4eEJabmf3IzBab2RtmNj3lNReG+y8yswt7q74iIiLSd5UV970WtV8BJ7Ur+yrwhLtPAp4InwOcDEwKfy4BboUgsQOuBw4DDgWuj5I7ERERkXTpcy1q7v40sKFd8enAneHjO4EzUsp/7YEXgSozGwGcCDzu7hvcfSPwODsnfyIiIiJ7rKwon7KYDiYwd++9g5uNBx509/3D55vcvSp8bMBGd68ysweBm9z92XDbE8BXgGqgxN2/FZZfB2x39+/v4r0uIWiNY9iwYYfcc889vRZXOtXU1FBeXp7tavQaxZfbFF9uU3y5K8mxReIQ42cf2QbApdOKGVGex5iK9LRfdTe2Y4899lV3n7GrbVlLH93dzSxtWaK73wbcBjBjxgyvrq5O16F71Zw5c8iVuu4JxZfbFF9uU3y5K8mxRWIR4yN/AeBfzz0+rYdNZ2yZHvX5YXhLk/D3R2H5KmBMyn6jw7LdlYuIiIj0SFF+HiWF8Z4AI9O1+zMQjdy8ELg/pfyCcPTn4cBmd/8AeBSYZWYDwkEEs8IyERERkR5544ZZzPvGrGxXo0O9duvTzO4m6GM22MxWEozevAm418wuBpYDZ4e7PwScAiwGaoGLANx9g5ndCLwc7vfv7t5+gIKIiIhIt5UUxnNKjlS9lqi5+7m72XTcLvZ14LLdHOcO4I40Vk1EREQkJ8T7xqyIiIhIH6ZETURERCSmlKiJiIiIxJQSNREREZGYUqImIiIiElN82UGBAAAOFUlEQVS9uoRUtpjZWoLpP3LBYGBdtivRixRfblN8uU3x5a4kxxZJcozdjW2cuw/Z1YZEJmq5xMxe2d36Xkmg+HKb4sttii93JTm2SJJjTGdsuvUpIiIiElNK1ERERERiSola9t2W7Qr0MsWX2xRfblN8uSvJsUWSHGPaYlMfNREREZGYUouaiIiISEwpURMRERGJKSVqIiIiIjGlRE16zMzOM7Np4WPLdn2k6/rKuTOzRP5fZ2anmdne2a6H7Jm+cP0l9dqDzF1/if0HjAMzO8PMbsx2PXqLmR1vZs8APwAOBvAEjU5J8vlL+rmDlv9Er852PXpDeP5eAG4HRmS7Pr1B11/uSvK1B5m//gp6+w36mvBbUR5wEfBVYJyZPebuz2S3ZukRxlcC3AkMBb4FnA6Uhtvz3b0pezXsmSSfv6Sfu4iZFQDXAJ8HxprZk+4+L9fjC89fGXA3UAF8HbgSGAc8a2Z57t6cxSr2mK6/3P18QnKvPcju9acWtTTzQBOwmOCb0qVAYr4VhvFtB37r7tXu/ijwPDA73J7TF2OSz1/Sz13E3RuBBcAU4Grg52F5TscXnr8a4Dfh+XsCeJTgjz25nqSBrr+sVjANknrtQXavPyVqaWJmXzSzX5jZP4dFf3P3re7+C6DMzC4O98vJf/OU+D4H4O73h+X5wFLgbTMbk8069kSSz1/Szx20xHiTmZ0dFv3F3evc/QfAUDM7L9yvMHu13DMpsX0awN3/OyzPAzYCK8ysOJt17Cldf7l7/SX52oN4XH8596GPIzP7LHAecB8w28y+BkxI2eUbwNVmNiAXv/W2i+98M7vWzCZAyzelLcA0YFPWKtkDST5/feDcmZldBXwGeAX4ZhjzgJTdrgb+E8Ddd2S8kntoF7H9u5l91syGQMs3+KXAx929PotV7RFdf7l5/SX52oN4XX9K1NLjOOC77v4Iwf35EuCfoo3u/jDwDnCJmVVEmXkOaR9fEXB+tNHd3wTqgHOyU70eS/L5S/S5CztgHwt83d1/D1wFHAicmLLPH4GFZvYlCDoCZ6Ou3bWb2KYBJ6Xs8zyw0sxOy04t00LXXw5ef0m+9iBe158StR5IaYb/O3AqgLu/ArwAjDKzI1N2/wrwH8AiYHgm67mnOojvRYL4jgr3M4J79SXh45yQ5POXxHPXvn4pMb4CzAQI/yAuAvYzs8kpu38e+J6ZrQFGZaC63dKN2BYSxDYl3K8/8C6QU60VoOsv3C9nrr9USbr2diVu158StW4ws/3MrCR6ntIM/xyQZ2ZHh8/fAj4ARoavmwj8FPgTMN3df5y5WnddN+NbTTgsOfzmMRTYFj6OJTM70lLmvEnS+etmbDl37kL9Up+kxLgYqDCzA8LnfwMqCUZmYWYHAb8guP003d3vzEx1u6W7sZWH+20BRgPDMlTPPRb2yWpJShN2/XUntpy7/jqILwnX3p7El9HrT4laF5jZgWb2LMFw6kEp5dG/3yLgbeAzFgxDXklw4saH2zcDX3D3T7r76szVvGv2ML7htMYH8CV3vyNDVe4WM5tuZo8BTxJcZFF5zp+/PYwtZ84dgJkdbmb3AbeY2ayU/1Sj6YXmAo3ALDMrcPf5BN/cZ4Tb1wOXuvunY3j+ehobwDnu/qtM1rs7zOwIM/sFcJWZVUQJSUqMuXz97UlsOXP9hV8A7wS+bmYDU+KLBgbk7LUHaYkPMnD9KVHrmq8Dv3f3M919FbTMeRNl3VuBZ4Bi4PvhSR5A8CHF3de6+6Is1LurehQfgLs3ZLjOnTKzQjP7OXAb8COCWwzV4bacPn/pig3iee4iZlZN0JryB4Jh/+cDAyyYs6gRwN0XE9yi2Jtg7i2AemB5uH1F2BcoVnoY27LoOO5el7lad4+ZHQP8hOCLxEjgWjObBS1TOUAOXn+QntjCfWN5/Vkw6OGnwFMEc4XdaGanQOvAgFy99qDH8S2LjpOJ60+JWgfMLC88mTUeDDXGzE4wsyrAwuffAn5H8K3vOoKL8JnweSybeSNJj4/gP8engZnu/iDBH8R9w29GTQBm9k1yM74kx5bqQOBld/8t8BugkODz2gzB59PMbgdeJUhYDzWzV4ENBMlrnPUktseyVOfuOgR4zt3vJmixHwaca2bDIOf/f0lybACHAu+ErUVfAuYBnzCzEZDz1x70LL6MXn9amaAdMzsc2ODuC9292czWATPN7FTgnwn6knwIvGNmdxMMI/9amHljZv8HKHP3rVkKoUN9KT6Cfh+/TdmcDzS5e2PYF+EAYBLwVXd/L3x9bONLcmyRdjFCkIzeYGarCSY/fQf4qZk9Cqwg+Hx+w92Xha8/Dyhw99hNd5Dk2CK7iHEBcJCZjXT31WZWQ9C94gwze4ogxpz4jCY5NgAz+wRBy9Ir7v4iwW2/y81srLu/b2bPEbQsnWNmL5Njn8+cjs/d9RPclq4C/kLQVP11ggsq2nYt8BpwWvj8aOB+4IiUffKyHYPi2zk+gpbBvPDxRIIkdEC0LRfiS3JsHcRYnrLtUOAO4FPh84sJOihPy4UYkxxbZzESfFn4CUELxH3AH4EvE/TLSn19bGNMcmxh/UYADxC09l1H8IXhxHDb94Frwsf5BKsoXA9UKr7M/ejWZ6sygubay8PHR6dse5Cg8+fA8PkrwBqC+W+w3Fhjr0/G54FmCzrXLwv3OSbaBjkRX5Jji7SPcWa0wd3nAkMI+70Q9AmqIpgVPBdiTHJskd19RhcRTHr6H8D/uPuZBJ3rq6MX5kCMSY4Ngo7xz7j7THe/EfghcEm47RngADM7zIMuFauAo919Myi+TOnTiZqZXWBmx5hZfw860d8G3EuQoBxmZqMA3P0Ngm9Kl5nZYIJOvwfQ2tk16ydyVxSfRcP7LYwhWuYjSkDbD8WOjSTHFulGjMUEayJeGr70OIIvFXUQzxiTHFukkxgPjWJ09wZ3f8rd7wlfOh14JDpOHGNMcmzQEl91+Pl7ArgrZfN6gvnCAF4imAvuZjMrB/YDlptZKSi+TLHwi3efEf4BG07QybMZeI/gW9IV7r4u3OdI4GyCe9l3pbz2aoL71pOAqzwYqhsriq9NfC+7+2/Csnx3bzKz3wCL3f2GbNS/I0mOLbKnn08z24/glsRwgsklv+Du72Q+gt1LcmyRPf2MhuVHEbRmrAP+xcO+P3GR5Nig8/jMrNDdd5jZF4Gp7v5/U157M8F8YeOAC9x9QeYj6Fii48vE/dW4/AD54e99gN9EZcCPgT+02/cqgpE8lUBFSnlhtuNQfN2OrzSlvCjbcfS12HoYYxXQLyzrB0zIdhx9LbYexlhJa5/KkcAp2Y6jr8XW1fhS9nkAOD58PDT8XZD6dyJuP0mPr0/c+jSzfDP7DvAdC+a+mQw0QcvCuFcA/xhui/yCYPbhx4HFKU3dsVuqRfF1Gt/S1FsVGa18J5IcWyQNMS4zs1Huvt3dl2S4+h1KcmyRNMS4xMxGu/tqd38ow9XvUJJjg+7F50GrfBGwlmB9zm8Dj5vZAHdv9BiOVk16fJHEJ2rhyXuVYA6bxcCNBLcXjjWzQ6HlPvQN4U/k4wT9Rl4HDvAYzqoMig9yN74kxxZJQ4zzCGJclblad02SY4uk8TO6MnO17pokxwbdju+b4ctKgM8S9OuqIGh52pjRindR0uNrI9tNer39QzDCanbK858SLBL7WeDVsCyP4N72vcD4sOx0gtEfWY9B8SUzviTH1hdiTHJsfSHGJMe2h/GNJpgu5tfAQdmuf1+PL/Un8S1qBBn3vRauoUewSO5YD2Yjzjezyz3IukcTTBi6DMDd73f3p7NR4W5SfLkbX5JjiyQ5xiTHFklyjEmODboXX7O7r3T3ue5+gbvPy1KduyPp8bVIfKLm7rXuXu/hsjrACQT3qAEuIlh250HgboJJX1umNsgFii9340tybJEkx5jk2CJJjjHJsUG343sVFF9c9ZklpMKs2wnWY/tzWLyVYFb+/YGlHvYVcfecm7NE8eVufEmOLZLkGJMcWyTJMSY5NlB85Hh80Ada1FI0Eyx6vA44MMy0ryNoEn3WY9yht4sUX+5KcmyRJMeY5NgiSY4xybGB4sv1+PrWhLcWLKr7fPjzS3e/PctVSivFl7uSHFskyTEmObZIkmNMcmyg+HJdX0vURhMsunqzu9dnuz7ppvhyV5JjiyQ5xiTHFklyjEmODRRfrutTiZqIiIhILulLfdREREREcooSNREREZGYUqImIiIiElNK1ERERERiSomaiIiISEwpURORPs3Mmsxsnpm9bWavm9k1Ztbh/41mNt7MzstUHUWk71KiJiJ93XZ3P8jd9yNYL/Bk4PpOXjMeUKImIr1O86iJSJ9mZjXuXp7yfALwMjAYGAfcBZSFm7/g7s+b2YvAvsBS4E7gR8BNQDVQDNzi7j/PWBAiklhK1ESkT2ufqIVlm4DJBIs7N7t7nZlNAu529xlmVg18yd1PDfe/BBjq7t8ys2LgOeDT7r40o8GISOIUZLsCIiIxVgj8xMwOApqAfXaz3yyCBaHPCp9XApMIWtxERPaYEjURkRThrc8m4COCvmofAtMI+vTW7e5lwOXu/mhGKikifYYGE4iIhMxsCPAz4Cce9AupBD5w92aCRZ/zw123AhUpL30U+LyZFYbH2cfMyhAR6SG1qIlIX9fPzOYR3OZsJBg8cHO47afAfWZ2AfAIsC0sfwNoMrPXgV8BPyQYCfqamRmwFjgjUwGISHJpMIGIiIhITOnWp4iIiEhMKVETERERiSklaiIiIiIxpURNREREJKaUqImIiIjElBI1ERERkZhSoiYiIiISU/8Lngg6Fc8jipcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light", "tags": [] }, "output_type": "display_data" } ], "source": [ "import quandl\n", "\n", "end = datetime.datetime.today().date()\n", "start = end - datetime.timedelta(5*365)\n", "\n", "try:\n", " S = quandl.get(code, collapse='daily', trim_start=start.isoformat(), trim_end=end.isoformat())[field]\n", "\n", " plt.figure(figsize=(10,4))\n", " S.plot()\n", " plt.title(description)\n", " plt.ylabel('Price $/bbl')\n", " plt.grid()\n", "except:\n", " pass" ] }, { "cell_type": "markdown", "metadata": { "id": "zcVXG3pGKe4s", "nbpages": { "level": 2, "link": "[7.1.4 Returns](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.4-Returns)", "section": "7.1.4 Returns" }, "pycharm": {} }, "source": [ "## 7.1.4 Returns\n", "\n", "The statistical properties of financial series are usually studied in terms of the change in prices. There are several reasons for this, key among them is that the changes can often be closely approximated as stationary random variables whereas prices are generally non-stationary sequences. \n", "\n", "A common model is \n", "\n", "$$S_{t} = R_{t} S_{t-1}$$\n", "\n", "so, recursively,\n", "\n", "$$S_{t} = R_{t} R_{t-1} \\cdots R_{0} S_{0}$$\n", "\n", "The gross return $R_t$ is simply the ratio of the current price to the previous, i.e.,\n", "\n", "$$R_t = \\frac{S_t}{S_{t-1}}$$\n", "\n", "$R_t$ will typically be a number close to one in value. The return is greater than one for an appreciating asset, or less than one for a declining asset.\n", "\n", "The Pandas timeseries `shift()` function is used compute the ratio $\\frac{S_t}{S_{t-1}}$. Shifting a timeseries 1 day forward, i.e, `shift(1)`, shifts $S_{t-1}$ to time $t$. That's why \n", "\n", " R = S/S.shift(1)\n", "\n", "provides the correct calculation for the quantities $R_t$." ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 273, "status": "ok", "timestamp": 1604435136656, "user": { "displayName": "Jeffrey Kantor", "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64", "userId": "09038942003589296665" }, "user_tz": 300 }, "id": "Z3j5lxzsr90x", "nbpages": { "level": 2, "link": "[7.1.4 Returns](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.4-Returns)", "section": "7.1.4 Returns" }, "outputId": "c9bae657-0e8c-4912-a02a-b8878e7e14b9" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[Date\n", "2017-11-06 60.556000\n", "2017-11-07 61.209999\n", "2017-11-08 60.877998\n", "2017-11-09 60.598000\n", "2017-11-10 60.598000\n", " ... \n", "2020-10-28 406.019989\n", "2020-10-29 410.829987\n", "2020-10-30 388.040009\n", "2020-11-02 400.510010\n", "2020-11-03 424.160004\n", "Name: Adj Close, Length: 754, dtype: float64, Date\n", "2017-11-06 NaN\n", "2017-11-07 60.556000\n", "2017-11-08 61.209999\n", "2017-11-09 60.877998\n", "2017-11-10 60.598000\n", " ... \n", "2020-10-28 424.679993\n", "2020-10-29 406.019989\n", "2020-10-30 410.829987\n", "2020-11-02 388.040009\n", "2020-11-03 400.510010\n", "Name: Adj Close, Length: 754, dtype: float64]\n" ] } ], "source": [ "print([S, S.shift(1)])" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 369 }, "executionInfo": { "elapsed": 1427, "status": "ok", "timestamp": 1604435152383, "user": { "displayName": "Jeffrey Kantor", "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64", "userId": "09038942003589296665" }, "user_tz": 300 }, "id": "jc-szwdUKe4s", "nbpages": { "level": 2, "link": "[7.1.4 Returns](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.4-Returns)", "section": "7.1.4 Returns" }, "outputId": "0a6ee5bb-8727-4aca-eb39-fe3b0a5b25d0", "pycharm": {} }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAFgCAYAAACmDI9oAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hb9fX48feRvPe2M+3sCSGTBBoIEPYoUEZpgRZK6S4t3ZtvC110UDqgUH5AaSmlZbXMEiDskYSE7B07ieO9LU9J5/fHvbZkJ07sxNvn9Tx+Yt0hHZ3Iukcfnfu5oqoYY4wxxhhjHJ6BDsAYY4wxxpjBxApkY4wxxhhjwliBbIwxxhhjTBgrkI0xxhhjjAljBbIxxhhjjDFhrEA2xhhjjDEmjBXIxhhjjDHGhLEC2RhjBjERqQ/7CYpIY9jtj4tIioj8PxEpFpE6EdkuIt8O219FZPJh7j/Bva/n+ucZGWPM4Bcx0AEYY4zpmqomtP0uIvnADaq6ImzZ/UA8MAOoAaYCs3vwEB8BmoEzRSRHVYt7I25jjBnKbATZGGOGtoXAw6papapBVd2qqv/uwf6fAO4G1gNX90mExhgzxFiBbIwxQ9s7wG0icp2ITOnJjiKSCywD/u7+XNv74RljzNBjBbIxxgxtX8Ipbr8IbBaRnSJybjf3vQZYr6qbgUeAWSIyt4/iNMaYIcMKZGOMGcJUtVFVf6qq84F04FHgXyKS1o3dr8UprlHVQuBVnJYLY4wZ0axANsaYYUJVa4Gf4py0N+Fw24rIScAU4DvuDBjFwInAx0TETuA2xoxoViAbY8wQJiI/EJGFIhIlIjHATUA1sC1ssygRiQn78eKMFL8IzAROcH9mA7FAd1s0jDFmWLJRAmOMGdoUuB8YD/hxZqM4X1Xrw7bZ1GmfLwFXANd2ntZNRB7CKZ7/22cRG2PMICeqOtAxGGOMMcYYM2hYi4UxxhhjjDFhrEA2xhhjjDEmjBXIxhhjjDHGhLEC2RhjjDHGmDBDehaLjIwMzcvLG+gw+pXP5yM+Pn6gwxhQloOOLB8hlgvLQWeWjxDLhcPyEGK5gDVr1pSrambn5UO6QM7Ly2P16tUDHUa/WrlyJcuWLRvoMAaU5aAjy0eI5cJy0JnlI8Ry4bA8hFguQEQKDrXcWiyMMcYYY4wJYwWyMcYYY4wxYaxANsYYY4wZQVSVB97cg6/VLhbXFSuQjTHGGGNGkM1Ftdzy382sKvYPdCiDlhXIxhhjjDEjyJ5yHwBVTTaC3BUrkI0xxhhjRpCCigYAqpqtQO6KFcjGGGOMMSNI2whytY0gd8kKZGOMMcaYEaSgwm2xsBHkLlmBbIwxxhgzguwpd1osqpuCAxzJ4GUFsjHGGGPMCFHf7Ke8vpmE6AjqWqHZHxjokAYlK5CNMcYYY0aIfLf/eEFeKgCltc29/hj+QJCr//Iur24v6/X77i9WIBtjjDHGjBBtM1gsnpgOQEltU68/xq4yH2/sLOfTD67u9fvuL1YgG2OMMcaMEDtL6wFYNCENgOIuCuSXt5a0z3axs7SeVfmVB21T3dCC6sEn+m0trgWgJTB0e5ytQDbGGGOMGQHe3lXBb1dsB2BCejwAJV20WFz/wGpO+9VK3tpZzsV/fJOvPLKuw/ptxXWc8OMXeez9woP2Xbevuv33Kl9Lb4Xfr6xANsYYY4wZAcJ7gpNjIxGcUeDOGltCJ+597C/v4mvxU1zbRCAYGi1et68KgDd2dOwz/mBfNQ+/u5cxKbEAvLZjaPYhW4FsjDHGGDMClNU5o8XPf2UpHo8QFwm1ja0HbVde33FU+ZMn5REIKhVhy2vc/RJjItuXbSmq5dr/9x5ZSdE89rmTGJUcw+0vbKO0D/qc+9oRC2QRiRORH4jIve7tKSJyQd+HZowxxhhjesuusnpOmpTO9JwkAOIipL3QDde5QD7xEP3KhVWNB+33tUc/IDbSy8M3LCYnOYY/XzOfSl8Ln7h/VYdR6aGgOyPI9wPNwBL3diFwa59FZIwxxhhjet2+ygZy3d5jgLjIQxfIFfUd2y5Gu+0SxTWhAnlnmXOyX2VDC0+s3c8dK7azuaiWT58ykXFpcQAcPzaF31wxhy1Ftfz6f9t4aUsJ4BTqNQ0HP+5g0p0CeZKq/hJoBVDVBkD6NCpjjDHGGNNrWvxBKnwt5CTFtC+Lj6RbI8jZ7j4lbovGk2sLeXNnBQCvbSvjq//8gDtW7CDSK1w4Z1SHfc+cmUNiTAR/eWMPn3pwNX9auZMzfv0q3358PQANLX6W/vJlnlx78Ml+A6k7BXKLiMQCCiAik3BGlI0xxhhjzBBQ5ha92UnR7cviIoT391Zz72u7O2zbNrPFvz+7hJVfX0ZyrNNnXNvYyp5yH1/5pzOjRZTXQ12zv32/n116PFmJMR3uy+sRvnnOdE6alI7XI/zy+W2A068MTqvGvspGZJANvXanQP4R8DwwTkT+DrwEfLO7DyAiXhFZKyJPu7cniMi7IrJTRP4pIlHu8mj39k53fV6Pn40xxhhjjGlX3+ynuKap/YIg2WEjyPWtzqwUtz27pcM+O0rrGJsay4K8NPIy4omO8DjFcJOf257ZQnSEh7uvns+1S3LJSIhm6ZQMABbkph4yhmsW5/Lwpxez/dZzWX/LWZx3XA75FQ3sLK1nf7XTy9w268VgEXGkDVT1RRF5H1iM01pxk6qW9+AxbgK2AEnu7V8Av1XVR0TkbuBTwF3uv1WqOllEPupud2UPHscYY4wxxoT50VOb+O/6A5w3OweArLAR5NIGp0BuGyFus72kjmnZie23RYTEmAhe3FzMrjIf3zh7GufMzuGMGVnctHwKXo+wbm81eRnxHI7XIyTFRLaPMn/krrf4xtnTABiTOrgK5O7MYnEy0KSqzwApwHdFJLc7dy4iY4Hzgb+4twU4Hfi3u8mDwMXu7x92b+OuP8Pd3hhjjDHG9FAgqLy8tYRAUHly3QEARieHCtEbjnOK5dhIb/uy1kCQPeU+poQVyABJsZHsKvPh9Qif+tAEACK9HhJjIomLiuCkyRndjmv5jGzAGd0urG4kwiMHtWYMtO60WNwFNIjIHOBmYBfw127e/x047Rht1xpMB6pVta1hZT8wxv19DLAPwF1f425vjDHGGGN6aHdZPVUNrdxy0SyuOzmPO6+aS2p8VPv6melevnzGFErrmmh1LwudX+6jNaBMzU7ocF+JMU7TwZiUWGLCCuqj8aEpGVy7JJe4SC+vbisjNz0Or2dwjYkescUC8KuqisiHgT+q6n0i8qkj7eTOlVyqqmtEZNmxBhp2vzcCNwJkZ2ezcuXK3rrrIaG+vn7EPefOLAcdWT5CLBeWg84sHyGWC8dIysOGMmc8sqloJ6emeqGqjJUrt7evr6+vp666gKDCky+sJDPOw3vFzj51+7exsnZn+7aBRqdXOFGaeiV/TZUt1DX72VxUy+dPiB50/yfdKZDrROQ7wDXAUhHxAJFH2AfgZOAiETkPiMHpQf4dkCIiEe4o8ViceZVx/x0H7BeRCCAZqOh8p6p6D3APwIIFC3TZsmXdCGX4WLlyJSPtOXdmOejI8hFiubAcdGb5CLFcOEZSHkpW7YU1Gzjn1CXtcxOHW7lyJWdMm839G99l7LQ5LJmUzvsvbscjO7jy3GUdRor/uX8NmyqKOWHyWJYtO+6YY6tNPcCj29ayfEYW37hyAYOtq7Y7LRZX4kzrdr2qFuMUtbcfaSdV/Y6qjlXVPOCjwMuq+nHgFeAyd7NPAE+5v//HvY27/mVVVYwxxhhjTI8V1Rw8c0VnbSfHHXBnk9hRUsf4tLiD2ij2VjYAMHtMcq/EtnhiGucfP4qfXDx70BXH0I0C2S2K/w4ku20TTara3R7kQ/kWcLOI7MTpMb7PXX4fkO4uvxn49jE8hjHGGGPMiNXiD3LHih0AREV0Xe6NSnaK50K3QN5eUsfUTifoOds5hfS57mwYxyorMYY/fmxe+/0ONkdssRCRK3BGjFfiTPP2exH5hqr++7A7hlHVle7+qOpuYNEhtmkCLu/ufRpjjDHGmEN7YVMxcOT5hWMivWQmRlNY1UhRTSO7ynycO3vUQdv9+vI5HKhpJCUu6hD3Mvx0pwf5e8BCVS0FEJFMYAWhqdqMMcYYY8wgsqagCoBHblx8xG1Hp8RSWN3IFx9ei0fgtOmZB22THBdJclx3TkEbHrpTIHvaimNXBd3rXTbGGGOMMQNg7d4qTpyQdsiT8zobmxLLMxuKALjlwpnMz03r6/AGve4Uus+LyAsi8kkR+STwDPBs34ZljDHGGGOORlNrgE0HapnfxaWfOwu/it3x41L6KqwhpTuXmv6GiHwEZ9o2gHtU9Ym+DcsYY4wxxhyN9ftr8AeVeeO7WSCH9SmnxI6cNorD6U6LBar6GPBYH8dijDHGGGOO0ft7nf7jueO7Nxo8OqxATh0hJ+EdSZcFsojUAYeah1gAVdWkPovKGGOMMcYclTUFVeSlx5GeEN2t7cNHkJNsBBk4TIGsqgdPgmeMMcYYYwYtVWXt3ipOmXLwTBRdCe9B9noG30U7BkKXJ+mJyEIROfcQy88Vkfl9G5YxxhhjjOmpfZWNlNe3MK+bJ+gBJNuo8UEON4vFL4DNh1i+mW5catoYY4wxxhwdVWXF5hKaWgM92m91QSVAt0/QM4d2uJP0ElW1oPNCVS0QkYw+jMkYY4wxZkR7a1cFN/x1NZ9fNolvnjO92/v9a/V+RiXHMC2nZ52yv7zseLxi7RVtDjeCfLiPHkeeddoYY4wxxhyVd/c4I8H/21xCQ4u/W/tUN7Tw9u4KPrpwfI97ia9YMI6PzB/b4ziHq8MVyCtE5DaR0McJcfwYeLnvQzPGGGOMGZle214GwM7Sen730o5u7bOxsBag2xcIMV07XIvF14C/ADtFZJ27bA6wGrihrwMzxhhjjBkJSuuaqKhvYcaoJNbtqybSK6zfX92+fldpPQB1Ta0kxnR9Qt2GwhoAZo+xmXiP1eGmefMBV4nIRGCWu3iTqu7ul8iMMcYYY0aAX72wjSfXHuCuq+fxqQdXty9/9DNLuP2FrRyobuLp9Qf44sNreeErp3TZX7y/qoG0+ChS7GIfx+xwLRYAqOpuVf2v+2PFsTHGGGNMLyqqaaIlEOxQHMdFeZmfm8rc8ansLKvn3tf3APC9JzZQ19Tavl0gqKg613WrbmwlJc6mbOsN3brUtDHGGGOM6Rvl9S1Mz0mkpLaJ3PR4dpXVc8WCcXg9Ql56PC3+IJvc9onVBVXc8OBqPnbieP7vv5upbWzlsvlj+flHjqe6oYUUm9O4V1iBbIwxxhgzgCrqmzltWhY/vngWUV4PYfMjkJvuTBzmDypjUmIprG5kdUEVH+yvZlxqHJW+Fh5/v5BvnTOdKl8ro5JjBuppDCuHu5Je2uF++jNIY4wxxpjhKBhUKn0tpCdEER3h7VAcA4xPcwrkxOgIXv76qTxw3UICQSU+KoK/33Aiz3z5QyjKZXe/xeaiWus/7iWHG0FeAyggwHigyv09BdgLTOjz6IwxxhhjhrGaxlb8QSUjIfqQ60enxBId4eH0GVlER3hZmJfGkonpfPH0yWQlxZCVFMNDnzqRzzy0BsB6kHtJlyPIqjpBVScCK4ALVTVDVdOBC4D/9VeAxhhjjDHD0er8Sub+5EUAMhMPXSB7PcJfr1/E986fAUB8dAT/uHExJ08OXdR48cR0bjpjCgCVvpY+jnpkOOIsFsBiVX227YaqPgec1HchGWOMMcYMf998bH3776dOy+xyuxMnppOVePje4jNmZAFw/Njk3gluhOvOSXoHROT7wN/c2x8HDvRdSMYYY4wxw9vO0jp2l/k4d3YOVy4cR9JhLgDSHbnp8az5/nJSrQe5V3SnQL4K+BHwBE5P8mvuMmOMMcYYcxSe21AMwI8unEVOL808kd5FH7PpuSMWyKpaCdwkIvHu1fWMMcYYY8wxeG5jMfPGp/RacWx61xF7kEXkJBHZDGxxb88RkT/1eWTGGGOMMcPQ3ooGNhfVcu7sUQMdiulCd07S+y1wNlABoKofAKf0ZVDGGGOMMcPVcxuLADhnds4AR2K60p0CGVXd12lRoA9iMcYYY4wZ9p7bWMxxY5IZ514ExAw+3SmQ94nISYCKSKSIfB233cIYY4wxxnRfQ4ufdfuqOX161kCHYg6jOwXyZ4EvAGOAQuAE4PN9GZQxxhhjzHC0p9yZ72BaTuIAR2IOpzvTvE1T1Y+HLxCRk4E3+yYkY4wxxpjhqa1AnpARP8CRmMPpzgjy77u5zBhjjDHGHMbuMqdAzku3Ankw63IEWUSW4FxSOlNEbg5blQR4+zowY4wxxpjh5vUdZUzLTiQ2ykqpwexwI8hRQAJOEZ0Y9lMLXNb3oRljjDHGDB+VvhZWF1Rx7nE2vdtg1+UIsqq+CrwqIg+oagGAiHiABFWtPdIdi8g44K9ANs4lqu9R1d+JSBrwTyAPyAeuUNUqERHgd8B5QAPwSVV9/1ienDHGGGPMYLGxsAZVWDQhbaBDMUfQnR7kn4lIkojEAxuBzSLyjW7s5we+pqozgcXAF0RkJvBt4CVVnQK85N4GOBeY4v7cCNzVs6dijDHGGNO//IEgn3loNavyK4+47eYiZ3xx5qikvg7LHKPuzGIxU1VrReTjwHM4Be0a4PbD7aSqRUCR+3udiGzBmSruw8Ayd7MHgZXAt9zlf1VVBd4RkRQRGeXejzHGGGPMoJNf4eOFTSW8srWM9becxVPrCnlhUwkbC2uYlpNIY0uAc2bncOm8sTy9/gDj0mJJiYsa6LDNEYhTjx5mA5FNOHMfPwz8QVVfFZEPVHVOtx9EJA94DZgN7FXVFHe5AFWqmiIiTwM/V9U33HUvAd9S1dWd7utGnBFmsrOz5z/yyCPdDWNYqK+vJyEhYaDDGFCWg44sHyGWC8tBZ5aPEMuFo7fzsKbEz+/XNgOwdEwErxf6AViY46W0QSmoDXbY/osnRLMgpzvjk33PXhNw2mmnrVHVBZ2Xd+d/6M84vcIfAK+JSC7OiXrdIiIJwGPAV9yR6PZ1qqoicvgKvRNVvQe4B2DBggW6bNmynuw+5K1cuZKR9pw7sxx0ZPkIsVxYDjqzfIRYLhy9mYfaplY+ecv/2m+/Xuhn0YQ0vnfeDOaMSwHgdyt28NsV2wH47KmT+Pq503vlsXuDvSa6dsQCWVXvBO4MW1QgIqd1585FJBKnOP67qj7uLi5pa50QkVFAqbu8EBgXtvtYd5kxxhhjhoCGFj9rCqr40OQMwgfEhqtfvbANgMSYCJpbg8wYlcjfbziRSG/oFK/PnzaJZdMyaQ0EmTc+daBCNT10xAJZRH7YxaofH2E/Ae4Dtqjqb8JW/Qf4BPBz99+nwpZ/UUQeAU4Eaqz/2BhjjBk8AkElEFSiIg59jv//e2MPv/rfduaNT+H/fXLhsOu1VVUefm8v83NTaW4N8tA7BVy7JJfvnjeDzUW15KbFdSiOASK9nvbRZDN0dKfFwhf2ewxwAbClG/udDFwDbBCRde6y7+IUxo+KyKeAAuAKd92zOFO87cSZ5u26bjyGMcYYY/rJDQ+u4pVtZeT//PxDrt9QWAPA+3uruf2Fbdx2yXH9GV6fe25jMd97YmP77azEaL5x9jRiIr02OjzMdKfF4tfht0XkV8AL3djvDaCr71fOOMT2CnzhSPdrjDHGmIHxyrYywBlJ7dxCUVHfzKr8Kj58wmjS4qN44K18rlo0ntljkgci1F5X29TKLf/ZRGJ0BKNTYtlWUsePLpxFYkzkQIdm+sDRnEYZh9MfbIwxxpgRqL7Z36Ew9DX7uf6BVfia/Vx38gQmZMTzn3UHuPWZzTxy45IBjPTwVuVXkhAdweSshPbWiEBQaWwN8PuXdzApM4HMhGjqm/08sbaQ8vpmnvrCh5g5OokdpXVMz7H5jIer7vQgb8C5Eh6AF8jkCP3HxhhjjBlegsHQpFMV9S3tBfJzG4r4wVObqGpo4c9Xz+cEt9/2M6dO5KfPbmVHSR1TshMHJGZw4n5ibSG+Fj/LZ2S3L99YWMPld78NQJTXQ2ZiNIsmpPH6jnLK65sPeV+XzB3DcWOdEXErjoe37owgXxD2ux8oUVV/H8VjjDHGmEEovGis8DWTnRTDsxuK+Nq/PgDgl5cdz/KZoQL00nlj+e2LO7j9hW3cc+1B08z2m3+v2c83H1sPwG9e3M5vl0ayo6SOC//wBuDE/Z91B3hjZzlPrC3kzJnZjE6O4ZSpmcRFRRAd6aG5NciTawv54umTB+x5mP7VZYEsIkmqWgvUdVqV5M5dXKuqgT6NzhhjjDGDwqr8qvbff/HcNgqrGymsbgTg91fN5cI5oztsn5EQzcdPHM/9b+XjDwTxNQd4fWcZuWnx7aOwve2Z9UWs21fF9Jwkzp6dQ4RHuMOdgxiguqGVVSUePv/ym6jCF06bxBULxnHRnNFsKKxhQW5ql9PTLZmU3icxm8HpcCPID+OMHq/BabHo/IpJEJF7VfW7fRWcMcYYYwaHFzcXt//+Xn4lM0Ylcdsls4mLimBh3qFncJianUggqBRUNnDDg6vZU+4jJS6SlV9f1utTwD22Zn/7aDbA1/71AYsnpnGgpom/XLuAqoYWvvHv9dy7vplRKXH8/YYTGZcWB0BMpJeFeWm9Go8Z2roskFX1AvffCYdaLyJeYCPO1G3GGGOMGaZaA0Fe3lrKpfPGkJEQzUmT0jllSiYez+EvBjI2LRaA25/fxp5yH18/ayq/eXE7d6zYwS0Xzeq1+PZXNfD9JzeyeGIaD16/iHPueJ095T7e2V3JqVMzWT4zm+KaJgD8QfjV5XPai2NjDuVwLRbzDrejqr4PzOj1iIwxxhgzqKzKr6S2yc9ZM3M4Z3ZOt/cb7xahz28qZlFeGl84bTL7qxp5+N29fPmMKaTF984o8itbS2lsDfDTS44jOsJLWnwUe8p9xER6uPXi2QBkJ0WTlx7HjKRWFk2w0WJzeIdrsWib/zgGWAB8gNNmcTywGhi887YYY4wxptf8b1MJUREelk7J6NF+o5JjiY300tga4BvnTENEuP5DE3hk1T4eXb2P607OIzrCe8zxrSmoIjMxmgkZ8QDcftnxPP5+ITefObV9lFtEePlry3jttVeP+fHM8Hfoa0UCqnqaqp4GFAHzVHWBqs4H5gKF/RWgMcYYYwbO2r1V/PXtfE6blkl8dM8un+D1CCu/sYz7r1vY3uM7NTuREyek8fPntjLt+8+zclvpMcV3oLqRl7aUcuKEtPYT7CZmJvD1s6cd1AJypJYQY9p0WSCHmaaqG9puqOpGrLXCGGOMGRFe3FyCArdefHSXjc5OiuG0aVkdll27JK/997+/u/eoY1NVvvXYevxB5RtnTzvq+zGms+4UyOtF5C8issz9uRdY39eBGWOMMWZgNLWGZnF9f28Vs0cnk5kY3Wv3f9as7PY+4K3FtUd9P39/dy+v7yjnu+fPIDc9vrfCM6ZbFwq5DvgccJN7+1Xgrj6LyBhjjDED5uZ/ruPxtYUszEslIyGad3ZX8vllk3r1MSK9Hh79zBL++MpObn9hG1W+FlJ7eMJeUU0jP3t2C0unZHD1ieN7NT5jjjiCrKpNqvpbVb1EVS/BmRf5N30fmjHGGGP6Un2zn9ue2czusnqaWgPc+vRmHl9byLzxKbT4g7yxs5xL5o7hpuVT+uTxT5mSidcj3PLfTQetq25o4TuPb2B7iXO9shZ/EFXnctdldc2cf+cbNPuD/OTDs7u8uIcxR6tb3fYiMhe4CrgC2AM83pdBGWOMMaZvtQaCfO5va3h9RzlPrD1ASlwkO0vruXrxeH504Swivd3pwjw2x41N5pMn5fHgW/n84IKZZCSE2jgefm8v/3hvL89tLOLGUybyp1d2cf2HJvDV5VP43UvbqfS1cO+1C8jLsNYK0/sONw/yVJyi+CqgHPgnIO7MFsYYY4wZgjbsr+GuV3dSXtfCe/mVXLFgLHvKfVT6WnjguoUs63RCXV+7atE47ntjD4+/v58bTwm1cjy/sZhp2YnERXv55fPbALjzpR1U+Vr42zt7+cSSXM6cmd2vsZqR43AjyFuB14ELVHUngIh8tV+iMsYYY0yva/YH+Pq/PmCb27bwleVT+MryqQMa0+SsRBbkpvLIqn18eulERITWQJCtxXV88qQ8vnveDA5UN3L3q7v469sFPPROAZ85ZSLfPnf6gMZthrfDfX9yKc4cyK+IyL0icgbOhUKMMcYYM4hVN7SwpqASX7MfcOYK/u2aJub/ZAXbSuq4/bLj+ddnl3DTGX3TW9xTVy4cx+4yHy9vLaWktonnNxbT4g8yc1QSAKNTYvnOuc4Ms2NTY/n2udOt79j0qS5HkFX1SeBJEYkHPgx8BcgSkbuAJ1T1f/0UozHGGGOOoKDCx2s7ynlhYzFv764gEFTio7zMy01lVX4lGgxy+cLxnD49i9OnD67WhAuOH82fX9vNpx5c3b7MIzB3fEr77dgoL29++3Tio7xWHJs+d8ST9FTVBzwMPCwiqcDlwLcAK5CN6SX+QBARwWtXeTLG9FBxTRN3rNjOI6v2ATAxI54bT5nInLHJrNhSyju7K/jwnDHMjS3no+cf3cU++lpslJePLhzHrc9sAeD+Ty5k5ugkspNiOmw3JiV2IMIzI1CPrhmpqlXAPe6PGeRU9aBP2YdadqT7KKtvprk1yLi0uN4OcdBRVXaU1vPu7gpe31HO9FFJXH3ieLI6vUn3tu88voEXt5Tw+6vmMj4tjthIb58/Zn+qa2pFRIiL9B7yUq8t/iC7y+vZVerD1+InNtLLztJ61hRUUVjdyA8vmMmpUzPtMrFm2NpX2YAqjEqJ6dbsEYGg8t6eSv67/gAPu1eiu2rROK4/eQKTsxLa3+fPmT2qfZ+VK1f2Sey9ZdboZADS46M4bXr/nihoTGc9u6i66VWBoPLo6n1UNbRwoLqRjIRoFuWlMS0nkbT4qMMWss3+AO/tqcTrEWobW6lpbKW0tpl391RSUOmjytdKY2uAJRPTyUyMZkdpHfurGgkElQuOH82pUzPYVeZjYkY85x7nvIH6A0FWF1TR4g8SE+ll3b4q/vzqbip8LTBPTVYAACAASURBVAAsn5HNZfPHkhYfRVZiNNGRzpv4X98uoK6pla8sn9phip6hZndZPT9/biv/21wCOF/v/W9zCY+/v5/fXnkC+6saeGZ9MXVNrSyblsVJk9KZMy7lCPfatVX5lXz/iY1kJ8fw2vYyAK657z0AROATS/L43LJJB42gDAZNrQH2VjZQ5Wthe0kdr2wrIzrCQ0pcJKvyq6huaOWSuaOZMSqJh94pYO3eagBGJcfw7XOnc9yYZO57Yw97KxvYV9nA/qpG/EHt8BgikBgdQW2Tn+seWMWUrAR+dulxLMhLa99GVdlWUkerX8nNCH2A21laz+aiWp5dX4QITM5KYEtRHR6BO6+aS0ykt38SZUyYZn+A17aXs25fFav2VFHV0EJZfTOt/iC+FufKdTNHJfGd86YT5fWQlxGPR4SS2iZK65rISIhmX2Uj+RU+Hn53L4XVjXg9wlWLxnP2rGxOnZo5pFsPZo52+o2v/9CEAY7EGCuQj0pDi5/oCC+VvhZe31FGgnsQD6oSHeGhuKaJqAgPtY1+GlsD5KXHsWRSOmnxUXg9wmvby9hcVMfTHxxgd7kPgJhID02twfbHyE2PY3pOIpOzEshJiiHC62FHST078ptZ3byNx97fT1FN00GxjUmJZcaoJManxRFUpwCPifQyc1QS6fFO8frUukL+8d7e9n3uuPIEthbX8cTa/ZTUNne4v0V5aXz5jFFU+lq469VdrNhSctBjioAq/HvNfpZNzeKE8Skkx0YyKjmmyzdsVUWVXhkRbGjxE+X1EHEUc3a+tbOcF7eUkF/u9O5FeoVrFufyiZNyiY7wcveru/jXmv1cfvfbAGQmRhPpEX7x/FYAfn35HMalxbF2bxWr8qtIjYskISaC7KQY3tpVgapy6bwxLJ+Rjdcj1Df520eGH1uzn4JKH5ERwqjkGL5z3gxKa5tIT4hidX4VD7yVzxs7y7n76vnc98YeimsaiYn0Eh3hYeboJK5ZnEdsVM8LPVVlV1k9Y1PjUIWS2qYezSNa6Wvh0j+9SX5FQ/uyiRnxeDzOgXxqdiKTMxO47409BNVZ99XlU4mO9PD0+gPc9Mg6AKK8HsakxhJQ5erFucwdn+KMfCEEVZmclUBMpJcWf5BnNxRx27NbuOzut1k0IY3vnjeD3WX13PzoB+0xpMdHcX4u3HPvO7y1q6L9/0uA5zYWkxwbSU1jK2/uLOeMGR37L1WV/VWN7Cito67Jz5qCKjISorn4hDEUVPrwB5UZOUn4g0FS4qIO6oF8cXMJqwsqufnMqURHWPE9kv1z1V5+8OQmFOVDkzNYNi0Lr0eobmjh6fVFbC2uw+sRZo9OIic5hvm5qcRFRdDkD1BY1cir28vaPygfzpyxydx85lQWTUgbNt/uJcdGsun/zibuKN7XjOlt0nZVmqFowYIFunr16iNv2Is+9cAqXtpaStux8WjTJwInTkjjowvHs2xaJokxkTT7Azy7oZj9VQ1sOlDLnnIfe8p9BNyRtZhID5EEqWuFBbmpfOKkPNITokiOjSQlzvk3IbrjZ54WfxCP0KF4bPEHWb+/mo2FNdz27BZaA879zxmbzGXzxzJjVBLNfqdYXzQhrf3rvp2l9eyrbCDCK+wqrSeo4Gv2c/HcMRTVNPGP9/ayKr+S/VWN7Y+VFBNBkz/IbRfP5vIF49qXf++JDTy9vohTp2ayKr+SoCqZidFMzUpk9phk3tldwcTMBE6enE5eejx7yn28tKWElkCQ1zfvJyo2jgnp8Ww8UEN5fQtRXg9zxiWzKC+NhROcUfiE6Ajqm/1kJToFaWNLwP3avpJKXwv7qhp5Ym0h4HywuHDOaK5dksvoTj1u+yob2FFah9fj4aRJ6UR6PZTXN3PR79/gQNiHlAkZ8VQ3tNDQEqDZHyQ+yktGYjQFFQ1EeKR9hPSsmdmMSY3l/jfzOXtWNn++ZsEhXyN/f7eA7z2xsf329JxEgqo0tATYX9VIhEcYnx7H2OhmPvKh2Zw9K4eYSC9FNY2s31/DB/uqKatrpr7ZT35FA1FeodkfpLqhleLaJhbmpaIKa/ZWcc3iXL53/owjFne7y+o5+47XCCr89JLZJMdGERflZemUjIM+CBVU+CisamTxxPT2D0L+QJDnNhaTX+7jyoXjetRGUtPYyuf+toa3dlV0+Pu7YsFYlk3L4lcvbGN3uY/k2Eg+e+oklk7JYFpOIl4RdpfXk5Mcy4m3rSDC62FUcgxjU+NIiPZS09hKpa+FD/bXdDuWKK/zIWViRjw1ja28tLUUcGK5dN5YFuWlUVbfzPr9NZTWNRHl9XDc2GSm5yR1eZ+VvhbW7q2ivL6ZKdmJzBuf2u14wq1cuZJly5Yd1b7DUX/mIxBUlv7iZRJjIjlhXApPrCukxR8a+BidHMN3z5/BadOyiI8+9PjUe3sqUVX2VjbQ5F45LisxhszEKPZWNjAhI4FxqbFH/JbxUOy14bA8hFguQETWqOpBB2IrkHvor2/nU+VrJahKVISHxRPT8DUHGJMai1eEwupGxqfFER8dQXJsJAK8ur2MsvpmahpaqW/2My0nkYV5aWQmHrkdocrXQmVDCxEeYWxqHK+9upLFJ59yVCOHh1Jc00R5fTPj0+NIionslfus8rVQWN3IB/ur2VJUy+r8KrYW13HrxbM5eXIG20vq+MxDaxCB1LgoKn0tTM1OwOvxUFrb1N7S0VlUhIe4KC8a8FPTrIxJieXECU4em/1B3t9bxcbCGtq+qW8b2Y6K8OAROozQi0BWYjTVDa3cc+0CTp2a2ePnWd3QwuYDtTQHgswandReiAeDyu5yH+nxzoeWNXurWLG5hD3lPhJiInh7VwVFNU3MHZ/CDy6Y2WUhFAgq/16zD0GYMSqJ48Ymt69bnV/Jy1tL2VZcx9s7S2lwZnIiKzGa0rrQtwA5STGU1jXhEWHJpHRiIr3ERHrZsL+6fQQ4OymaktpmLpk7hl9edjxbi+qYmBlPdWMr24vruOOlHZw3O4elUzL5xfNbeXV7GdcuyeXHH57d45wdK1WlvtnPHSt2sKusnjuvmtv+uq1pbOVbD77Mly9a0v5VbWdPrSvk9R3llNQ28cbOclJiIxmXFocAc8alcNbMHHKSY8hIiGJXWT1biuqYmBGP1yOs319DXLSX+iY/BZUN/GfdAZJjI0mKjWRadgLN/iDPbypGFTISoqn0NRPeNRId4WHZtEyyk2LYU+5jYV4aC/PSeG1HGc+sL2JvZUOHWI8bk0xqfBTNrQEmZMQzLi2O2sZW8it8RHg9zByVxKTMeCZnJTA5K7F9v6F0wKtraiXC43zgLKx2Pkz1tr7MR0OLn91lPrKTYshMjGZNQSUfuett7rxqLhfNGY0/EKS6sZVAUEmJixzwbxeG0mujL1keQiwXViAPG0PxxbyxsIYLfv9Gh2XHjUnmsc+dRKRXaGgJtI+mqCqF1Y1kJcZQ3dDCrjIf+RU+Ir0eLjh+FDGRXl5+5RWSJ85hztiUg9oq2kZ7391dSXSkl9rGVpr9QRKivaTGR5GZEM24tDgmZSZ06wNKX2lqDfRaH+zLr7yC5szkh09tosLXzCVzxzI9J5GL5owmNT6KsrpmGlsCjE8PfQ27o6SOi/7wJl89cwo3njKJ3/xvG3e+vLNbj/fxE8fzfxfNOqqWlr7Wk7+PKl8LCTERR3053UOd8FrT0MozG4p4Z3cFo5JjOHt2DqpKXZOfx94vZPOBGvZVNpIaH9neziQCp0/LYl5uKvPGp7K30sfPn9vKxMwE/EHF1+ynoMLX/k3P2NRYRGBfZeibmpvPnMqs0Uk0tQZ5bc1GnisI0tQaZEp2AufOzuGEcaksmpCG1yN4hH7pU21o8eNrDpAYE0FMpJe1e6t4c2c57+6pZHeZj/pmPzWNrR32ef4rS8lOjGHFlhLS4qOYn5tKSlwU9c1+thXXkZceR2pcFL4WP4nd/EAf/prwB4K8vLWUl7eWkuAOYjT7gzS2BpiclUCU18OJE9NYua0MxfmwW9vYyqXzxxIMKluL69haVMvWkjq2HKhlT4Wv/VvEuCgvDW4f8Qc/Oovk2N4ZcOhNQ/H40RcsDyGWCyuQh42h+mJ+a1c5gaBSUNHAtuI6vnDaZHKSj+7ks6Gag77Slg9fs5/WgNMj2x3hRXowqKzYUsLK7WUEAkpslJfc9DhS4iJZOiWT4pom9lY2EBPp4aRJGYP2JLeh8Npoe8/Nr2igsKqRnOToDiPAXe3TEggSCCpxUc6HyZrGVvaU+7jvjT3894MDHbZfOiWDqdmJvLq9jJ2l9YDzTYo/EGRUcix3fPQE5o9P7fY5AEU1jXywr4a4KOfci3f3VJBf3kBiTATpCdE0tPjJToqhttH5lqypNcg7uyuody9S4RHaR9NnjEpiSlYCCTERZCREExPpwSPCr17YdtCJmuD0pdY3+9tbzSK9QoTHw6dPmciB6kbyy31kJUUza3QySyal09DsnED60pYSmvwBaqqrCUTGU9fUSkltE60Bdc9ZcD6ct33T1BPj0mKZOSqJmaOSmZAZT1F1I6V1zajCrNFJfGT+2J7dYT8ZCn8f/cHyEGK56LpAtpP0TL84aVIGAEsHx0WbhqWuehq7El7kejzCWbNyOGtWziG3zUiIZvaY5EOuMz3TNno7ISOeCd08OVJEDvp6PjnW6XP93ZUncPn8scRHe/GI8Nq7a/jSRxbh8Qg/AGqbWlm1p5KXtpYSE+Hl6fUHuPzut4nwCJOzErhwzmiOH5tMUkwkiTERJMVGkhYXxbr91fzplV2sKaikqqHjSG9idARTcxJZle/MpBMb5eVAdROJMRGkxUURFeFhQV4qS6dk0tQaoLaxleykGM6cmd3lCWXx0RGs3VvF1OxEFualUlzTTFFNI3vcvvLZY5IpqmliR0kdT64r5M6XdpCREM3EzHje21PJsxuKO9zf+LQ4MhOjqWtRNOjnuDHJXDhnNJMzEzjvuFHERjkngEZ4hNZgkNLaZlYXVPLQ2wXceMok5uemEggqja0Bnll/gLT4aKblJLaf32CMGd7sr9wYY4Ywj0c4JayHvmZ3RIeR4aSYSM6Ykd0+c8enT5nAis0l7K9q5J+r93H7C9sOus/oCA/N/iAxkR6Wz8hm7vhUJmU6JyROzU5kSlbCQS02waAix9C+cc3iXK5ZnNutbW+9eDZl9c3kJMW0P96agiqqG1pIio0kNS6KSZnxiMhhR8iiIpznEO3xMi4tjnFpcVwy9+DR3y+ebp/sjRlprEA2xpgRZFRyLNcsyQPga2dNo6S2iQPVjdQ1+alrbqWmoZV9VY20+IN89cyppMV3r2WnPy/i4sxE0nG2mfm5RzfrhzHGHIoVyMYYM0JFRXjaR06NMcaEDL7T0I0xxhhjjBlAViAbY4wxxhgTxgpkY4wxxhhjwgzpeZBFpAwoGOg4+lkGUD7QQQwwy0FHlo8Qy4XloDPLR4jlwmF5CLFcQK6qHnQ53SFdII9EIrL6UBNajySWg44sHyGWC8tBZ5aPEMuFw/IQYrnomrVYGGOMMcYYE8YKZGOMMcYYY8JYgTz03DPQAQwCloOOLB8hlgvLQWeWjxDLhcPyEGK56IL1IBtjjDHGGBPGRpCNMcYYY4wJYwWyMUOAiMhAx2DMYGR/G8Ycnv2NHB0rkAchERnx/y8iMmagYzBmsBKRafY+0c7yEMZeFw47hphjZX9Ig4SIXCQiNw90HANNRJaLyBrgswMdy2AgIheKyD+Ab4tI7kDHM1BE5GIR+clAxzHQRORMEXkXuIER/v4tIueLyNPAT0Tk5IGOZyDZ8SPEjiEhdvw4NnaS3gATkQjga8DngPHAPFVdJyJeVQ0MbHT9w/36JxK4AzgJuEVVnwxfryPwhSoiy4GfAj8EFgLJwCuq+oyIeFQ1OKAB9jH3deEBrgO+DeQCp6vq6wMaWD9z8xAB/AC4CviWqj4evn6k/X2IyHzgLuAWIAk4HXhLVR8YCX8bbez44bBjyMFG+vGjN4zoEYjBQFX9wDZgOnAz8Gd3+Yh5c1NHCxAHPKmqT4qIR0TmtK0f2AgHzHLgaVV9Hud1kQhcLyLxI+HNzX1dBICdwFzg88CIG0V289AKBIF/txXHIrJURCIHNroBsxx4XVWfBZ4CioEvi0iyqgZHSs+lHT8cdgw5pBF9/OgNViAPABH5soj8XESucBc9o6pNqnoHkCUiH3O3G9YHv7A8XOku+gmwVER+BbwP3Coi94jI2QMXZf85xOviLeBkEYlR1VKgCfAC1w9YkP3AzcO9InKDu+hVVa1T1XuBeBH5lLvdsH7/CsvDje6iu4FRInK/iGwAvgnch/t6GM5FYVguPu0uegW4UERSVbURaAVqgG/B8C6I7PgRYseQEDt+9L5hfYAZbMTxVeBKYDXwfyLySSA1bLObgdsB3FGjYecQebhFRD6lqruAJ3FGQ64EPgZsBC4RkYwBC7iPdfG6+ASwFTgAPCoir+B8lfwUkDhci0P37+FjwGPANSLyHWBi2CY/BG52C6NhOwrSKQ8fF5HvA804fx9RwOXARe76S0Vk/HAtCjvl4moR+R6QD7wAPCQir+O8Rn4OpIhI/ACF2qfs+BFix5AQO370nYiBDmAkUVUVkdOA76vqKyJSD5wFBICH3G2ecD8Jfl1VfyUiy1V1xUDG3du6yMN5InKFqv5eRO5X1XoAEVkHLAYaBjLmvnSIfPhwXhcNOCdjHQ+MdnvHPg5MGMbF4RnAL1T1eREpBy4EPg78GEBVn3NHkG8UkT8B56jqvwYu3D7TOQ8fBj6jqj8XkRdV1QcgIuuBapwR1OHqULm4VlW/JCLjgWmq+qKInArEtuVmuLHjR4gdQ0Ls+NF37FNEH+n8dWfYJ7bVwFIAtzdoBzBLRKaFbf454JciUgwM6alqepCHLcB8EZnW9sbmOhPnD72pH8Ltc93Mx3PAdpwTKyar6lpVfcbdbj7wbj+F22/C8rAWuABAVVcDbwNjpOMsBd8Cfobzt5PTn3H2tcPk4U1ggoic3KkA/AQQC1T1a6D94Ai5mCoiS1V1r6q+6G53PrCr/yPteyP1+HEoI/0YEs6OH33LCuS+Ext+I+wT206crziOc2+/inN2aSKAiJwA3IvzdeI8VX2wf8LtMz3JQxKhPHxURDbizFzw3WH0ibcn+UgklI/zROQ9nHw81k+x9hkR8br/CnTIw5uAR0ROcW9vBIqA0e72k4E/4XyNOk9Vf9+fcfe2Y8jDR0TkA5zWgs+p6pA/+PcwFwdwPxyJyCki8iowBadPe8g7TC5G2vGjp7kY1seQHuZi2B4/+osVyL1MRBaLyGPAH0XkrLAXdFs7y3uAHzhLRCJUdTPOp/wF7voK4POqermqHujv+HtLL+ShAOfAf617gsGQdgz5WOiu3wF8VlU/oqpDdrRQRJaIyL3AV0Uksa1vNiwPO4BNwJXiTFW1H8gG8tz1NcAXVfXSIf73cbR5mOCu347zerhWVUv6O/7e1Au5yMd5z7xEVcv7OfxeJSIni8iDwPdFJC0sF20n3I2I4wf0Si6GzTHkGHIxrI4f/c0K5F4kIstwRrcex5l652ogVZw5B/0AqroT5+uQSThzu4Jz8k2Bu36fqm7o59B7VS/l4W0dJvPdHmM+8t31O1T1/f6NvHeJ0yP6B+BlnJHQ74rIWdA+XRVAHfA6EA38yj0ApOIc+FHVMlXd0d+x96ZjzEO5u90GVX27v2Pvbb2Ui72quqm/Y+9tIjIR533iFZyRvp+IyHkQOuFuJBw/oNdyMSyOIceYi3x3/ZA/fgwEK5B71/HAKlX9O/A3nInL69u+BhGRW0XkPmANcCewSJwr/lTinJE9XFgeOrJ8OOYDb6rqP4BbcUYBrxKRbHDyADyMM0r8A5wi6HX39pD/qjiM5SHEchGyCNiiqg8AXwfW4UxlNwpG1PsEWC7CWS4GiM1icQxEZDFQqarb3UWv4Uw3cwDnogZbgD+JyAvAPpx+wR+qar67/8eACFWt7vfge5HloSPLh+MQedgGnCAio1X1gDhnnqcDF4szDdFE4NvqTNWEiFwPxKtq3UDE31ssDyGWixARuRBnRHC1qr6D8zX5l8SZsm+viLyJMyL4URFZxTB9nwDLRTjLxeBhI8hHQURSROQZ4EXgChFJAFDVdcA5OC/uz6vqMpwTTJYDPlX9mKruFPfMU1WtH8ovYstDR5YPR1d5wOmbrQUeEKcfexzOaEiiqm5387ArLA/BoVwIWR5CLBchIjJKRP6Lc6GXVOB+ETlbVXfjzNpyubvpNpze6yRgw3B7nwDLRTjLxeBjBfLRicf56uJL7u9L21ao6ntAJm4fFE5vXQruNEwyvK6BbnnoyPLh6JyHU8Dpg8O5kMHPgH+p6iU4b/TL2na0PDiGWR7AchFuAc5lspeq6k+A3wFtV0t8HThORE5U53LRhcApqloDlgssFyMlF4OCFcjdJCLXisipIpKkqoXAPcCjOHMrnigibdMvReNc4vHz7q5nAGnudgz1F7HloSPLh+MIeVjUlgdVbVHVV1T1EXfXecDzbfdjeXAM9TyA5SKcm4tl7vvAS7gX9nBV4IykgzNH7VrgN+4o+yygQETiwHKB5WLY5mIwEh2eVyftFSIiOHNtPgwEcSahjwduUnc6IXEuYHAFTr/QQ+6yWcCP3H1bcaal2tL/z6B3WB46snw4epiHVar6t7B9P4QzQlKOc4W4/P6NvvdYHkIsFyFHyoWIRKpqq4h8GZipqp8N2/c3wFictqxrVXVb/z+D3mO5CLFcDCGqaj+H+AG87r9Tgb+1LQN+Dzzeaduv4pyBnYJzqVNwLggxcaCfh+XB8jGI8pCMc4IVOFN6nTfQz8PyYLkYqFyEbfNfYLn7e5b7bwROH/aAPxfLheVipP5Yi0UnIuIVkZ8CPxVnjs5pONe6R53en5uAk9x1be4FEnBOQMkXkTGq2qhOc/2QZHnoyPLh6IU87BaRsap6QFWf7efwe43lIcRyEdKTXKhqQESigDJgu4jcBrwoIqmq6tehfzKi5cJluRiarEAO475w1+CcQboT+AnOV+GnicgiaO/1ucX9aXM+Tm/pOuA4dfrthizLQ0eWD0cv5OEDnDzs77+oe5/lIcRyEdLDXPyfu1sM8Emc/tNEnBHDIX+lM8tFiOVi6LJ5kDsKAr/WUM/oXJzLmf4QuAuYL85UKk8Cp4tInjp9ck04L+DXBibsXmd56Mjy4bA8OCwPIZaLkJ7mYixOW8nfgN+oMx3kcGG5CLFcDFE2gtzRGuBREfG6t98ExqtzBRuviHzJ/aQ3Fgi4b/So6lPD7I3e8tCR5cNheXBYHkIsFyE9yUVQVfer6nuqeu0wLIIsFyGWiyHKCuQwqtqgqs1uTxDAmTh9QADXATNE5GngH8D70H5G6rBieejI8uGwPDgsDyGWi5Ae5mINWC6wXIyoXAw11mJxCO4nPQWygf+4i+uA7wKzgT1t/aSqOmznybM8dGT5cFgeHJaHEMtFiOUixHIRYrkYemwE+dCCQCTOfJzHu5/ufoDz9ccbOsRPtuoBy0NHlg+H5cFheQixXIRYLkIsFyGWiyHGLhTSBRFZjHPls7eA+1X1vgEOaUBYHjqyfDgsDw7LQ4jlIsRyEWK5CLFcDC1WIHfBPZP0GpyzSJsHOp6BYnnoyPLhsDw4LA8hlosQy0WI5SLEcjG0WIFsjDHGGGNMGOtBNsYYY4wxJowVyMYYY4wxxoSxAtkYY4wxxpgwViAbY4wxxhgTxgpkY4wxxhhjwliBbIwxQ4iIBERknYhsEpEPRORrInLY93IRyRORj/VXjMYYM9RZgWyMMUNLo6qeoKqzgDOBc4EfHWGfPMAKZGOM6SabB9kYY4YQEalX1YSw2xOBVUAGkAs8BMS7q7+oqm+JyDvADGAP8CBwJ/BzYBkQDfxRVf/cb0/CGGMGOSuQjTFmCOlcILvLqoFpQB0QVNUmEZkC/ENVF4jIMuDrqnqBu/2NQJaq3ioi0cCbwOWquqdfn4wxxgxSEQMdgDHGmF4TCfxBRE4AAsDULrY7CzheRC5zbycDU3BGmI0xZsSzAtkYY4Ywt8UiAJTi9CKXAHNwzjFp6mo34Euq+kK/BGmMMUOMnaRnjDFDlIhkAncDf1CnXy4ZKFLVIHAN4HU3rQMSw3Z9AficiES69zNVROIxxhgD2AiyMcYMNbEisg6nncKPc1Leb9x1fwIeE5FrgeeB/8/ed8fHUZ1dn9muVbWKZVvuvXeMwU02vQUIgTeEmsBLICGBjyS8JEAKkAQCIYHQQu+94w625V5k2Vazrd57W0nbd2fm+2PmztyZ3ZVWQpZc7vn9DJK2zJ07M88999zzPNcl/z0PAM9xXC6ANwE8A6myxSGO4zgALQCuGqwTYGBgYDjZwZL0GBgYGBgYGBgYGCgwiwUDAwMDAwMDAwMDBUaQGRgYGBgYGBgYGCgwgszAwMDAwMDAwMBAgRFkBgYGBgYGBgYGBgqMIDMwMDAwMDAwMDBQYASZgYGBgYGBgYGBgQIjyAwMDAwMDAwMDAwUGEFmYGBgYGBgYGBgoMAIMgMDAwMDAwMDAwMFRpAZGBgYGBgYGBgYKDCCzMDAwMDAwMDAwEDBNNQN+D5ITU0Vx48fP9TNGDS4XC7ExsYOdTOGHKwfVLC+UMH6QgLrBxWsL1SwvlDB+kIF6wsgJyenVRTFNP3fB4Ugcxz3OoDLATSLojg7zOs3APg/AByAbgB3iaKY29v3jh8/HgcPHhzo5p60yMrKQmZm5lA3Y8jB+kEF6wsVrC8ksH5QwfpCBesLFawvVLC+ADiOqwr398GyWLwJ4OIeXq8AsEoUxTkAHgXw8mA0ioGBgYGBgYGBgUGPQVGQRVHcwXHc+B5e30P9ug/A6BPdJgYGBgYGBgYGBoZwOBmT9G4DsGGoG8HAwMDAwMCgIq/WgfEPrENth3uom8LAcMLBS6FsmgAAIABJREFUiaI4OAeSFOS14TzI1HtWA3gBwHJRFNsivOcOAHcAQHp6+qIPP/xw4Bt7ksLpdCIuLm6omzHkYP2ggvWFCtYXElg/qGB9oWIg+uKNAh+21wZx80wL1ow1D1DLBh/svlDB+gJYvXp1jiiKi/V/P2mqWHAcNxfAqwAuiUSOAUAUxZche5QXL14snknmcmaml8D6QQXrCxWsLySwflDB+kLFQPTFpvY8oLYGU6dORebScQPTsCEAuy9UsL6IjJPCYsFx3FgAnwO4SRTF4qFuDwMDAwMDA4MenPRf7sQdobbDjbxax4k7AANDlBisMm8fAMgEkMpxXC2APwEwA4Aoii8B+COAFAAvcNKTFwwndzMwMDAwMDAMFU68JXP5E9sAAJWPX3bCj8XA0BMGq4rF9b28fjuA2wejLQwMDAwMDCcCLl8QD39ZgIcun4nkWMtQN+eEYZBSlxgYhhQnhcWCgYFhaHDTa/vx3v6wNdIZGBj6iE8O1uDzw3X493ent1OQFxhDZjj9cdIk6TEwMAw+Dlc7MD7lzN5mlIFhoGA0SprT6U4gvQF+qJvAwHDCwRRkBoYhQlOXFx0u/5C2wc8L4Nl6KQPDgMBkkLLXgvzp/Ux5Bokg7yppRVmLc1COxcCgB1OQGRiGCGf/bQsMHFD+96FLRgnwAoTTXO1iYBgsGAlBPk2fKV9AADB4BPnG1/YDYAl7DEMDpiAzMAwhhnIc5QURonj6LwczMAwWiIIsnKarMoQYe/3MYsFw+oMRZAaGMxQBXlKDmMWCgWFgQBRk8mydbiAEebAUZAaGoQQjyAwMZyj88iDOLBYMDAMDk+H0TtLzyMqxN3B6TgAYGGgwgszAcIYiECQK8hA3hIHhNIFcxOK0Jcje4OB6kBkYhhKMIDMwnKEgiURMQWZgGBiQR+l0TdLzKgryiSfIYh+tX81dXrj9wRPUGoYzEYwgMzCcofATBfk0HcwZGAYb5Fk6XQkyUY59g2Cx6GtcuvqFPXhua+kJas2Jw93vH8IbuysG7PsEQTxtPfCDDUaQGRjOUPQnSc/lC8IXZMurDAzhwJ/mqzKEIIs48efXl0mGN8CjzuFBY6f3BLZo4OEL8thY0IgjNY4B+8473jmIKQ9uGLDvO5PBCDIDwxmKAN/3wXzWnzbhyud2n6gmMTCc0iAE+XRV8IjFYjD4v78Pfdjc5QMAOH2nlsWiotWFoCAO6MYy3x1rjup9Ll8Qt72ZjRZ3+H7eXNiI61/e12ery+kEtlEIA8MZiv6WeTve2H0imsPAcMqDPEunq23JGyQE+cSfH7GARYOmbkk5dp1iHuTiJmmXwKGYUJW1OLHleDOmWq1hX7/jnRwAgC8owGY2DmbTThowBZmB4QyFQpBP08GcgWGwQZ6l07G2eIAX1FWnQTg9X18IcpdEkJ2+U8v+VdIkiQ0nwrPem/JL1PbeDu05gzeFYQSZgeEkgDfAD/pSljrYnX6DOQPDUEBJ0jsNayfSlSv6G6t++d4hfJNbH9V7fX2olNFELBbeQL/aNVQoajxxBJkXRHx1pA77y9vCvu7yRbcacKqp8gOJQSHIHMe9znFcM8dxBRFen85x3F6O43wcx/12MNrEwDCUoH2/Drcf0x/eiBeyyga1DQFlo5BBPSwDw2kLQjZOxyoWdO3j/kyqRVHExsJG5FR1RPX+vnmQZYvFqaYgN0sWiyAvYGdJC746Ujdg3+3nBfxjYxHe2lsZ9nWnT5pM0LdqaXM3xj+wDgV1ncrfmIJ84vEmgIt7eL0dwK8BPDUorWFgGGLQS7CtTkn9+PxQ7aC2wX+KbzX9UXb1gA4oDAzfF8F+JL6eCmjq8uKLQ+qz1p9JtTcggO9DCbI+eZAVghxZ7XS4/VF/32DAG+BR2eYCIN03b++twjNbSgbs+/1BAe0uf8R+JHYUerGDJPjRKr+bEeQTC1EUd0AiwZFebxZFMRvAqbU+wnDKo6nLi+AQJEjQvt+h4qen+mD+f5/l454Pjwx1MxgYFBBlNXAKLcs0d3nR4eqZPF7/8j78fcNx5ff+KMjdsmIZrf2kbwRZtlj4g2HtH8caurDg0W8VS8PJgNJmpxL7A4IAX1DokeD3Fd3eIDwBPqKX2xXGg2wycFJ7qGt0JhPkU66KBcdxdwC4AwDS09ORlZU1tA0aRDidzjPqfCNhoPrB6Rdx91Y3Lhhnwg0zwmfynih4gmoAOpCdDQBwu919Pq/v0xdHGqUA2eHojOo76IHnZLoPSVvY8yGB9YOKwe6L4gqJaDpdfX+WTzQi9cVj+zxIi+Hw83m2iJ+taHUpP5u4/vVro0siajX1DcjKiqiXKTiQc1j5eeu2bTBwXOT2NbkBSGLDpi1ZsJm0793fEIQoAt/uOoCGVONJ8YzsrpMmDGkxHDocXfCYgE6XoGkXL4jYUBnABWPNsJoin384bNy+FwDQ3Noe9lwLS6R71eP1Ka9XVEptqqqpUd63P+cwfDWnHFUcEJxyZy2K4ssAXgaAxYsXi5mZmUPboEFEVlYWzqTzjYSB6oeqNhewNQvHu82D3q+d7gDw3WYAwJKzzgJ27YDdbu9zO75PX3QeqQOOHEFcfDwyM5f3+v4ALwCbpAL0ZaZxuG35hH4dd8CwcR0AKOfPng8JrB9UDHZfFIqlQFEROJPlpLsGkfri93u3YERsHDIzz4784U3rQPYGibWZEWO3IjNzVZ+On1frAHbuRkracGRmLoj8Rvm5njFrDiCLB8tWrITVFLnUmHPbJlhNkgq7cMk5GJ6gJfvluyqA3KOYNWcOMqcNPyH3xY7iFiyZkBx1SbR9G47DbCzHnHFpqHd4YLcY4etwYNWqVeDkyUBOVQc+3bwHFy2dh8yZ6dE1RO6/jMkzgf2HYI9PQGbmspC3be8uBMoqYbZYlb6o2VcFHC9A+shRQHU1AGDy9JnInDsqumOfZmBVLBjOWHDo24x8IBGklmDJEhfXg0ISLXhBRHN3dLtJKVtNR7lcSi+NPrr2aN8bx8BwmoPYlbq9p07mf6cnoKlQEQ50iIi1GPu1j55T7pNAlNYJ2hrQk93C6QvC6QtiQmosAMAVxhLQ3C1ZMHg5hvl4EXvKWqNreBQorO/Eza8f6FNcLGnqxqS0ONjMBgQFEQFehChqLQ3E+kJ82y3dPvx9/bGoSnMSX3akbcGJxYJ2vJiJxYLq7zPZYsEIMsMZC7Jd6lB4gOkAN5BF4r84XIfMJ7OiyjwmmfbRHj54CvkqGb4/Ps6uiXqyxSCBTDbdfn5Ichv6igAvwO3nlQ1AooHdauqnB1kiZNHGEbqKRU8EmVSwGJtsB4CwZL9FJsjk2G8W+PCTV/ajpt0dVVt6Q4dLsiaUt7h6eaeKoqZuTEmPh8lgQJAXlHOkfcgdcmIhidXbiprx3x3lSnJfTyC+7EjVQEjFD9o6Z5QJchdVLs99iu1OOJAYrDJvHwDYC2Aax3G1HMfdxnHcnRzH3Sm/PoLjuFoA9wF4SH5PwmC0jeHMxVCWYqKPPZAbddQ7PHD7ebijqF2plnnru4LMcHqjsdOL+z/Lw/++nTPUTTmlQD/LXaeAitzpkYiQN4LKGA6xFmO/RAVFQY4yjtB1kMN9JsgLEEVRIYLjZQXZE44gOwlBlr6nulsmo/2s8esPChpiScQWQ5SMyuPnUdvhwZThcTAZOQR4USGy9HbZDrd0fXiZ2BOyGk0sJhOHSJOL7nAKslE6gQ43RZD7UI/6dMOgeJBFUby+l9cbAYwejLYwDD0aOj1o6vJh/pikIW3HUBI+eiAdSGWWBPxoBqG+WixOpcx8hu8HMuA3dTIFuS+gn+sOtx/JsZYhbE3vIASMVl2DvICGTi/GyIqsHnaLCQ5P5IJTn+XUYuXUNKTFaxOfCfGLusxbLwryHe/kIM5qwprpwwH0rCATskhiPgl5/bHZOX1BLH9iKx69cjaumDcKoihii1weradEQhoOj6QMp8VbUdfhkcYAmRfTtZwVBVluN7GPRDNmEFtJJIIcrooFUZDpknisDjIDwyDif/67D1c9v3vIHzwSqIfCYhHUWCyknwfCEe2Wg2s0g1Cgj2Xe9BOKU7U8HEPvIM/E6bjhxYkEPdl0uE/+qqVEQab9vp8dqsV5T2/XLLPTsFuMES0WjZ1e/OaTXFz87x0hrzn7oH4CWu+s3iZQ0+7G1uPNyK/rVLy241MkBTkcQW7VKcikBf2xtxU1dsHhDqDO4QEAZFd24M09lQCiyyPxBnj879sHAQDxNhNMRg5BXlSugVNjsQho2k1WBqPpw0aiIEe0WEQu89buohRkRpAZTjUIgjjoWxMPFKpl39f24pYhbcdQDv48pQAMpMVCVZB7D/zBKDYK+epIHd7ZVyW/X/u+odyClJHzEwtyrXm2atAn8DxNkAdnYwpRFPHhgeqobFV6dHlCFeTiJif8QQFtzvDtt1tNETcKqemQYntbmLrKhPhFu0NeT0l6ZIOgug4PGjq9iLUYkRpvkc9Ffe8lz+zEx9k1SnvI/UxCXl926yM41tCtaVNJs1pb2RCFyrGxoBEFdV0AgDirCWajAQFegF/2gbs0FgutB5moy9EoyGTi0OH24463D6JRXg3KrmxHvcOjXA86lBrkE+j0qNevL/WoTzcwgnyK4t6PjuA3H+cOdTP6DDoQV0WRaHAiMZRJNDQ570+QjgSXL3qLBSHRPRH0ez48goe/lHaI11ssvk+mfnO3F5f/ZydqO/qXJMPsHicWpH/PRAX5aH0XPjlY0/sbw2AoFOTC+i488Hm+sszfFygKMkUq6zokZTQSwbeaDBHFmXpZVQVC4wrxINPkbsuxJjz4RX7Y76KJGT3hF0URn8u7+vl5AYX1nUhPsCFGLq9GViZFUcSxhi7c/1meuiEHr1WQI1V46AnHG7s0baqkakQbOA4BXsDh6sjbaXdS9pR4mwkmA4egoHqQaeGBWCx4+bVoFGRikyDxWRSBzUeb8PS3RQCAa1/aixX/2Ba2ioW+n+jzPBPRZ4LMcdw9HMclcBJe4zjuEMdxF56IxjFExpEaR1SZrCcaQV7A67sqei0TRFBHBdChnplGmyxyIkAPHiQZZQCqvCnLYdEENf/3tFh8H4J8rKEbBXVd/d7Zir53sopUYvD7z/Nx02v7satk4Eo49Qa3P4g/flWgWRo91RHN5Ol0xaXP7sTvPs3r12cFQVSe4558ugMJogz2x7JGSLCfF5RrTWJ0pPYbOQ6RbovaDjW+62NQOIvFbW8dxHv7q8N+l5/nqZ/V78qt7UR5qwsXzxoBQKoVPDzBqhJkOZ6GayOvs1j4+lC9g+C4TkGu0BBkYG1ePX744p6IFWDaKXU9zmqGyWhAkBeV7wuXpKcoyIoHuQeCHGEgocc7XhAVNVrQEGTt91qMhkEZpwVBxMHK9l53dBxs9EdB/pkoil0ALgQwDMBNAB4f0FYx9AheEFHv8PQp8/hE4UBlOx5ZexR7y9qiej/9sPl5aWvNl7aXDclAPJRlyzQEeQADkKsPiTCBKCwWNPT91R3BoxgNyMDc33uYvo/+9HWh8vOu0hbsLGnFja/tx/7y6O7J74t391Xh7b1VeHl72aAcbzCgWizOPIJM0B8LW1AQMcxugYEbPItFk0zE+kP2Oj0qGSOfJypwZwQF3GCIvNU0LYDo4xqZUEe7YqZRkKmf8+s6AQDXLpby+gURSE+wwSoTZCLWhIuBigdZVNvYl5VMURSVST05D5ogAxwaO30QRaDLE37CTE8i4mwmmI0c/LygENWeyry5o4jvkSpp+HlBI4aQ9guaahxaJMda4NMdK8ALaOj0YCDR7vbjRy/tVawzJwv6Q5DJ9ORSAO+IoliIgckvYogSTV1eBAWxXwFxoFHvkIJztEZ+Wj3w8wKe3FSExzccx4aChhPSvp4wlEtHQY2CPHDtUBVk9ftf31WBSX9YHzLgKx5k6vBfHanDTa/tD/vdegWZJL70B+Gy5/sC+vwaHF4l8AeCIhaMlaqjkCzuEw3Srd7TyKtHng1fUEB5izPk9QMV7YpyGQkNnZ6TMk/i1x8cxl++Kez1ff1ZYRJEEUYDh8QY86BZLEiZs75MNl/aXoYrn9ulWe73BgR4/Lzi141E8LkwCvKG/AbsKWtV7BlA6Aqh0yeroRFKtulBE2yapBGynBKnVsmgLRYkpoSb3AUVUij9XljXiVVPZkU9ma5zeJTyaAFeQJAXlJwaQFKQSYWKSLGNJpdxVhNMOkbrpOoTdyhl3rQKck8T14gKclAIK8bQX0WTZQMHJMaYQzZ2+fBANVY9maWZDH1fkFgyIjHydudDgf4Q5ByO4zZDIsibOI6LB3D6jAyDhCAv4G/rj6G6re8eTDIDPRkU5AYHaUt0REdfuodkSg9FpqziRxNFbD3ehPEPrNP4yU4ktApyz+fe0OnBv78rjopshEvSe2TtUfCCGBIcFYsF9b33fHgEOyPYE/QKclFjKHGKFgpB7uckT78SQci6nxcwzC4l6/Qnaak/IJ6/k8GrJ4oi3izw4b6Pj3yv76EncFc+t1vzGi+IuPn1/XhlZ3nEz9c7PFj2+FbsGESrS7T4Orceb+yu7PV9/bk3eUGEycBhmN2iqH8nGqQUX18Ek8c3HEdubaeOIPMa0hPJYmHgQtX1u947hJ+8sl9roYtgsQj3nIQjbv4wSXqv7ChXFNvEGLPy+vB4K8xGDgZOHRfD2RD0VSxq5LG0pDm6WEbsFaRN9Q6vZiJl4Dg4XKGVQWjQwkKcVapiQYMoyJ4Ar5w36TN3FGU8DVSmIF1mMCiIYWtE062kuyzOaoLVbEBNhwe/fO+QsqJQ0+GBPyjg3X1VaHP6sPqpLJQ09c8qR0ASCvVbhA81+kOQbwPwAICzRFF0A7AA+OmAtuoUwcaCBqx+KqtfA2NurQMv7yjHXe/1vRA/SWwayKX5cNhY0BCx1A9BvTwbjnYwCeoIMpntDoXSRCsZH2VLSTlZRc0Rlxb7gue3leKyZ3dq/naoukM5T/rYvU10fv3BYfz7uxIURRGEiK/sd5/kKgMmIXB6j2JPPtNwio4+KJNklf5AVVn6abHgtedCBmZ/UECSPHD2ZdLlcPtRFkYpjQakuP7JsJFKWYsLWbVBfH6o7nutMNExrdsXxA9f2I2fvnEAgJRc6w0IGnKlR0u3D4KoJjD5gwI25DcMyXPuC/K45Jmd2FPaN7Lu7cekPSiIMHAcEu3mHvtnIEEsFg2d3qjyCfS1mglCCHIkiwXHRbZYdHgUUhaiIPewUUhvBDnAC2ju8uKv648pVXVogpwSZwHHcYgxGxUSSJ9nvFXa8uHJTUWa6knED1wfpRpKYl5KrAUBXkR5qzZmcJSC7IsgGrVS1UGMBg7mCASZ3qyDVywW2ioWLl8wZIXHYlRpXTpFOAO8EJ4gU11PP5/xNjMsRgOONXRhXX4DthY1AVD77IMD1fjsUC0qWl1Kmbv+gqyCjDjVCbIoigKAJgAzOY5bCWAWgKHd8WGIsL24FRWtLuXB7wsOVzsAAMca+k4yiIIc6QGMFvoAvuIfW/H0ZinTtc7hwZ3vHsKvPzjc43cQi0W0RIcOjv6goBRW76vVMbuy/Xt5YAE1yIhQbQZ//uYo5j2yGQV1nXhy0/F+f/eTm4pQWK9e2+3FLfjhC3vw9l4puPdFQSaBMhrLNAmu9Z1ebDsuDQSEIOvLsvW0k164AUtPAI/3M8EOUP2N/bVY+IPatmgIsqIgR//dlz6zE+f9c3u/2kIwEJ722g739yphR6vmFd9jNURPYg5VO7CtSLqfipukAdnVQ1Ii6fs2WS3713fFuOu9Q9hV2orS5m5sOx654kJhfaeyNfBAoKbdg2MNXXjoy4I+EfRwZILGI98cDVHqBUGyWAymgkyWp9/bX43H1h2DKIookH264UBvr0z3szcgKBYJi8kQkeAbekjS8wR4TJB3tIuYpBfmOQmXCObTiSn6mJRgU/c5I2Q5xqISZPo46dTS/Zu7K5T2E5U8eoLcjdHDYjAs1gJ/UAh5xgwcp8TrcKJRkBdC7otQi4VMkKmENTVJT5vo+LM3s7Hmn9s19zWtIKcnqDYUf1AIm8ipVZBpgmxSJv8AsK+sHYAkJlhNBjjcAby2qwIAkBqn3RSGIMALUT1zjV1ecBxCNpcZavSnisUTAHYDeAjA7+R/vx3gdp0SKJYVPTqQFjV290h4nv62GJ8fqkVOlVoGJtqgXdUlbSE8EAryV0fqMO8vm1FYrwbSmnYPnt1aCkBVG0m9xkggfqreiM4trx/Af7eXacpz+XlBSSiIpEgQbCpsVAaCFreAa1/ai/Of3o6tx5t6/FxPoEmAPlHjvf1VeH5bWdQZvE9uOq65pgTk8+SaEQWCDt7kOkba1YmouZ5AzxOxIK8dRMgxzDoFmRdEBHlBTcQK0/c+3VaqvCBqrl2CzYTKNle/bQxkkOjvPaxfvq13SH5XPy8gzmqEgdOSxbxaB0p7WEat/x47xqlJQf0jtoQQl7U4sfIf27CtqO/lugjoAbCn8+0NPZVALJXrvrp6mICQPmmR1TLi09xV2oprXtwb0QIiCCIue3YXzn86uslKXq0D93x4OISMiWJonXhBFHutNEJ/pqdJf4AX8ElODQ7pnnlelCakSRE8yAcr23ucWPQHtNf+9d0VWJffgMv/s0u5TgSugIhtx5uVWsWAtLRtM0tB2BvkUedww2jgMCktrgcPshqvixq78fgGrZBANuzQx06SpKf3tALhRQI6NyNAVdkApD42UeQtwSYRZKvJGNaDPJwiXvRdQc6RCD29od3lR3qCDWajAX5eQGWrS1GnAalv1Ml/6Hm2u/wQReCXqyfh67uXAUBEBdnRo4Is/b6/QiKt9LNIn3d6vFZBDjdO048OPXeJt5lgMal9vFf2abe7/Fg0bhjGpdgV5Tc1LnTHSJcviCkPbsDz20pDXtOjqdOLlFirhpCfDOhPa64CME0UxUtFUbxC/veDgW7YyQ5RFFHcqCXIrU4fLvr3Djz4RUHEzz27pQT3fZyrkClBjE7panX68Je9XnyUXaMoyH5d0OgN0sMpvX9zoUQsy1skYqhXHMhDShIrIqFBDiy9qdkFdZ04UNGuTdKLUkHu8gbw83dycMOr+wAAblk9dHqD+OV7hyMqbn/4Ih+vyzNcgsWPfYsHPstDh8uvkIAAL6BcpwTk1kj9cdG/d8Ab4BHgBdz/aW7YZfimLi+e31aGW+UlaBpE5SZWEnK9fkUp871NLkgwdPp6fp9b9z3kWKqCLL1+zYt7MO3hjWGzmAk2FDQoBfEB6VrR127O6ESIIvpdps1BbVBw30dH8Py20rCTkcue3Rk2wOrfW+/wKvU8LSYDYi0mzXP1g+d2R0W6fEEezV1e/PqDw1ETGU+YrPnaDjdueHUf3t1X1eOEeUN+AyY/uB67Slqxp7QVgigtlT+7pQTZle0h7/8mt16ZmOvxzr4qfJJTq/z+fQhyJLLv9gejUpBJn7TpEjn/u70cnZ4AOj2BsMIAIdKdnkBEq9Ph6g7sLGmBPyjgvo9z8dWRek1yGABM/MN6/OYTqU48uVcEsffaxDTR0CvI24tblJq9Bys70O0Nhvh0eUGQCLLdEnKsNqcPP3ppL5b+fUvYYz/wWZ6mZGFPOFDRjtvezIbbH9SUDQOA3aUSkSlr0ca0pw568dM3s/GPjUXK35q7fcoyvDfAo67DgxEJNqTGWZRz00+WOHBKYup7+6vwkq56y4RUactn/UYf5PcAFa+J2Bnu2dfnq9C/m3Q7ciTICrLdYlQ2P6HjFa1wCqIa84hKWx9lVQa3n4fdYoTFyMEflMaN8bJiLp0Pp1osdM/9psJG7JGrPc3JSMTc0dLCu0lHColNjlaaiRKrKsja/uqi7kP6NVpBDvCRPMgibn79ANblNegUZLOGIFe3u1Hn8MDhDmBYrEVj3zAaDMipasfd7x/Cx7JdkYhnn1IxKRLaXL6wJHuo0R+CXA7A3Ou7TnM0dHqVbFZCcIjVYl8UGbHN3T5MHxEvfS6KgfhQVQcEUVoSq42QKVzT7o5Ye7Gi1YWFj36Ld2X/Fml7nM2ENqcPl/9nl+b9TuXcIqso3d6A2ge9KIF+XkBDp1chEWY5wBCCXNnqwlHZkpBd2Y7b3zqoBBhCwspaXHC4/eiW48bCccPgCfAR6/Guza1XZr0A0NzlRavTjw+za3DFc7vQIKuGrU4/eEHUzOSJ37ei1YXCeqle78cHa3HPh6GWE1IUPpz+2yW3jSx7kdhFt7k3FZUE+t6sPG4dgSbfSwIwKRF0pMYhKcKKxSL0ux78ogC/pwr4SwRZfeOMEQkAgE9yavHgF/mKEtPu8itLuA2dHvzxq4KwEwBCflq6ffj8cB2e3FSEH764W7nmvCDCG+BRWN+FJzcVhXxeP6DWdnhAblWLySAttfbDQ+ry8XhiYxG+zq3HuvwGCIKIX39wGHvKIvtXyaBDE8b95e3YXdqGh74swN3va++Zd/ZV4VU5we14YzcEEXh1Vzn2yWpQQV0nnv62GG+F8fX96oPDuPBfodv4AsDDXxZoBiN94tG7+6pw3X/39nD2KiLZRe7/NE95pqKyWISpa7pqahoEMbwCfZSynNFKpy/II79WmrRe/cIe3PTaAbyys1yZBNC5Ev6gAFGEspmEWhdX7JUg07Yt/f1zy+sH8N7+ajh9QWw5JgkMnZ6ARqTgBRFGjkOS3QynL6iZNLXIk4VubxA7iluw+qksJWGLF0R8mF2DW9/I7rF9BHe9m4Mtx5txoCJ0ErVdJtn0pKHD5UdFp9SWfJ0YQlRGX0BAncODjGExSIhRPdT6SYCBUpCJVZDGhNQ4ANpnlNwr8VaTpk9IbAoXA2nRxc+Lmjhi0ZFKoiAvHDsM+8rb4Q3wmuuSEKOqvKIoKrGCxOfGTm9UYpPHzyPGbITFJO1+V9PuxrgUu/I6x6mWOP3Y+fN3cnDvR9LKCU3YabKFdfKJAAAgAElEQVRv4NSxl1bwSZI1aWJA11baDkO/NDZFJe8uXzDknrYYDRAEYEdxCw5Xd4Ces8bbTCH9vK+sDR1uP5LtFqXPAcAf5HHNi3uxNq8B938m1RAnOzEmxPROF9tdfqScJgTZDeAIx3H/5TjuWfJvoBt2soNOmCIPLpnhRnIL6JcBV01NAyANCr0lwx2SA5HDE0C9wwO7RVvSBgBW/GMb1jy1XfO3Lm8Af1t/DKufygIAbJW9f075eFaTAVlFoVs+0wSuus0dVu1poJal6WMere/CxN+v03jdgryIhk6P0gexVpNksZBjw2u7KnD3B4cASDv9fHesSVGnj1OD5vxHvsVTB+WMVzmwHwuTLNbpCaDLG9S0i7ZA1HZ48MyWEs1nzp2UqvysD5bKknG3L0SxJoNEoj00EHTpBhchzNJvb2Xe1G1GeybI+onW/Z/mIa/WoQRg/UpFb3WQc2vUwc/H85qs8DHJdsRajHh/fzXe21+NZ7dIKu/f1h/DDa9KZeLe31+Nt/dW4U9fFYaonkQdIQRh3uhEFNR1oaxZUr1+92kupj+8MeK56p+leodHmXxYjAbYLUZ8mF2Du96NnARbUNeJq1/YrVE5tx5vVqwsVpMBRU3d+Dq3PuwzQkCSubqoZ4ac18qpafj2qFQhheDhLwvw2Lpj0mfl+6qkyamQnQ9lBeZIjZZ89MWvPSE1FmU6gvzQlwU4UNEelcc5UsLh2rwGxbeq97T7gxJhEEURu+WEuHClAKePlISB/NpOPPRlPly+IP6+/hje31+tTJIBrYJ2zwdHcMVzuzSk4T9bSzAmOQaAShCau7yakpE0sRJF4EaqhGG4fqBJnTfIw0tVEiC48rld2Hy0SflOmlTzgjQZHibHApqQ00rvLW8cQEWrC9vl+0ofJyKhsdOrscWFI9TELkQn3JHViBdvWKipbAAAw2WVkSjIo5NikBRjViax+8u1JNxg4OD281j5j20hOTQxZqOiWtLPKIlNSbFmiKIaX0lsCrfKoleQacKpr/xACPDFc0bA6QtiX3mbZpJnMxmVn0UR0M/NgoKIlm4feEGEIIhYm1ePr3PrQ9rkDgRhtxiV7aG7vEEkUXHf7Vfvl56eV5og07aC5FgLun0BXPzvHXhlp7T6mRhjRlAQNfGf70lBps6bqPmApADreUZCjBkkncMT4CGCVpC1Fgu7xYg9ZW1weAJIsps1HvB23cTzrL9+h/95WVrxpYl0JLS7/EiOPbn8x0D/CPLXAB4FsAdADvXvjIE/KCj2CgDw+NWM0p5Ak067xYhF44YBAH76Rjb+vv5Y2M843H50eQOKSlna7ERQEDEpTZqlk5k3STJw+oK4+oU9ykN6+5sH8fIOtRwTJyu29K5Gu8OoYzTZWvnkNjy3tRRVbS7FQ1tY36kJjnQweP9AFQRRJeOAFCw73AGlD2ItJviCgtIeQCLidFAlhE6/VEhAAvGPX94XMhATcr6zpBUPf1mAAC/gOWqpngysBCYDh5mjEsIeBxAVJaypyxdCrA/J16a5yxdCfklAon1xemWhtwogvBzwunu5v8L5gT/LqVUCsJ7QEMtGNMqJPyhoAq/BwGGavAICqMmmVW0uVLe70UIt3X50sAYX/muHQkgEQVQIDVG5lkxIln6X72Oi/umRX9uJ/2wpCVGc6hweRVWxmIywW6TgvaGgUXNv0KTo/k/zcLjaoRkIf/tJLvJqVQJC6qO2dvuwPr9Bs0NfabMTL20vw1ty4qVTR5CtJgPGUveZfnASRVG5pnUOT0hiWm2HB7Udbjy29ii6vIEe1U/9YDw7IxHlra6wXmKaeH6TW68k5tLorTKP3WIMWbH467qjWPGPbXh5Rzm+OCxdP6Ii0cZP4lH9/FAt3t1XjTd2V+C/O8rxhy/yUVjfqViCaEK5sbAx5G/egIDMqcMBqAT5qud3454PVX/zwSZeUc1anD5tWTP5uXP7g0rSIH3eXj+P6Q9vxJXPaydRZS3SPT5vjLRErvWKCjAZOCTKiaKd8nK7PyjgKWolhISJg/Kkvbdd9+5+/xCe31aKJzYexxX/2RVWmadhNHDYWNCo3NsHqzpg4oDV04fjtVsW4/olY5T3kufU6QuiscuLjGExSLKb4ZBtMNmV7YogE2sxKjsFVre7Q0qpZQyLUUgVPbEg4wkpwUj6WSXIofcb/Tzo/bN6WwKpgXz2hGSYDBz2V7Rr2hZjUQlygBcQbv5X5/Bg0h/W496PjuDRtUfxxIbjuOr53ThIWZ08fh4xFil5zR8U4PQFEUt5kOn7pLzFpeSe6JFKeaKNlII8ItGGmnYPjjd2o7rdjThZcX9/fzXep3Yc/PM3R5UVFUCrIPOCiHMnpeCny8YjI0klyEFBDJnQJMSYQLrVE+B1Zd7MGgV5yYRkHKxqhygCNrMR8RRB1scuusIIrd7r0ekJKDah5DAC01CjTwSZ4zgjgFtFUXxL/6+Xz73OcVwzx3FhzbnyttXPchxXynFcHsdxC/vSrsHETa/tx21vZWsU5LV59dhd2qp4h+ocHjyx8XiIN4y+iWePSlSy7QEo3qRWp0/jHZz/yLdY+Mi3yqBNbvDJwyWC/Ni6o6hzeLBJHkDIe0h26bHGLpw/I115jTyLLqpczBHdMhkviIrC/OEdSzEq0Ybjjd3467pjuOm1AwjwAi57dpcyEFlMBg3pI4HRbDSgzuHBlmNNSrAiy6axViP8QUHjeQoKosbTSpS8VqfkT9LXP6cTL0gCX4fLj9Lmbk1gemdfFV7MKtNUlVg0dpjmuyalxSlBVg9e0A3WBWpfB3gBebWdMBk4+IKCMnCRtpLdlJQEOcpHRkAU5Ha3H18ergshrETNy6lq79Hz6wrjUd5Q0Ki0xePnNROftgjEMRx8QUFX7xOYNkKdUJDlfLKqUFDXGUKyiPWo2xdUAjHxfk9Nl8j2S9vLsD4/8qYxa/Pq8c9vi0Mmo52eAJzy42U2cpp7hVYlaSJCiPO6PO3xiIWpyxtUkmBaXX48uakIv/nkiLyEL+Kq53drEpTo8211+pEaZ9UMnvoa292+YK+T6t99kodXd1XgjV2VGmKrXyrVD1BzMhIkRZdaZifPPp3U9asPDiuJuTTItSbPhL780pyMRLS5/Hhuawl++sYBvLOvCuvk6/bPzcXK+5w+aRWHJjejkqRJA/FLr6X6/2hDF5ZNllZyiD/080OqbURfWSFjmFZB1idbbqgIKN58EpfmZCQCkCbg3d4ALn1mJ376ZjZq2t2a6iiEQB9r6NJMmgh+MG8UAKncFbFa7Clrg0FO0gPU5fb1+Q3KKiBBrMWIDw5U4+UdZZpJnC/I45vceryyoxweP4/yFifW5jXgyU1FqHN4QnY708NiNOCPl89EUBDwuCy8HKhox8QkA2xmIxaMHYbL5oxS3k+ubXW7G4IIZCTFICnGIo0DviCau70YmWjDu7edjc33rVJsceGQkUQR5HAKso4gm3uwWNR2eHDOxBQYOKIgR7ZYEKHFbjFh3pgk7C5t1ayC2KjYHqk6CRGZvs6tR1OXD3UOD47UOPDBgRrlPW4/j1iLZLEganGcRX3G6RJu7+yrUhR+2vpoMxsQSxF2etwZmagVbpLsZkUoenarVph5Z1+l8jO9ehUURCwaNwx/umKWRt0G1NwaAqvJCL8cjL0BPrSKhUnqV46T1G3ynJmNHOIpZVgvUF02Z6TyM12lwxvgFaHg5tcPYN5fNmP5E9vQ5Q2e+gqyKIo8AIHjuMQ+HudNABf38PolAKbI/+4A8GIfv3/QMMxuQUWrC8VN3Rgll475MLsGN7y6H99QStSLWWW47NmdyKlqx6bCRunGoIL7mGQ74qjBs6rNjeYuL/6+/jh+9qZ22Ywu8E0U2ElpkgqzNq8Bj609iv/oBrlnthTjYGU7nL4gJg2PpV7h5O+R2tLq9IckqDncfiWgLRibhFFJMXB4/HC4A2jp9uHrI+p5GjhgbLJdE7z8iveVw7PfleBOapmbKLt2i0lKvNAFRnpZWS0V5cf4lFhMS4/XvJcuKk4KjV//yj6c//QO1LRrky6e3VKCH8wbhTXTJcVpZJI2EE0bEa+oJIA2APuCvIYgT6WU0+MN3fAFBVw8ewQAYOU/tuHWNw4on9dvhMLzYgi5IcuLLd0+3PvREdz1bo6iBguCCKf88/r8RtzxzsGIVU/CKcjNlGfd4QmgkUpGoYNaOJsF3R/6JD0OnCYBpNXpQ6vTp1yH/LpO5doeevgCxFtN+FxWFcMlX41NlpSOnKoO/OK9Q5rX6PGY3Gc0ySN93eSSjmcxGTSTIfpnshIDqNfkYJjqI4C0bElsD63d5Px8+Ca3Hj5ZPfrhggzl/X4NQfYhNd6KWGrwrNApuo2dXji9QUxMo59PLYjf12o2aAjy5f+RamxvLGhEtzcQMkDNlkkgPdkmXsBIJdSO1nfhyud3o9MTUFYLzp8pTa71qytEPX1qczG2F7fg4S8LFHKgrzDS6vRpVs8SdZ5EulxgU5cPyyalgOPUZVva6qMnyKNlgvzIN0fxnI5A/OmKmajpFjTiQYzZiBvOHgtA8uzf/f5hVMqbNbn8QU3b2yiyk1vrAMcBmdPSlL/NHyP18X93lOOj7Gq8vbcSvqCA3BqHopQSdfnjgyrJAoAZIxOQOU2KRX9bfxz/2KhOtK57aS9+9cFh/HX9Mcz440bFcgNI99DFs0bg3/8zH49eOQvhMHd0Im45dzxuPmc86ju9cPmCKGnqxrgENaZZzVStXHkcIwnIo5JilGvkcAfQ5vQjJc6K5VNSkZEUAzo/LkMXR0clxSjPo0ZB9hIFWfreTXKSOFFPI9nMfrZ8AiwmqWIEneeit1jQOG/GcOTVdmpEEpogR5qURqqDTkimIIhUkp5BmfxEUpAB6fnzBwUs+auamJkaZ9WsnA6jLC8jdTvJDaNENH3ibDm1slrvkOyLgiBCFNV+pc/bwGmfJUBS8BUF2a9VkJu6vLAYpc9bjNLkivSd0WDQ2C/08Sc9wYY3bj0LgHZ167x/bse5f9+KdpcfO+R61GRsTY49xRVkGU4A+RzHvRatB1kUxR0AQrMJVFwJ4G1Rwj4ASRzHjezh/UOG8amxqO3woLC+SxkkCLKKVUtBeoJUsuSaF/fi5+/k4A+f52uWWBNjzJolCgA4UNmOoqauiFu0jo2XLpfRwGHycJWkbSpsRIfbr5C/axaORoAX8aOX9kIUgVRqZkaCGyHAOZWh5OCGV/fjQGUHLCYDrCajtNzmDijK5/NZKhkfHm9DrNWkCV7kQfb4eRypcWgebJKlHms1ws+H1rakH2CPn8fxxi7sLW9DSpxFsaSox6YUZJmYkcFWX3ItKIj4yw9mKYl0yXatD2/K8DjccPY4rJgiqVdzRqtzQG9AUB5io4HTJI8QewUhyG4/j6yiFiUwkYBJgoQ7wCv9eM3C0cr30/juWBP+8vVRANKEiL4VqtrcOFwTmhiTU9WhUToIbNRA+PiG4zj/aTXBiz5uOJvF5XPVR9AfFJQ+BqT7SF/78uODNcq1zqvtVK5tgs2ES+eMxIb8Brj9wbD1YeNspoi1NO1UkCdtbqLaQuwyTW7pNSsVuONtJo1nk2Tck4zwi2eNCDkeGeCP1DjQ5vLDbjGivtOjkLxXdpYrAwVNHEn5qiAvoLzFhbQ4i2aSUdvh0RC8ennb2rQ4K1ZPS8N1i0eHPX8AsJkM6HCpny1rcaGl24c7383Bpzm1GuUKAGaNku7fEqrUF/ECEoJMK94BXsDjG48jt8aBPaWtynUkPsOZI9XzjDEbNeTnwpkjNJOYhWO1cbHN6dfEPn3c02NORiKSYsx4dksJ/vhVgabP9AQ5Nc4Ki9EAX1DAU5RyDQA3nD0Ow6ycZoVg0bhhykTBHQhib5maxJtX24mrnld3DaRr3B6pcWByWhxev+Us5W+jKHLY3OXT5GQQUtXY5cWXh+uUFUIAOGdiCu5cNVFT8zWbisO5OrX6VWrHQmJdumpBBm5cOg56pMVbFRJPbHglzU64/DzsJvUi0Z7cdLkdxP+fMSxGSZhq7vahzeVHCkXiaAVZH5NHD4tRVOF7Pzqi3CfESkSu/eMbJGWbWCz0kyoAGJdix3nThyt2Bo3FQv7c5784F6/cvFjzuUtmS3GLXpmg4yARKJ780Vzlb/FWk2aXPBptTh82FjRi0oPrAQAxFsmbS0ghLXSFSzw9WKWlPvo4N4xSecMpyJFAC1tPf1uM33+erwgd+iofgGRt0tv0DAYOskNU8iBTg83c0UkKCbaYDLCZjEpcMBs5zWRfT5DjbSasnj4c88ckKeJeY6cXdQ4PnL4g8mpDx7CTUUHuOVKFx+fyv4FEBgB6dK+V/xay1spx3B2QVGakp6cjKytrgJvSM7wt0g0mikAyr974ExINqOhUb5Lx9iAumcDhz3LS+Mb8OtQ0qEpGe1Mtcg+qNXw5AF/sykdpYxABHlj/XRaosRVJVg4jYnhUd3NIiwHKiwqV1wQRWJFhgt0vl47rasI1k034uFhedqxSy/A0NLciKytLmSluP1oLDqpF8LbZFnxa4lSIZlZWFjydPjS28yC8g565xnJ+eJ1+5NUIuO+1zfjBJAvqm6SB4kB+MYqbtANaWZOk5nm6HOjsFlDboFV69xSp3tOc3ALckSf1qa+zDckWrQWirFD1Gu7PK0KGp0LOsAa2HmvUvHdCogG52XvQ2ia1rbZSW5rI01KF/XvqcMsEEaLbhClxLsVYfzg3H4XNQaTGcEi2cahqaFHuu0+yvUi2cfDUamuBEoV+T0E5ZhvqUFIpnUd9cxt27ZVWCLrapDa2tKuDo5EDpicbkF1Sh6ysdjS7QweO59cewE0zrajrFmDh3cjKysKtG8P7tGclc8ihSkVfNM4Es5HD2nLtddm+fQesJm1QHYsWXDvVjE+KA9iXnYMP8tX7u6i4CLHy+9NipP+/vE0iKHYTkFPeDJuvHQYO2LVzByYYeLj8PJ79NAvhhILCIzl4cLEB6ytM+LYqCJsRWDrShKzaIMycoPR3VZ1s4ShTw0WsKF/TTj8ADsePFuIX861odAk41sYju1S9F5rbO5GVlQU/Lykt8QFtxRkjB9w1z4xnDvnwnZyINTsZONAo9dfkJAOON3bjP19IE40G6tlyenzIysrCnvog6hw+nDeKR22lOhAUFpdjk0v1Ee7JyUNjawDJNg53LbIBcONjXVvI3PLP3xzFxEStnvH5t1LlmQMFJaiya6/d4f27petwtAxZkCwKXFDqp725R5HSXYp7t6kK26Yt29HZIV3f3YcKlGVXR7MUgsUOtb8fPtuC7Eb1OXV3tiLOBHQHgGnDDLhpog+H1NPEtr0H0dihEviCQz1Xamgvz4eVk+Lsh/urMGWYAcOsHDp8IrJzj2reW1RwBDajEJJ0BQB7du1A5kgBX1SqfTOc60TpcSl2/vz13TBQ2yS8vlXrAPzmsHrOWUUtWDbKhB07tuOCcSZMSDSi6PB+/DszBo/u86KwvBoJFvU4BYekZMCHv1S/02wAAgLw86lewFGCzmapTyYnGVDqiOz5FkTgf6ZZ8FGR9H5nSx2yssInjT52thFmrhZZWXVod0rf+clWqb8NvF95juq61eNVHJPK4ZG6yWV52WjxyOVAd+egqcOHsVav8tnqKvVaJgW0+SudDZXI8akX/7ONWRgZZ8ChGun5mWGU2p1qCSIrKwsBv3TP5eYXIqFDih8WA+AXgDUjg9ixYzs4IYjKmlrwDvX+93s9SnvMALKatTk8o+M4DUGuLFUnT11u6TmoKFE94bFGXvG5A8D4BAMqu+SqHxWNyDrWoAgVdVXlqO9Qb7jKslAPP40nvjyo+Z3zdWt4i9OvktLmmnLNewPO8KtbgKq8xpkBZwBYl1uLC5MlTlJZWYGsLG0exzCjdN4JFqBLvoSu7i74gzwADs1tDhQVSyr64ytikNJVgh218jghBNFUr1qdyktL0OxW291ErUwmWABbWxGysorhc3ngdko8Iq9FJefPrNOuEgJAdclRZLX33JeDjT4T5N78xicaoii+DOBlAFi8eLGYmZk5qMdPq+/Ey3m7kGAz4f5rM/HeI5sBAJcvmqixOayaPxkXzs/An/duBQC4g0B2o/pQnTtvBi5amAFs3QAAOGdSCvKbnfDysjK1YImkPm2WlmaWTk5HoLsVQBBzxw3H5OmjgWyJwsVZTfjnLavw+u5KoLwMUyZPxPiUWHxcLN2EZ82fjTcKpZ9N9nhkZi4DNkpZ9Y1uEdNHxOPHZ43Bn785igeuPw93e4P48cv7kBBjQmbmudjRfRS5bTUwGI1YPjkeu6gtW6ePTYfTF0RRRws+LwngT9evhqXoIIB21POxEKGdKcqWXIzLGIH6sjYkDksEGlUGV+dUH7rxk6cCeVKpMWtiCu67bhHOWdSGn8hVEjJXnIuHEurx2LpjMMSnITNzAdL2fIemLp8yKyZ4+OqFyJyejrcqDgAtLVgwZybeOqoS7MtXLlHUwPPXSAX93yiUZjcTp05HVnMFZo6R1KraDjcyM1eius2Ngo3b8LuLpuEHKybgdzvUqgtkAuIyxCIzcznWtuQC1bUwWO2YNnsmsP8AVi2Yjm+rClDvVgfWWKsJU8emI7uyHTMXLkWiwwPs2IMVU1Kxs6QVszMScKjVgysSp+DBjUewarQZb12VqVxPGrctnwCTgUNOkxR0N967AtNHJEieRt2ucecuX454mxncpnXKQHDukkVYwov4pHgvumNHo8VTCrORQ4AXMWPadExMi8VzR/bCaLbihwsz8EKWRBYvmTsanx2qRXzqSNhq65CZmYkVgoh/HdqIYMIojB2dCORoN4pYs3IZUuOscO6rwrdVBZg3Nhlv3LEU9350BLtLW0Ge8w9qDgINTRCs8YB8b80YPwp5rTXoChoBCFi0YB5WTJFUtD9+VaDsXggAMfZYZGaulJT9b7/DnBlTce3qBNQ7PLj3oyNYNW04/t91Z+GLym2obndjeLwV/7NiOg7INXXvuWQeHll7FF9XSp20aN5sjJ/kw1ObiyGKIjIzM1GwtQTIK8aDP1mDjQWNeFOeyKWNGIXJs0YBu6T7atS4SeDqKjEuIwmZmQukBlLXcVZGosb7WtGlvand8WMAlMCWNBzJqbFAoUoCMjMzkXpgG+oDJsxceBbS4q1IKtyDqi4HxLh0ZGbOg4M61txFZyOmMhdoaYcxaSTGJdiAoiLMnjYJ6yqO4+o1S/H8EemeyVx+Dq6Js+Dg09tR0+7BtAljcLi1BggEcXPmTFx99jj8vyz1uzusI+DwVeHWc8fjjpUTkRpnxT3bpLi3YGwScmscyvMSZzXh8gtX482yPWh0dcAvAGVdwJyMJGRXdiB51DjgmGqlWL3sHLxbmo0uXcWO+y+ehszMyejwbsUXlergff15i2G3GPF0zi5U6fqzuEP9/Yazx+K7Y03o8quTwgsXT0PmueOhH3LeKNsNk80Ec4wZQAP+7+LpuHjVRJi2blByL2aNSsAnd54DX0BQltTz+RKgtBjnzRuPkfVd2FkSvpTgxNRY/PmGFfjoj1J8WTJvBjIXS0l2t3QWIDXOin9+K137i85frXyOF0Q8un8T2o3JABqRGGtVnqPqNjewe5v0mczl+OPeLfAHBaTFW3Hheavh8fN4cNdGxAwfC2d+CWZPnYDMzKkAgCPBYqCsBGYjh4dvOA/b/pmlWNquXr1EsglkfQsAmDpnARaNG4biHWVA4XFceeFKbGk7jOZuLzIzVyD+YBZaPC5MnDIVmWdLinjM9s340dyR+NPVc6R7Yu8WpA1Pxdj0eOCoRISTEuKRmbk8bH8BwLXBEvzrO/V5WDB3NpAvjYF+0QBAwMJ5c/DQaBdsZiMe+eYo6EzSa8+ZopSXLOsUwHGSZ9zl5zF31nSUHaoDIE2uz144Dy8cCa2BD0h2F/2KwPTxo5CZqarXgiACWyV1euHcWXijUC0LOX3CGOxrqIx4ngCw9f7zcOG/dmBcsh3Lli8Fvt2EqZMnIXPlJADAqL1bYDBwWDYrAzlNpRieFKc8L8lJSeho7AAgwmyLxaRJY4BjR3HJ6hVItJtRKJYAZcWwWqyYMmksUCE9ezNnTMdSmxnrKyQOQk9Qn/nJWVgtr2a/XZmtXOum7GogRxrPDzeHzmjXLFuiSfw+GdCfnfQqOI4r1//7nu2oAzCG+n20/LeTDrNGJeKLX5yL3Q+sQRy1VLh0YormfTNGJGiWR6YMj8NrtyzG9t9l4o+Xz8Q1i0bDbDTgnduWIPvB83H2hBSNr7LN6dP4XheOS0KMrNidMykFC8YOQ0qsBZ/ceQ6+u28VhifYcPuKCbhk9gjcsGScxh9KL2l2e0NrIc4fk4Rbl01A5eOXwWw0YFisBRvvXYEP/ncpACg1PTvdAaV2M8GPFo3WLF8drGpX6n2Gq5FJYLdIFotwS2sEdFmyCalx4DgOo4epWblmowG3r5iIK+ePQlZxCwK8AKspNNHuvgumYs30dM3f7Do1ekKq1gdK+6uc3gBKm52YMTIeiTFmxUtOLAdzRyeGPS4gedAEQfUdt7v8ynktGJuEzGlpmvOMsRiREmtBbYcHS/62BS/KpPPe86fi8MMX4P+dPxUd7gCekD2L+a2RK2A8fPlMJSnmB/NGYbqcVBdjCW0rKVBBL5/GW9UyP+/tr0K81YQLZ0qWBI4DUuLUck6Xzx2l9NvKqZJNpazZqdgdyO5cJc1OxZf5yZ3nKMciy5RkuXfemCRwHIe0OKvSdzlVHYp3kezgRI4ZbzPB4ZOrWFD+8SlyMisBISzXvyKVIIoxG7FkQjKuWpCBL3+5DP+5XiKq5JkZl2JXbDeA5BG89/wpyrNptxhx0znjcd3i0cryY7srgDirCVaTUeNBdvt5jS+yyxuE0xvULNHSuHbRaDx02Qzl97d+ugRv/2yJ8gwSe0BTlzdsObUkuxnHGrqw5LJW0h0AACAASURBVG9b8LtP8xRrkH6HNUDaKIGsGh2ucShL45fMHoE7V03SPB8xZiOsJiPOkWNenNVM5UZo+3vu6ESlyscP5o+SPKomAyr+fin2/f48vH/7UiygEmZJLXLal+kNCEiNs8JuMaJBtyVwnM2k8WkCwJs/PQu/yJws9YFVvZ+T7GbMHZ2ImSMTsOeBNUrfXiEn29Euox+fNRY77l+tWYYfS9W7pZESa0G7y4/GTi+WTkzGXZmTwHGc8pzdeu54fHDHUtgtJs15kdeT7RY8cc3csN+9YGwStv42EzEWo1IWlLY1/OXK2fjVeVOw7tfL8eIN2tx2o4HDrFEJSnKsjVohoj3ISXazcr1/fNYYpW3D461Ymycpp/QmDiRGzM5IhNlowM1LxwMAvr57GWaMTNDETmLncXqD4DjJLhVvMyn3C/ES0x5kQRQ1Nikz8SBrqlhE9iADwEWztfGeHqPIucZYjLh9xUTcuHScxlL3zI/n439XTMTPV07EBbIH//olY5Epkz6TgdM8b3FWbTy1mSV/7vwxSfjyF8vw0o2LNK/rLRb01tD6WJCiK8mnR4zZiLQ4K9ZMG442l1+Jb0YqMW7X/63Bjt+txhQ5h8dN2SyMBk6p/uMOBJUkPU7+OLmWHAfNGGc2crh49gjsfmBNSE5BjC4BkcTvRmqFPSMpBrMztHkN+vKDJwP640FeDOAs+d8KAM8CePd7tuNrADfL1SyWAugURTFyKvsQY8HYYYi3mTXlWRaOHabZaGLGyARNdup7/3s2zpuRjnEpsfjZ8gnKZ1dMSUNavBVnTdB6uVqdfs1e7KunDccF48z4702LcOu545EWb0XOwxfgrPHJGCEb+1PjrHjxxkVItJuVGsGAtCPO2l8tx7T0eJQ2O7H5qNZ+MF/npQakrGBSSocQfT8vwE49wF/fvQyrpw/XZLO+uadSU/84HEwGTsqeDQry8o4EPWn1+IOwmAxYNjkF/++CKQAAm0W9ZcnDe8XcUXC4A9h2vFnjUSRBlq4zScZAOsA+95MFIaSRDvKF9V3w8wJmjkxAIl1AX/bSJsVID/YzP56Pz+46RyEwE1Nj4fLzKGl2qjuLufwKwY61mHDfBVM1x7VbTArxBKCoSkl2M4bFWrBscipMBk7xO7Z7RQ3potsNqP42moTTWcUExLtGW9fibCalDzvcAVw+b5TyO8dxyqA5JtmOGSPjMSlNSqQkZKqkuVsTVCcPj0MpRZDp+458LyEhC2XSFGMxwi174655cY/yfjor3MBJ/aMQZKoPJlEE2WzklA1IyG5wdILN/DFJyu+EdKXFWzE8wab4nNMTbLhusTqXJ+8nGwdIfeXHMNlHYqcGT7d8XLORg8VkgEMue0gPiu/ffrbyc5LdgttXTFR+H5Nsx8qpadh470pMHh6HwzVyeUE5gTDS5gmAVM6NTEZLmp0hFUYeXXsUnZ4AzpcTnOocHhgNHManxuKBS6ZrYh15VghRoifghCA/8+P5+PsP5+Czu87FQ5fNwOVzR2L2KJWEcByHEYk2xFiMeOGGhbhqvkRSSczR5wgk2MxIjbMip1q75BxrNWr6GND6OOlkqC33rYLVZATHcRiVFIPbV0zEV79chr9ePRt6mE1SjKLzTJIibHiQEmtBSbMTR2oc2gmCHGympMeFrQV749Jx+O2FU3HLueMxKikGC8aGxmF6wvrsjxfg0MMXhExCAEm4uWROaNrO7IxEJZnMRnUT7UGm++icSarQs3DsMJS3ODEmOUZ5HqU2yZ+Tf799xQTkPHS+sjMcfR8qm6P4goizmGAwcEiwqSIDIXJ0LoooSknABBa55jBdDrO3LYn1yYO2MBWKaNJM+5hnjUqExWTA7y+dgXMnpWBUog33XzRNuScd7oByXoAUA3IeOl9JnE+KseDYIxfjs7vOhcEgEUk6rkbKtSDfRWNYL6QxNd4CjuOQHGtBm7zhFSDZswgMBk5TlrPbG8RT187D67cuhtHAKeqvxy8oq4fkvqP7me4vMoZkJMWEbJVN8x6b2ajmjXR7JUFifDKe/NFc2M3ac+3Jbz1U6DNBFkWxjfpXJ4rivwFc1tNnOI77AMBeANM4jqvlOO42juPu5DjuTvkt6yHt0FcK4BUAv+hru4YaMRajMuCvmJKK9ARtpqp+lqXHgjFagv3VkTolcWPrb1ZhSno8Eq0cLpo1QvO9kTBcpyDPzkjEmz87C+kJVjy6VuvjI6WSIiGNeqDjrEZsuGcFfn/JdCUg0gPHzpLWkHJgBKQPTDJB0FexIBnpCTYTjAZOskoEBayeNlwhWvTDRwJx5rQ0pCdY8e7+ak0yEDkvOpaGKwBB1E8adJAnSXGEILv8UhkmkhhFHuwr52dg0bhkzJXViJWy4rOvvE1JihRFupKHEXNHJ2kSxWxmo2ZHITJpIH1sMxuVEn+zZEsInQCkJ0mkbaRkHqBN4CA/EzWSvrcSbGYNeVs+OVVpW7zNhHibGS/duBCv3LwYHMfhpRsX4alr5ykVKTrcAQ1ZnTYiHnUODyrbXIi3mjTBlxx3+ogEfPnLZbholqTcxFiMEMXQMlD0PcZxHIbZLSA5bPQxJ1MEmdQUpZME9ZMyAnIvknt/070r8fbPlmBMsl3TbvJ5s9GAoLzJQBtV9J6+Hh4/j9LmbkxMjUNKrAVbjjdJEy8q0e/cyaparR946KSuuRmJSh80dXnR0u0LIVik6H9avBW+oJpo6vbzIVszF9Z34ZZzxuP3l0qq6vr8hrCJPgCoSZL0u8VkwM3nSMvjZNJ05fwMXL9krLLK89xPFoZM3gjSE2xKVRlyTELCSf8l2s24bfkETf4DSSLWkwp9STqClDDEZN6YJCTYzJqyW4BKDOi4nWQPT1ZS463wBwUsn5KK+y+ervyd3KF6hZvAZjbi7jVTFPIWbrtlTfy0m/usspGSdgCUFUhAqyDToGP9izcuRNFjl2Dn/WuUqiiA+qzS/6f7lp5MtXarSco2uY+JgiyKopqkpyHIoua81SQ9gfpbz2OgfkUvPEFW/0b3K12396fLJmDn/61Bkt2iqMmzMxI1/Wo1GZESZ1XiXpJdEs/ofqB/DkeQxyRLimqsbrKnv976oZ98V0qcFZ4Ar1QLMYaZQJD64zedMw4/WjQaa6anywqy9LqX2iiENJf0ES+IIQqy+rP2WHRMjbFIpV5vezMb7++vxthkOz6+8xwpzum4QW+TnqFAfywWC6l/i2WS26OXWRTF60VRHCmKolkUxdGiKL4miuJLoii+JL8uiqL4S1EUJ4miOEcUxYM9fd/JhNQ4K249dzwA4K7MSfjDpdPxzm1nh5DYSEvwBDEyWZqdkYDblk/A5qNN+Nd3xZiUFhuy/B8N6OMR9WJkYgx+kTk5JOO9t7YRPxEgKZwzRibg56smKX8jJCxzWpomcABqNj2glvIyGwwYl2KHnxc0JbhIXV1RlJbiSKYrTQzooEYeUpPRIC2JFrdoCDBREWgVhgQgk8GAHb9bjU+pZX4a9GBe2uyExWTAhNRYrJk+HGOT7fjVB4fxB3krZv0OemTiMHl4HKYMj8NbeypR0SqRQgBKbV2ixj9z/XylcL/dYtQsZxLVjx6oSUWBHy0ajTgzsLmQSvbkpP66calUyooM6hoFmQpuhOz88n1t0kRGUgxirSaFKALA1PQ4/ObCafjb1XNwoTxYXDx7pHJ9pqTHY9qIeCTZLUr1A3qpdLG8NPzdsSalz767bxX+e5N2CXK+bK8A1AlRT9tGGzhO0z80KU2LsyqvxVpN4AVRY12yW8KHLlJCkFwju8WkTHhokAkECe5+XkBHhKL3bn8QBXVdmDoiHgk2M6ra3Ii1GBXbih76AYMmcXOpJeFubxC1HR6kxlvx1s+W4O750vUgpGOFTLrpDS2qdas8oxJt+O1F0zApLQ5LJybD7ecjDlh6giQC+MsPZqHsb5dGNXkPB0KUyL1JnllC+hNsJtxw9ljMoKppkOdpJWWBiTEbQzYm2HDPCqXkVCQkxJgxNV2dTFnCEORIIsdPlozF366eg9duOUvzHlIRIFpl7Onr5of8jZCy/oK2DtDFQ8hzSSrpENBEl+O4sPcAuTYR5k/gOA6PyCXoWpw+ONx+1Dm8Sp8myDvD0fWI391fpcR7QdTaDsal2JFT1YGsIrVKVLhVMBp6Am0LM8bpSfNy+TnRq/2E3K6cmob8P1+IJROS8cINC3HPeVNgMxsUO6N+xZUGPQalhtlSeef9a7D2VytCLBb6yZ9d12Zi4SJWjFVPSb7ycJNbi8mAoscuxm8vnKY5N6I1eAK8shspUfAJAe/yBDSxnO5/vd2F5hNkN9zSFifmZCTiinnhi5OdjPYKoH9VLP5J/RwEUAHguoFpzqmHgw+dr/y8Znp6iNe1L3jq2nkI8gKmpMfjpqXj8OqucqycktbvQSfrt5lYm1eveSCvWzwGz2wp0ZAEWwQ1QX1dWmrMrXGE9UvSg8LT183DG3sqccGMdHyUXYPF44chv05KUhibbEd+XSfMJgN+tGg03tpTieON3bh41gjccu54pMZZ8E1uPQRRRKzVhNzaTqTFW5WEKwBhVUdA8ojpd7gjNSXp4PTolbMxOS0OyyanwmjgIvoK9WrXtPR4mIwGzBmdiKz/396Zx8lVVnn/e6q6el+STrqzJ51AEpIQAkkICWHpQIgBBAmyC6igIA7oy6IjiojCMIzj8Logo+Aovqj4IjqAoiAqEQaQTRbZiWwmbAlrFrJ095k/7r11b92q6qrqrr3O9/PJJ91Vt6qf+tW9z3Puec5yXi+Hf/d/eHzde0QjEl+oPea5BnJrQx3nH7ILp1zj3O+tnDOWW594jfteeItVe0yIa9lQF2W8uy0cFWG+G1/+5ubtbNzaR1tDXULnqHNWzOCAWd2snDOWW+5/hj885RvI0YjwwJf8c9Kb7INdz4KTW7Askaqyo3+AFbPH8G03Fjeocc/oFmLRCCe4dWQHY/KoZh5f916Cp2reJKds0MatfUxxdd+5uzXByxvG80YE6+iGiUYSvXTB705E2Lm7lYdeepvWhjo3dMk3FNN5kD1jNFN7Z8/A9hb/Hf0DvLFxK9NdY8u7KQR49vVNvLV5O4t6RvK6GyJzyNxxKWPCIblbWPC7mDsx0Vv86rtb6WptYP8ZXegrzpg8r/uSnUbFa1C3NtSxaVsfL72ZWPXk34+eFz8fT1w8hb88/1ZGL138WVVEhAyHD4pnhERDxteePZ28+OZmZo5tpy4a4V9W7cqRVzqhNl4OyDELJ/HUqxu55p4XGdvRmDRfzhrXnmBYp+L0/aYxfkQTp13rJB1580zQiGpPU55uUmdzymvCu1fPdvGfObaN4xdN5rr7XyYaEe79wgEJzoGh4DVAen9Hf4IHWUR47KIVCTHykD6MJIgfYpH+Cz95SQ8//cvLbNi4jd2/5iTsede8F5LziwfXxkMC1m/cxuFX3M2Llx3KgGqCp/Sje/fwu8dfS8j5yeRtDJ8DqXYvwo2hvnfSAta8sSmlt9nDCydsa4xx9kEzODsQIucZpV7IXZC6iOAFZUzsTL3mQLJB3BAad3NDXcKc7V03C3tGOsmQr29k49a+pHKI/vslfragZ7t/QOM31Z58nvHfN6AJc3k06EEO3awEj/PO/V+cviShb0GYcjWQh+LTPlVVl7n/DlLV04DB+14aWTF1dEs8kL5ndAuXHDGXFSnqtGZLz+gWzjxgesJk0VQf5ZSlPQnHZfIgA0xxL+pUSXVeW9X+AWX6mDYuXTWXZbt0872TFjBllO/9nuS+R13E8UxceuRcJ/g/FmHJTqPiz5+4ZArN9VGiEeG7J8zP6uIZ29HI4fPG0zOqmfu/dCC/PGPv+OcK3kyPam3gnBUzEyaGVDREEzUJ1oGNRCRukHU0xZIm410ntHPFCXuwYs4Yls3sjid5LdulCxFYMXsMXz8qMSnHC4nZtK2PEc31CTdeYQ/1xJHNfHC38dRFI+zSmTjOcJcrz2Me7N4XvOMPelv73SLzu07oSFgkvnP8Hnxin6k5bYF5hmHw3GqMReMeq1TbyanwWqUGmz2E2WvqqASvTXgx3NmN2WxtqKN/YIC3AiEW4QXJw0uE2rOnc9Dxefp6f/PGh9fx+nvbmOQmk3a3N/LsJQdz8K5j4zele00bFa/F++EF6Wsfewbq7z7rJ8x6zB7XnnQOh40pz/iZM74jvtB6N7PB5hynLJ0a714HTl3j0a0NSQZ6mEPcmNdFU0cNelw2eMaFdy15nsyxHY3c98XlcU/q/Mkj+dZxjqfVM+hFhFnjnHkzXXhFJj62dGrCXJvq5iCTHmG83ax0IRap8JwVXa1O7PtQnSMeXqIeQGPoM7WH8mgg0XObjvgck+HQ0W31CbG68V0C9/+v3PxEQuc2gD8/u55tfQMJxvfiaaN46ILl3Pm5ZfG5NNPNW5hUHtWwgdzaUJcyHydbPC1TepDd5358yqKk+OjwGMC5mXDCLhJ3ZMOhQN7nmtbVyi/P2JvvuwmB4VC7tGMOnV9esynvOw7mMgW98LEUHuTD5o3n6pMXxluXA1x42Gx+99l9BzWOIbdrpJgMxYN8AxBuBX0DsCDFsTXPXZ9fltRauNR8undnVu46juWX/xnI7EEGJ3zi5kdfSXkie56VVM0mgsZKPMTCvXjnTx7JN4/dPR4b1RiL8sRXP0BTLMrY9kZGNMdYNHVwAyXI/z12d/oHlPq6CN1tjYxpb+CpV9/jQ7tPyPziQcYNxBdgj3BscBARSYhr/urhc/i3W59m5a7jWDClk55RzUmLrTcRebHKIkJ91MneHmyLdlYGA3n8iCbmTujgcx/wt9WCi8UZvTvx6Np3uOu5DfFmL2FD+LB54+OZ/tkyudP5TsMT9Rn778R197+c1IY9HUvcJJlgcxqPCSOa+M1Z+zCypZ7H1vmllNpCW6Seh7qloY6+fuWtwKKdbqFd2NPJ/V86MGGBSIW3aHia/f7J14lFhdP395Pr6usifsWClnqmd7fSM6qZnbtbWTSIAe69ZyrvZ1N9lOndrQmGbnjr9vJj5/HfD69zEyhbefLV9xjRHGPdO+/HW9YDSUZKfV2E81bMSAh/SsXSnUfz4mWDpp9kTTTkhTplnx7q6yIcu+ekpGO9cyq4m9Xk3gyM7RiagRwmliZeOhcO3W0cNzy0NmP+SRDvhjKYQzJc5k7s4MGX3iZDf5asydI+pqu1IaEkqHc+772TY+S21EeT1oyP/tAplxa2Z70bJj8UJ7fvJ9UuzWCe4qHgjS3s0Ag+NytDGbPGWJR7zz+AUS0NKb3e4ZCw8A3O3juPdhLysyyXFg3Nf5vjBrLze3BOCXqGg04Wb0dySmdzUkhQW2OMWeNSn//Bv5ypWkepyPqSEZFdgDlAh4gcGXiqHcjPrFSFTBpkO6VURCKSsK2djQf5yPkTmTGmLe6NCOItWKkM5KAB4lUCCD4WNl49j97Hl07NOKYw4cSIiSObueGMvXN+H0g2kOck3ck740w1GYaZ1tXK909ysqTTLZae92/j1sQqHNv7B1Ju2XmMb02c4MLrRiwa4ddnJdYLDXqlWhqiLJvZzepn1se706VLpsqFuAc5dPM1eVSzc1OUZVx9NCIc7YYFhWmoi8SzvIPdqMJelg/OG8e6d94nIsL9L7wVb2HcM6p50C3swYzjn5y6F7c/+VrcM+Sd00+/tpEFU0YmLWTe+bKopxMR4fxDZnHuipmDeuwyeewPmj2Gxlg03p49nPzj5RyAEz/uGcgAzwQM61RdO49blBwy8Puz9xs01GU4xD3I7u8NdVFO3Sf1HOCdn8HqGV5sZr4M5Gw9cINx6aq5nLdiZk6GmOes6B5maEWQU/eZyuxx7dRv+nvaY3732X2TEmHT4cegD37c6NaGhHwX73ye1NnM8Ysmc/uTr6dscQ/JN/oenmGciwf5gkNnMaa9ke+duIBLbnmStW6Cajh8Ybi8514bXSmS8LrbGnl7y46sPPThbnpBgkl8dRHhtP2mJR0T9joPRpIH2Q3F8/QP3oikT9JL7znPlkzVOkpFLveUM4EPAiOAwwKPbwQ+mc9BGcUlGw8ypL/wPCOxZ1Sy0ROchJrr6xjdWp/z3X8pCBraXz9qNxZMTizD55WWyiZmLxuCIRYe9XUR2Db4xCMifObA6dz13HoefvmdpAkvE3WRSNxIfO51x2gKG5hDwYs3TLUIHbFHbh79Y/acxLf/9FxSBZKgARnUKLwtPa6jiYtcL37fgJNEN6I5xurPLctpHEH2mT6afQLJYZ7Rtn7jNpbPSs5D8HYc9prmeIyjEUkbe+yRroqEx7krZnLOQTOYer7TZGAwY98L3fJutoJxjCnua1MyY0zhivhnCnkK4mkd9CB7+g41xCJM8Nz6xtHzsg4JClJfF8nZYPeM6a4MOxe5MHFkM0cvbGb16vQGcqYY7SDeV5XOiPUIn49Bo8qrJx+uIRz+G2G89wjHvQ7G4e7u18pdx/LChs3xGvLZGKu54N10ptLyRx/fkz889fqgJd6yobm+ju+duID2prq4J344hOcYz4Mc/GovOHQWkzubB0nS85ITczNy508ZGU9Yr3gPsqreBNwkIktU9d4CjskoMtl4kAdjzvgOrj55YTwLOEhwoYlFhXEdTfFi5pVCsO6th+cRzHVSSMcotyzYwin+lrs3IWW6Mz/noBksm9nFqivvyTlmMVbnG8hea9ZgI4KhkioGeahMGNHEwbuO5W/r3o137IJET3c230Ms4nQBfGvz9rwnhQQ9jl491CCeMbxXDvG62Xjyg9/3YIuvZ9wGdzxGNsd4e8uOtF68YhLfss3i9PXmlGDSVqe7FTw5Tzt2QYP9qEHixPONd82PyWOIRb6JZOlBDhvIQcdIR1OM7f0DCTdqCaTzILuGWawu+3ku+F3GSxRm/ersWec2sZmdwkAeP6KJk5f0DOl9r/vkYk679kE2bu2jpSHKyl2HnpcUpj3k4NmyvR+RxHnFq8Ue3HVKDLHwkhNzcxade9AMBLhy9d+rKknvTRH5o4g8DiAiu4nIBXkel1FE8rHVdNDsMSk9YsFFPhaNsGhqZ8Y4rHLhihP24I/n7p/yOW8LPV0XtFyJRoTfn70fV53sh/I3xDwvdebJw/M85eKJA6iPSnxL8A9PvU5XW8OgVSWyZVxHI3URyUu4BjhNEq4/3SnJ53mREgzkLCZnL851/aZtSY0ohkvwRnBaCgP5gF26OXHx5KROlIORyYPs8YtPLeEDc8YMui0/e7yT1Dcp0Ilympu8mCrEotgMzYPsf+e7jG3n+tOXxLvNVSredZwp9r2UZFPFApJv2IIeZK8U39tpchHSnQ6eYZapzFvCawLH5ms+SsVXDpvNTl0teQ8XWLLTKM7odcqq9vXn91qdHQqZ3LK9P+3OQENoLQ//nGuIRV00Eu+iWa4G8lBW96uBzwHfB1DVx0TkZ8Al+RyYUTzyvdUUpD7kQf7yB2cP+z3ndUXRhuEbcZlI1UDEw4utzeeEG97Crs9h4vEmqVy/yljU9yBv3THAB+aMGnbmPDiT3zF7TmKvHJIsM73fuI4mrj99CZu39/HxHz2QsOBmkwXtLa7rN27Ly01AkOB5MG108nvvNnFEvD52tmRbNWTPns6M1TYmjGhi9Xm9iBDfYp42uoWHXno73ma8lIRjkAfDuy7aQllnuST0liuFiEHON9nGICeHWCR6kIG0u4lpY5Dd8yQXp04wEc17XSGWvI8vnTqk3JlsmOmuDa+8+36GI3MjWE8dYPO2vrTXYDCWPqHZ1DBikHfubmVseyMzytRpNpTVvVlV7w89Vl5lGoyyIdWd5nA5e0EjN5+5T+YDC4iXkFjI7j+eEZ5NFrznBczVgxyLRmhpqIvHcO690/BLdnlcumrukCqIDMaiqZ1McpuX1AfCN7KZnL1Jff3GbXmPeYsFkocmZuhMmet75otJnc0JOx6r5jvfzQGzutO9pGhkimcNkioGuVrw6paPH6QUWKnxQyxy8yAHPbmZ5rR005jXTS+XWN6gMeedO3nwARQVz3my9u38GsjhvKHBPMjNCQmCyfHIHVnsdIaZOrqFv3zxwEFL35WSocwwG0RkJ9w66CJyFPBqXkdlVA0Jgf0VkJyXLTvcetD1w+mOkIH6HJIfpnW1cvSCifF4sWzxvLBdbQ289OaWvCR+FBrPWxzcnQh3v0qFd/5t2taX923QejcmcnJncgm/oZJrrdds8LxAbY11LJk2imcvObig287ZEu6gNxie53i4CU/lyP4zuvjxKYuStr7LCT/EYnAGa5OcyUBOZ3x7beJzaaCSGIPs1sbP+tXlwYQRTSycMjIeapEvwhVWNm/rS3vzEGwqk1BL3537cilnWCkMxUD+J+AqYBcRWYfTSe8jeR2VUTWEk/SqBc9ALqTR73mQs/GORiPCvx89L+e/4X0/3W0NDKiWZVnCME5zFn9iBidMqLNROHX/GWlfF/Qk5TsGud5tLOPF9eaDQpxbDXURRBzPkYgkaFhKvPjwbDx74zqauPGflrJrGRuRQ6UuGin7OOpsk/TCu1nBUPfMBnLqx4dkIEvQQK5MD3IkIkMuWZoLm7f3pb1JjaYIqwDHg9xSHy2LG+18k7OBrKrPA8tFpAXnRmwLcBzwUp7HZlQBCUl6OSRWlDur9pjID+56gQ/tnlsDjVyIe5ALeGfuGchfOHgXduQ5AaRQ1EUjdDTFkmrVXt7bTK9b9zf16wIxy/kOsXANzVQJekMlH7V4w4gITbFo1nWoi0W2CYkew+l4ZgyPbBuFDEbmEIs0HmS3TXwuMdqRIlWxqAa27hjIqsxncC0f2Rwr65Cg4ZBLo5B2HO/xBOAm4A/u7+cCjwE/LcQAjcom6EFO19a3Etm5u5VnLjm4oH/D2w7MphnJUPG+nwVTKivB6YjdJzA3h4L4kGiE5TsG2YuHndGdv2STugLtuHxin6nsWWYJHUv/qwAAGDRJREFUbdF4kl5pTZfb/s9+vLMluy6PtUq2McgAN/3TUq5/8B/89L6XEx4Pd7tM/hupHx+KBzmItytXaR7kYpJNmFNwbjpnxUxO31adaWi5WCzXAm8D9+I0BvkSzo3YKlV9pABjM6oAL6xi3sSOqtyCKSSeXoWM7arUsJeLDp+T82uCiSX59iBPHNnMzz65V8ZqEtmw7/TR3PXchpy9qtlyzoqZmQ8qMoX6rLmSbYveWsa7jLL5xuZNGsHTr73HT+8DN20JcG6I2hrr0nZmTHejdP4hs7j4109mNSf+6tN78z/PbUh4zAuFKo+zrbyoiwh9A5rVzUO4Ikk1xh9DbgbyNFWdCyAiP8BJzJusqluzebGIrAS+BUSBH6jqZaHnpwA/BLqAt4ATVXVtDuMzyhAR4a7PL2NMnjpc1RINdRGa66N5abaRjkJW4Sg3gl6PfMcgA3lLcLzqpIW8/t7WvJTbqxTiHuTa+cgVSy4eZEg/x3Q0xXJuXX7S4imctHhKVsfOnzyS+aEOqOZBTk9LQx3vvp9dO+xyuaEtNLkYyDu8H1S1X0TW5mAcR4HvAgcBa4EHRORmVX0ycNg3gP+nqj8WkQOAfwVOymF8Ro787aIVRVmEKyHxqxxZNLUzXk6uUNSUgZzgQS5fj0dTffnFCBeaXBo/GKUl2zrIHl6yabgfjVN5JnXZsoECNa/x4vrtbPNZOr6Ou1/poykWdQzkLL7YXMuJViq5nCfzROQ9999GYDfvZxF5L8NrFwFrVPV5Vd0O/Bz4UOiY2cCf3J/vSPG8kWfaGmNVWUu0Wjh64SQuP3b3gv6NcqliUAy8Sb0+GrHzvsyolQW3Gsi2zJuHVwozbPIOti1fqPbnlVoHuZCcOreepy9eGe+Em400tbK7lbWBrKpRVW13/7Wpal3g50z1diYA/wj8vtZ9LMijwJHuz6uANhHJX9cCwzCSqCUPshdvPbIlVjMTfKVQqIREI/9kW+bNI93uwGAG8kCBds68G7FcGtNUOxERGmPReE1kmxt9ysmNch5whYh8DLgTWAf0hw8SkdOA0wDGjBnD6tWrizjE0rJp06aa+rzpMB18hqvFg/ffxwtN1WEkZ9LiifVOvGO97qjq86cSr4817zhT/ebNm/M69krUolDkS4snXnOuow0bNmT1fo+/4R7/5psJx295d1va1/z9+RdYHVk3rHGmYlufY3gv6R6w88LFOy92vO+Eu/Tt2J5Wm106Izz9Vu1oVywDeR0wKfD7RPexOKr6Cq4HWURagQ+r6jvhN1LVq3AalbBw4ULt7e0t0JDLj9WrV1NLnzcdpoPPkLW49RYA9t1nb7rbqiOBMpMWsTUb4KH7mNQ9kt7excUbWJGpxOujc+078Je7aW1tpbd337y9byVqUSjypcXmx16FR/5Kd1cXvb0LMh6vT78Bf32Azs5OensXxR+/Z8tT3Ln2+ZSvmTSlh97e9E1/hsMzvf3cc9eddl64eOfFD9bcx5p3NtDY0JBWm8VL+9myvT+pS2K1UizX0QPAdBGZKiL1OI1Fbg4eICKjRcQbz/k4FS0MwygghWhGUa54mde1MrlXEvFt+xKPw8iMl0A33DCFUoRYgFNf3sIIkvFCLAZLB2iMRWtq/izK6qiqfcCZwG3AU8D1qvqEiHxNRA53D+sFnhGRZ4ExwL8UY2yGUcvUUgyyF+daSxN8peDlZJndUv7ETddsv6s0x7WXIEnPSE88Sc8uwjhFi0FW1d8Cvw09dmHg5xuAG4o1HsMwais5yksWGlmAGshGfrC1ufzRPHuQLzh0FkfOn8j+X7+DjW5HtkJ6kI3UNLk1oq3ioo9JYRg1TKyGZsOohViULZpUBMwoV+Le/iyP944LO4U9AzkWjdDZUh/3YAIFr/9uJNMUD7Gwu1SP2lkdDcNIIpuuSdVCW6OzYTa2ozqSEquRdC2GjfLBu5nJ1o6aM74DgI/undgBr929Hr05qCVQm9xCLIpPY70ZyGHKqcybYRhGwZgyqoX/f9piFvZ0lnooRgizhyqHXD3IXW0NvHjZoUmPex7kqGuQeR5MsBCLUuDpb+axjxnIhmHUDHtNs95D5cjMsW3MGNPKhYfNLvVQjAz4CZXDM6UmdTZz1IKJLJ7m3LA2B0Ms7I6p6MQNZLOQ45iBbBg1yJ/O3Z81b2wq9TAMA3DKR/3+7P1LPQwjCzzTdbh2VCwa4RtHz4v/nhiDPMw3N3KmyUIskjAD2TBqkGldrUzrai31MAzDqDA01xiLLAl6kNU8yEWn0ZL0krAkPcMwDMMwssIzXfNtSLXUB5L0LAa56FiIRTJmIBuGYRiGkRWedzffdpSVeSstzRZikYQZyIZhGIZhZEWhuh4GQyxGWDOfohOvg2xWYRyTwjAMwzCMrPCT9PJrITe5IRbLZnbx+ZUz8/reRmasDnIyZiAbhmEYhpEVhfYgn7RkSjxhzCgeVgc5GTOQDcMwDMPIilnj2gBYslN+a4q3uAZy1Pb4S4KfpGcmsoeVeTMMwzAMIyv2mDySBy9YzujWhry+rxdiURcxA60U+HWQSzyQMsJu1QzDMAzDyJp8G8fgh1hEzUIrCVYHORkzkA3DMAzDKCntjTEAGurMLCkFTWYgJ1G0M1FEVorIMyKyRkS+kOL5ySJyh4g8LCKPicghxRqbYRiGYRilY8lOo/jmsbszb+KIUg+lJolFhWhErFFIgKIYyCISBb4LHAzMBo4Xkdmhwy4ArlfVPYDjgCuLMTbDMAzDMEpLNCIcsccEIhZiURJEhKZY1DzIAYrlQV4ErFHV51V1O/Bz4EOhYxRod3/uAF4p0tgMwzAMwzBqmsZY1BqFBBCvbWRB/4jIUcBKVf2E+/tJwF6qembgmHHA74GRQAuwXFUfSvFepwGnAYwZM2bBz3/+84KPv1zYtGkTra2tpR5GyTEdfEwLH9PCwXTwMS18TAsf08InqMXn/ryF7mbhc3s2lXhUxWXZsmUPqerC8OPlVObteOAaVf0PEVkCXCsiu6rqQPAgVb0KuApg4cKF2tvbW/yRlojVq1dTS583HaaDj2nhY1o4mA4+poWPaeFjWvgEteh8+E462xvo7d2rtIMqE4rlTF8HTAr8PtF9LMipwPUAqnov0AiMLsroDMMwDMMwapjRbfW0N8VKPYyyoVge5AeA6SIyFccwPg44IXTMy8CBwDUiMgvHQF5fpPEZhmEYhmHULN88dg+rQx2gKAayqvaJyJnAbUAU+KGqPiEiXwMeVNWbgXOBq0XkbJyEvY9pMQKkDcMwDMMwapyutvw3gKlkihaDrKq/BX4beuzCwM9PAkuLNR7DMAzDMAzDSIUV9DAMwzAMwzCMAEUp81YoRGQ98FKpx1FERgMbSj2IMsB08DEtfEwLB9PBx7TwMS18TAsf0wKmqGpX+MGKNpBrDRF5MFWtvlrDdPAxLXxMCwfTwce08DEtfEwLH9MiPRZiYRiGYRiGYRgBzEA2DMMwDMMwjABmIFcWV5V6AGWC6eBjWviYFg6mg49p4WNa+JgWPqZFGiwG2TAMwzAMwzACmAfZMAzDMAzDMAKYgWwYhmEYhmEYAcxANowyR0Sk1GMwjHLFrg/DGBy7RoaGGchliIjU/PciIhNKPQbDKFdEZKbNE3FMhwB2XjjYGmIMF7uQygQROVxEzin1OEqNiCwXkYeAT5V6LKVGRA4TkeuAL4jIlFKPp5SIyBEicnGpx1FqROQgEbkP+AQ1Pn+LyKEi8hvgYhFZWurxlBJbP3xsDfGxNWR4WBWLEiMidcC5wBnAZGC+qj4iIlFV7S/t6IqDu/0TA74J7A1cpKo3Bp/XGjtRRWQ5cClwIbAn0AHcoaq3iEhEVQdKOsAi4J4XEeDjwBeAKcABqnpXSQdWZFwd6oAvA8cD/6yqvwo+X4PXxwLgP4GLgHbgAOAeVb2mVq4PsPXDw9aQZGwNGT417YEoB1S1D3gG2AU4B/i++3jNTG7qsB1oBm5U1RtFJCIi87znSzvCkrAc+I2q3opzTrQBp4hIS61MbO550Q+sAfYAPg3UnBfZ1WEHMADc4BnHIrKviMRKO7qSsRy4S1V/C9wEvAZ8RkQ6VHWgVmIubf1wsDUkJTW/hgwXM5BLgIh8RkQuE5Fj3IduUdWtqvpNoFtETnCPq+rFL6DDse5DFwP7isg3gL8Cl4jIVSLygdKNsjikOCfuAZaKSKOqvgFsBaLAKSUbZJFwtbhaRD7hPvRnVd2oqlcDLSJyqntcVc9fAR1Ocx/6HjBORH4kIn8DPg/8F+45Uc1GYUCLT7oP3QEcJiIjVfV9YAfwLvDPUN0Gka0fPraG+Ngakn+qeoEpN8ThbOBY4EHgqyLyMWBk4LBzgH8HcL1GVUcKHS4SkVNV9e/AjTjekGOBE4DHgVUiMrpkAy4gac6JjwJPA68A14vIHTjbyDcBbdVsGLrXwwnAL4GTROR8YFrgkAuBc1zDqGq9ICEdPiIiFwDbcK6PeuBo4HD3+SNFZHK1GoUhLU4UkS8BLwK3AdeKyF0458hlwAgRaSnRUAuKrR8+tob42BpSOOpKPYBaQlVVRJYBF6jqHSKyCVgB9APXusf8t3sneJ6qfkNElqvqH0o57nyTRodDROQYVf2OiPxIVTcBiMgjwGJgSynHXChSaLEZ55zYgpOItRsw3o0b+wgwtZoNQ+BA4N9U9VYR2QAcBnwE+BqAqv7O9SCfJiJXAitV9RelG27BCOvwIeB0Vb1MRG5X1c0AIvIY8A6OB7VaSaXFyap6lohMBmaq6u0isj/Q5GlTbdj64WNriI+tIYXD7iIKRHi7M3DH9iCwL4AbG/QcMEdEZgYOPwP4uoi8BlR0qZocdHgKWCAiM72JzeUgnAt9axGGW1Cy1OJ3wLM4SRU7q+rDqnqLe9wC4L4iDbeoBLR4GPgggKo+CNwLTJDEKgX/DPwrzrUztpjjLDSD6HA3MFVEloYMwI8CTcDbRR1oEcigxQwR2VdVX1bV293jDgX+XvyRFp5aXT9SUctrSBhbQwqLGciFoyn4S+CObQ3OFsdc9/c/42SXtgGIyO7A1TjbifNV9cfFGW7ByEWHdnwdjhORx3EqF3yxSu54c9GiDV+LQ0TkfhwtflmksRYUEYm6/wskaHE3EBGR/dzfHwdeBca7x+8MXImzjTpfVb9TzHHnm2Ho8GEReRQntOAMVa34xT9HLV7BvTkSkf1E5M/AdJw47YpnEC1qbf3IVYuqXkNy1KKq15BiYAZynhGRxSLyS+C7IrIicEJ74Sz3A33AChGpU9Unce7yF7rPvwl8WlWPVtVXij3+fJEHHV7CWfhPdhMMKpZhaLGn+/xzwKdU9cOqWtGeQhFZIiJXA2eLSJsXNxvQ4jngCeBYcUpVrQXGAD3u8+8CZ6rqkRV+fQxVh6nu88/inBMnq+rrxR5/PsmDFi/izJmrVHVDkYefV0RkqYj8GLhARDoDWngJdzWxfkBetKimNWSoWlTdGlJMzEDOIyLSi+Pd+hVO6Z0TgZHi1BzsA1DVNTjbITvh1HYFJ/nmJff5f6jq34o89LySJx3u1SqodztMLV50n39OVf9a3JHnH3FiRK8A/oTjCf2iiKyAeLkqgI3AXUAD8A13ARiJs/CjqutV9blijz2fDFOHDe5xf1PVe4s99nyTJy1eVtUnij32fCMi03DmijtwPH0Xi8gh4Cfc1cL6AXnTolrWkOFo8aL7fFWsIcXGDOT8shvwgKr+FPgJTuHyTd42iIhcIiL/BTwEfBtYJE7Hn7dwMrKrBdPBx7TwWQDcrarXAZfgeAGPF5Ex4GgB/AzHS/xlHCPoLvf3it8qDmA6+JgWPouAp1T1GuA84BGcUnbjoObmCtPCx7QoEVbFYhiIyGLgLVV91n3oTpxyM6/gNDV4CrhSRG4D/oETL3ihqr7ovv4EoE5V3yn64POI6eBjWvik0OIZYHcRGa+qr4iTeT4KOEKcMkTTgC+oU6oJETkFaFHVjaUYf74wHXxMCx8ROQzHI/igqv4FZ5v8LHFK9r0sInfjeASPE5EHqO65wrRwMS3KB/MgDwERGSEitwC3A8eISCuAqj4CrMQ5uT+tqr04CSbLgc2qeoKqrhE381RVN1XySWw6+JgWPum0wImbfQ+4RpyY7Ek43pA2VX3W1eLvAS0GKtkQMh18TAsfERknIr/GafQyEviRiHxAVZ/HqdpytHvoMzix1+3A36p0rjAtXEyL8sMM5KHRgrN1cZb7877eE6p6P9CFGweFE1s3ArcMk1RXD3TTwce08AlrsR84cXA4jQz+FfiFqq7Cmeh7vRdWmRamg49p4bMQp032vqp6MfAtwOuWeBcwV0T2Uqdd9DpgP1V9F0wLTIta0aIsMAM5S0TkZBHZX0TaVXUdcBVwPU5txb1ExCu/1IDT4vHT7ksPBDrd46j0k9h08DEtfDJoscjTQlW3q+odqvpz96XzgVu996l0LUwHH9PCx9Wi150L/ojb2MPlTRxPOjg1ah8GLne97HOAl0SkGUwLTIuq1aIcEa3O7qR5QUQEp9bmz4ABnCL0LcBn1S0nJE4Dg2Nw4oWudR+bA3zFfe0OnLJUTxX/E+QH08HHtPDJUYsHVPUngdfug+Mh2YDTIe7F4o4+f5gOPqaFTyYtRCSmqjtE5DPAbFX9VOC1lwMTcUKzTlbVZ4r/CfKHaeFjWlQQqmr/UvwDou7/M4CfeI8B3wF+FTr2bJwM7BE4rU7BaQoxrdSfw3QwLcpIiw6cBCtwSnodUurPYTqYFqXSInDMr4Hl7s/d7v91OHHYJf8spoVpUav/LMQihIhEReRS4FJxanTOxOl1jzqxP58F9naf87gaaMVJQHlRRCao6vvqBNdXJKaDj2nhkwctnheRiar6iqr+tsjDzxumg49p4ZOLFqraLyL1wHrgWRH5F+B2ERmpqn1a+cmIpoWLaVGZmIEcwD1xH8LJIF0DXIyzHb5MRBZBPNbnIvefx6E48aWPAHPViberWEwHH9PCJw9aPIqjxdrijTr/mA4+poVPjlp81X1ZI/AxnPjTNhyPYcV3OjMtfEyLysXqICcyAPyH+nGje+C0M70Q+E9ggTilVG4EDhCRHnXi5LbinMB3lmbYecd08DEtfEwLB9PBx7TwyVWLiThhJT8BLlenJGS1YFr4mBYVinmQE3kIuF5Eou7vdwOT1elgExWRs9w7vYlAvzvRo6o3VdlEbzr4mBY+poWD6eBjWvjkosWAqq5V1ftV9eQqNIJMCx/TokIxAzmAqm5R1W1uTBDAQThxQAAfB2aJyG+A64C/QjwjtaowHXxMCx/TwsF08DEtfHLU4iEwLTAtakqLSsNCLFLg3ukpMAa42X14I/BFYFfgBS+mVFWrtk6e6eBjWviYFg6mg49p4WNa+JgWPqZF5WEe5NQMADGcepy7uXd3X8bZ/vgfrYKEqywxHXxMCx/TwsF08DEtfEwLH9PCx7SoMKxRSBpEZDFO97N7gB+p6n+VeEglwXTwMS18TAsH08HHtPAxLXxMCx/TorIwAzkNbibpSThZpNtKPZ5SYTr4mBY+poWD6eBjWviYFj6mhY9pUVmYgWwYhmEYhmEYASwG2TAMwzAMwzACmIFsGIZhGIZhGAHMQDYMwzAMwzCMAGYgG4ZhGIZhGEYAM5ANwzAMwzAMI4AZyIZhGBWEiPSLyCMi8oSIPCoi54rIoHO5iPSIyAnFGqNhGEalYwayYRhGZfG+qu6uqnOAg4CDga9keE0PYAayYRhGllgdZMMwjApCRDapamvg92nAA8BoYApwLdDiPn2mqt4jIn8BZgEvAD8Gvg1cBvQCDcB3VfX7RfsQhmEYZY4ZyIZhGBVE2EB2H3sHmAlsBAZUdauITAeuU9WFItILnKeqH3SPPw3oVtVLRKQBuBs4WlVfKOqHMQzDKFPqSj0AwzAMI2/EgCtEZHegH5iR5rgVwG4icpT7ewcwHcfDbBiGUfOYgWwYhlHBuCEW/cAbOLHIrwPzcHJMtqZ7GXCWqt5WlEEahmFUGJakZxiGUaGISBfwPeAKdeLlOoBXVXUAOAmIuoduBNoCL70NOENEYu77zBCRFgzDMAzAPMiGYRiVRpOIPIITTtGHk5R3ufvclcAvReRk4FZgs/v4Y0C/iDwKXAN8C6eyxV9FRID1wBHF+gCGYRjljiXpGYZhGIZhGEYAC7EwDMMwDMMwjABmIBuGYRiGYRhGADOQDcMwDMMwDCOAGciGYRiGYRiGEcAMZMMwDMMwDMMIYAayYRiGYRiGYQQwA9kwDMMwDMMwAvwvoSxOl5FOkVsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light", "tags": [] }, "output_type": "display_data" } ], "source": [ "symbol = 'TSLA'\n", "\n", "end = datetime.datetime.today().date()\n", "start = end - datetime.timedelta(3*365)\n", "\n", "# get stock price data\n", "S = pdr.data.DataReader(symbol, \"yahoo\", start, end)['Adj Close']\n", "R = S/S.shift(1)\n", "\n", "# plot data\n", "plt.figure(figsize=(10, 5))\n", "plt.subplot(2, 1, 1)\n", "S.plot(title=symbol)\n", "plt.ylabel('Adjusted Close')\n", "plt.grid()\n", "\n", "plt.subplot(2, 1, 2)\n", "R.plot()\n", "plt.ylabel('Returns')\n", "plt.grid()\n", "plt.tight_layout()" ] }, { "cell_type": "markdown", "metadata": { "id": "I8HwuMvTKe4v", "nbpages": { "level": 3, "link": "[7.1.4.1 Linear fractional or Arithmetic Returns](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.4.1-Linear-fractional-or-Arithmetic-Returns)", "section": "7.1.4.1 Linear fractional or Arithmetic Returns" }, "pycharm": {} }, "source": [ "### 7.1.4.1 Linear fractional or Arithmetic Returns\n", "\n", "Perhaps the most common way of reporting returns is simply the fractional increase in value of an asset over a period, i.e.,\n", "\n", "$$r^{lin}_t = \\frac{S_t - S_{t-1}}{S_{t-1}} = \\frac{S_t}{S_{t-1}} - 1 $$\n", "\n", "Obviously\n", "\n", "$$r^{lin}_t = R_t - 1$$" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 369 }, "executionInfo": { "elapsed": 1506, "status": "ok", "timestamp": 1604435182245, "user": { "displayName": "Jeffrey Kantor", "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64", "userId": "09038942003589296665" }, "user_tz": 300 }, "id": "oeBI3DgNKe4v", "nbpages": { "level": 3, "link": "[7.1.4.1 Linear fractional or Arithmetic Returns](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.4.1-Linear-fractional-or-Arithmetic-Returns)", "section": "7.1.4.1 Linear fractional or Arithmetic Returns" }, "outputId": "6c07d758-7558-47ea-d1d5-bd6c223f65c8", "pycharm": {} }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAFgCAYAAACmDI9oAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3ic5ZX38e8Z9S7ZkuXe5IILNtimGQwmmA4LJCEkEEjdbMIuISGdhE3etE02bZNNQgJhIYWEFAgkQCA0U2ywcTe4d0uyLcnqvcx5/3jG0shFlm11/T7Xpcuap8ycOR7Nc+aeu5i7IyIiIiIigVBvByAiIiIi0peoQBYRERERiaICWUREREQkigpkEREREZEoKpBFRERERKKoQBYRERERiaICWUREREQkigpkEZE+zMyqo37CZlYXdfsWM8s0s/8zs/1mVmVmW8zsi1Hnu5lN6uD+UyP39Y+eeUYiIn1fbG8HICIix+buqYd+N7NdwEfd/fmobQ8CKcA0oAKYAsw8gYd4F9AAXGpmw919f1fELSLSn6kFWUSkfzsL+L27l7l72N03uftfTuD8DwC/ANYB7++WCEVE+hkVyCIi/dsbwLfM7ENmNvlETjSzccBC4OHIz21dH56ISP+jAllEpH+7g6C4/Q9gg5ltM7MrO3nurcA6d98APALMMLMzuylOEZF+QwWyiEg/5u517v5td58LDAX+BPzZzIZ04vTbCIpr3L0AeJmgy4WIyKCmAllEZIBw90rg2wSD9iZ0dKyZzQcmA1+KzICxHzgHuNnMNIBbRAY1FcgiIv2Ymd1jZmeZWbyZJQJ3AuXA5qjD4s0sMeonhqCl+DlgOnBG5GcmkAR0touGiMiApFYCEZH+zYEHgbFAM8FsFFe7e3XUMW8fds4dwHuA2w6f1s3MfktQPP+92yIWEenjzN17OwYRERERkT5DXSxERERERKKoQBYRERERiaICWUREREQkigpkEREREZEo/XoWi+zsbB8/fnxvh9GjampqSElJ6e0wepVy0J7y0Ua5UA4Op3y0US4CykMb5QJWrlxZ4u45h2/v1wXy+PHjWbFiRW+H0aMWL17MwoULezuMXqUctKd8tFEulIPDKR9tlIuA8tBGuQAz23207epiISIiIiISRQWyiIiIiEgUFcgiIiIig0hlfRPX/fQ1dlW09HYofVa/7oMsIiIiIifmrYIK1uZXMC0lvrdD6bPUgiwiIiIyiOworgGgtD7cy5H0XSqQRURERAaR7cXVAJTWey9H0nepQBYREREZRNpakFUgH4sKZBEREZFBRC3Ix6cCWURERGSQqG9qoaC8jvjYEBUNTlOL+iEfjQpkERERkUFiZ0kN7nDW+CwcKKpq6PLHaAk7H//tSl7ffrDL77unqEAWERERGSQO9T8+f1I2APvK67r8MbYVVfPM2/v58ENvdvl99xQVyCIiIiKDQDjsvLDpAADz84ICubCi/qjHPrxsN6v2lAHwxo6DvLSp6Ihj1uWX0xI+sh/zWwUVANQ19d+FSI5bIJtZspndY2b3R25PNrNruj80EREREekqT7+1j8dWFQAwITsFgP0VR7Yguztf/utbvPPnS3ngtZ3cfP8bfP7Rde2OWbm7lH/56RLuf3XHEee/urW49feCbmih7gmdaUF+EGgAzovcLgC+2W0RiYiIiEiXe7uwEoAZI9NJT4wlxqCstumI46oamlt//8aTG0hLjKO4qoGG5rYW4U37qwDYeqC63bkPLtnJ42sKWTQtF4An1hR0+fPoCZ0pkPPc/b+BJgB3rwWsW6MSERERkS61s7iG7NR4HvnYuZgZKXFQfpQCufiwgXv/dtFEAA5UtG0/WN0IQFpibOu2h5bs5P/9fQNXzBjOz2+Zw4LJ2fzgn1t45q393fF0ulVnCuRGM0sCHMDM8ghalEVERESkn9haVMXccVmkJcYBkBJnVNQ1HnHc4QXy6aMyACiM6o6xqyQY7FfX2IK709Dcwg+e28KCydn89OYziY8Nce/75zJrdAZ3/GEVO0tqCB+lv3Jf1ZkC+avAM8AYM3sYeAH4fLdGJSIiIiJdxt0pKK9j7JDk1m2pcXbUFuTDp34bmZkEQGGkP3FNQzNLI1O4bdpfyYL/fompX3mGqvpmPnLBBGJjgvIyNSGWe2+ZS1OLc/H3F/OuXyyluqGZTz2ymr+vLQSCKeF+9eoONke6bPQVscc7wN2fM7NVwLkEXSvudPeSbo9MRERERLpERV0T9U1hhmcktW5LiTOWbj/I24UVzBiZ0bq9qDKY2eLq00dw+ugMslMTACitaaS+qYULvvtia9/ltfkVreddPiOXi6bktHvc4RmJnDdxKK/vOMjqPeXM/OqzAKzcU8a1s0dyoLKebz61kW/dEMPU4Wnd8+RPQmdmsTgfqHf3p4BM4G4zG9fZBzCzGDNbbWZPRm5PMLNlZrbNzP5oZvGR7QmR29si+8ef1DMSERERkXYKy4Oid2RGYuu2Qx0e3v+rZe2O3V5cQ0ZSHD+9+Uw+flEeaQmxmAVF9s9f2kZZbRPjhiZzyWnD2p33sQsnYnbkMLVffWAeK76yiHtvmcPnLp8KQFOzU9/Uwp7SWoB2Ldt9wXFbkIF7gdlmNhu4C3gA+A1wUScf405gI5Aeuf1d4Efu/oiZ/QL4SOQxPgKUufskM3tv5LibOv1MRERERKSdHz+/lb+vK+Sdc0YBQYvuIflVwTLTtY3t5yveuK+SaSPSWovdUMhIT4xj9Z5ylu08yPVnjOR/3nsm24qqed/ZYxmfncLDy3Yze3TmUWNISYglJSGWK08fAQR9nB9auovbH17FlTOHAzAmq28VyJ3pg9zs7g5cB/zM3X8GdKoN3MxGA1cDv4rcNuAdwF8ih/wauD7y+3WR20T2X2JH+xgiIiIiIsfl7vzxzT1sK6rmv5/ZDLT1Jwa4ckIwWG9ISnzrtpaws3l/FdNGpLe7r4ykOF7bVkJz2Ln76mkATBqWyqLpuUwalspXr53R2vf4eA4N+ntxUxF7S2sxax9XX9CZFuQqM/sScCuwwMxCQFwn7/9/CAb0HSqohwLl7n5ogr18YFTk91HAXgB3bzazisjx6u8sIiIicoJ2ltRQWFHPnZdMZn1BBXPGZpKb3taCvGhcHBnDx/CLl3fQ3BImNibE7oM11DW1HFEgpycFJePIjCSGpSVyKm44cxRPritk5e4yXt1WwuisJOJj+9bizp0pkG8CbgY+7O77zWws8L3jnRRZba/I3Vea2cJTC7Pd/X4M+BhAbm4uixcv7qq77heqq6sH3XM+nHLQnvLRRrlQDg6nfLRRLgKDKQ/ri4P2yNTqvdw2PgaoYfHitoU7qqurqS3fS0vY+euzi8lJDrF8f3BObcEWFldvbz02XB/MYJEZ09Al+cvxRirrm1m9p5x/PT2+z/2fdGYWi/2R6d3OihS9y939N5247/OBfzGzq4BEgj7IPwYyzSw20oo8mmBlPiL/jgHyzSwWyAAOHiWe+4D7AObNm+cLFy7sRCgDx+LFixlsz/lwykF7ykcb5UI5OJzy0Ua5CAymPOxbvgdWrueqi+cz6ihdGBYvXsylp83kwbeWMWrKLOZPymbFs5uJCW3nvVctJDEupvXYR/auZMPB/cyZPIaFC2eecmzVQwr505bVXDFjOHffPOeog/t6U2dmsXgPsBy4EXgPsMzM3n2889z9S+4+2t3HA+8FXnT3W4CXgEPnfwB4IvL73yK3iex/MdL3WURERERO0L7yOkIGuWkJxzxmTGT2iL1lwWwSG/dVkpeT0q44hmC+Y4C547K6JLYFk3L44PzxfPudp/e54hg6N0jvy8BZ7v4Bd78NOBu45xQe8wvAXWa2jaCP8QOR7Q8AQyPb7wK+eAqPISIiIjJoFVXV85MXt2FmHQ6eG5GRSEzI2FsadKHYuK+S04anH3HcFTNHRP4d3iXxZSTH8bV/mdFugGBf0pk+yCF3L4q6fZDOFdat3H0xsDjy+w6CIvvwY+oJWqlFRERE5BQ8+9Z+AObnDe3wuNiYECMzE9lTWsszb+2jsKL+iAF6AJ+/fCp3XjL5iJblgaozBfIzZvYs8IfI7ZuAp7svJBERERE5Fct2ljIiI5HffPiINskjjMlKZuO+Sl7ZWkxeTgo3zht9xDGhkJEUPziKY+jcIL3Pmdm7CAbdAdzn7n/t3rBERERE5GS4O8t3lnJe3tBO9e8dk5XM0u3BvAg/uumM1qWlB7POtCDj7o8Cj3ZzLCIiIiJyinYfrKWoqoGzJwzp1PFjhrTNcDE8/dTmOB4ojlkgm1kVbct0t9sFuLsf2UFFRERERHrV8p2lAJzT6QK5bZnnvjporqcds0B2904tJy0iIiIifceynaUMSYknLye1U8dHF8iZyZ1dLHlgO+ZsFGZ2lpldeZTtV5rZ3O4NS0REREROxvJdBzl7/JBOzy88JqutQE6IHTwD8TrS0XRt3wU2HGX7Bjqx1LSIiIiI9KzC8jr2ltZ1uv8xQHaqulUcrqMCOc3ddx++MbItu/tCEhERERnc3J0n1xVS19hyQue9sSOYjeJECuS+uJJdb+toFouO1hJM7mCfiIiIiJyCl7cU8x+/X82/XTSRL105rdPn/e6N3YzKTDrqYh8d+f6NswmpTm7VUQvy82b2LYv6WGGBrwMvdn9oIiIiIoPTkm0lAPzy5R0cqKzv1DlFlfWs2lPOreeNI+YEq913zx3NO+ccuUDIYNVRgfwZYCKwzcweNbNHga3AFOCunghOREREZDB6YWNR6+8/+OfmTp2zem85AGeN76gTgHRGR9O81QDvM7OJwIzI5rfdfUePRCYiIiIyCLy8pZhVu8u485LJ/Oj5LSTHx7KjpIbpI9LZsK+S4qoG6hpbeHxNAe+ZN+aYrcPr8yuIDRkzRmb08DMYeDqz1PQOQEWxiIiISDf405t7eWr9PpZsK2HF7rLW7ffdNpfvPrOZVbvL+M4/NvLr13eTnZrApdNzj3o/ByrryU5NIDFOU7Wdqo66WIiIiIhINyuqqicmZO2K47ycFEZnJXPa8DQKyut49u0DAPzrb1bw+OoCSmsa+dWrO/jhc1t4fXswc0VZbSNZWgmvSxy3BVlEREREuk9xVQNXzBzO6aMymD06k3X55Zw7cSgAE7NTANgfNVDvnsffYuKwVNZG+hw/saaAxZ9dSGlNI0NVIHeJYxbIZtbhBHruXtr14YiIiIgMLkVVDVySnsjHL8oD4Ly8oa37JuQEBbIZPPShs1m6rYRfvrKDtXvL+enNZ1JR18SX//oWX/vb2xyobGDOOM3E2xU6akFeCThgwFigLPJ7JrAHmNDt0YmIiIgMYDUNzdQ2tpCTlnDU/eOHpmAG50wYwkVTcpiSm8r/LdnJxy/K45pZI2kJOzuKa3jgtZ0ALJo2rCfDH7A6msViAoCZ3Q/81d2fjty+Eri+Z8ITERERGZh2FFdz+8OrAMhJPXqBnBgXw+cun8rZ44Mv9kdkJLH87kVkJscBEBMy7rlmOjEh475XdtDYEu6Z4Ae4zgzSO/dQcQzg7v8A5ndfSCIiIiID36f+uIZN+6sAOH9S9jGPu33hJOaNb+v5mpUSf8Ty0NedMRKA3PTEboh08OnMIL1CM/sK8LvI7VuAwu4LSURERGRg21Fczbr8CubnDeXmc8YyPOPUCtsZIzP4x50LmBjpsyynpjMF8vuArwJ/JeiT/Epkm4iIiIichL+tLcQMfnTTGV3W6jttRHqX3I90bqGQUuBOM0uJrK4nIiIiIifJ3fnbmkLOmzhUXSL6qOP2QTaz+Wa2AdgYuT3bzH7e7ZGJiIiIDEBvFVSyo6SGf5k9srdDkWPozCC9HwGXAwcB3H0tcGF3BiUiIiIyUD2xpoC4GOPKmSN6OxQ5hk4tNe3uew/b1NINsYiIiIgMaO7O39cVsnDqMDIiU7VJ39OZQXp7zWw+4GYWB9xJpLuFiIiIiHTe/sp6DlQ2sGDysad1k97XmRbkjwP/DowCCoAzgNu7MygRERGRgWhbUTUAk4al9nIk0pHOtCBPdfdbojeY2fnAku4JSURERGRgOlQgTx6W1suRSEc604L8v53cJiIiIiIdeHNXKdmpCWSnxvd2KNKBY7Ygm9l5BEtK55jZXVG70oGY7g5MREREZCCpaWjm+Y1F3Hz22COWipa+paMW5HgglaCITov6qQTefbw7NrMxZvaSmW0ws7fN7M7I9iFm9pyZbY38mxXZbmb2EzPbZmbrzGzOqT45ERERkb5iXX4Fjc1hLpqa09uhyHEcswXZ3V8GXjazh9x9N4CZhYBUd6/sxH03A59x91VmlgasNLPngA8CL7j7d8zsi8AXgS8AVwKTIz/nAPdG/hURERHpk5pbwnzqj2v40PnjmTtuSIfHri8oB2DWqIyeCE1OQWcG6f2XmX2cYO7jN4F0M/uxu3+vo5PcfR+wL/J7lZltJJgJ4zpgYeSwXwOLCQrk64DfuLsDb5hZppmNiNyPiIiISJ+z62ANT67bx3MbDrD8y4v4v9d28urWYrYcqCYvJ4WG5jCXTs/lfWeP5dGVBYwdkszQ1ITeDluOw4J6tIMDzNa4+xlmdgswh6DFd6W7z+r0g5iNB14BZgJ73D0zst2AMnfPNLMnge+4+2uRfS8AX3D3FYfd18eAjwHk5ubOfeSRRzobxoBQXV1NaurgnhpGOWhP+WijXCgHh1M+2igXga7Ow5v7m/nZmgYAZuXEsK64hfgQnDsyluLaMBtLw63HGnDX3AROz+lM+2T302sCLr744pXuPu/w7Z35H4qLLBByPfBTd28ys46r6ihmlgo8CnzK3SujO6W7u5/IfUXOuQ+4D2DevHm+cOHCEzm931u8eDGD7TkfTjloT/loo1woB4dTPtooF4GuzMOukho++Mzi1tvrilv48PkT+OD88YwdmgzAY6vyuetPawH45g0zueWccV3y2F1Br4lj60yB/EtgF7AWeMXMxhEM1DuuSGH9KPCwuz8W2XzgUNcJMxsBFEW2FwBjok4fHdkmIiIi/cCO4moeeG0nn7lsKkNSBvY0ZuGw8/m/rANg0bRhbNpfxfy8odxzzbR2M1TccOYoFk3PxR0ykrS0dH9x3ALZ3X8C/CRq024zu/h450W6TzwAbHT3H0bt+hvwAeA7kX+fiNr+H2b2CMHgvAr1PxYREek7thyoIr+slneclnvU/b95fTcPL9vDw8v28JePn8e88R0PWutvKuqauO3/lnNabhpDUuNZvquU7984m3fPHU1jc5j42CMnBzMz0hNVGPc3xy2Qzew/j7Hr68c59XzgVmC9ma2JbLuboDD+k5l9BNgNvCey72ngKmAbUAt86HixiYiISM+57EevALDrO1cfdf+6/GCWhqS4GL7w6DqevnMBCbEDZ+mEr/99A2v3lrN2b/A833HaMN41ZxTAUYtj6b8608WiJur3ROAaYOPxTooMtjvWLNiXHOV4B/69E/GIiIhIL2pqCRMX074gfOC1nazaU85dl05h1ugMPvjgm/zspe3cdemUXory1OwormZERhJJ8UGB//yGAzy6Kp//uHgSM0dl8JeVe/nWDadrwY8BqjNdLH4QfdvMvg88220RiYiISJ92sLqR4RmJABSU13Hv4m387o09XDlzOJ9YmEdcTIirZ43g/ld28JELJvR639vaxmZqGlraLe9cWtPIu+5dSlJcDFOHp3HJtGEkxMawZFsJ24qqWbK9hKS4GJLjY6isb6axOcykYal88pLJxMeGuGLm8F58RtLdTmaekWSCAXQiIiIySFTUNbX+XlzVwPCMRPYcrOUDDy5nZ0kNl07P5cfvPbO1ZfkTF+Xx1Lp93PfKdj53+Wm9FTYrd5fyrntfB+DqWSO4cSRU1Tfxgf8L4j5/0lCe33iAv64O5gWIjwmRmhjLjJHpTMpJJSUhlobmMM++tZ+7rzpNXSkGic70QV4PHJqKLQbI4fj9j0VERGQAWZ9f0fr7X1bu5fv/3MzLW4oBeOeZo/jvd88iNqrbxcxRGVwzawQPLtnFZy6dStidLQeqGZoaT256YrfE+FZBBRv2VTJ5WCqzRmdiwNf+tqF1/1Pr9nFWSiJf/9kSdhTXcPb4ITz80XPZWVLDw2/sZt74LC6YnENqwpHl0XffNYuYkLpTDBadaUG+Jur3ZuCAuzd3UzwiIiLSBz21vm1iqV+/vpuMpDg+tWgyyfExvP/cce2K40POnTiUJ9fto7CijjsfWcPK3WWMykzin5++kJSjFKGn4qVNRXzk128SjjTpjRmSxLkThrK+oIJPXjKZyromHlq6ix+srCcUE8eDHzqLhVNyAJiQncJXrpne4f2rOB5cjvnqNLN0d68Eqg7blR5Z3KPS3Vu6NToRERHpdc0tYZ59ez9XnT6ckBlzx2Xxzjmjj9u3eEJ2CgDfe3YzK3eXceu54/jtG7v58QtbufuqaV0W376KOj75h9VMG5HOd981i4/9ZgV7S+vYW5rP3HFZfHrRZArK63ho6S6qGuFXt83m4qnDuuzxZeDp6OPb7wlaj1cSdLE4/KNTqpnd7+53d1dwIiIi0vuW7SyltKaRa2eN5MrTR3T6vPGRAvmJNYXMG5fF16+bQX1TCw8t2cW/LphITlpCl8T33IYDVDU08+P3nsGkYWmMGZJMYUU9IYMf3DgbM2NUZhJjhyQzLa2RRdOPPo+zyCHH7Gnu7tdE/p3g7hMj/7b+AMOBG3oqUBEREel57s6fV+wlKS6GhSfY6joiPZERkdku7rlmOmbG7RdPoikc5sElO9ly4PAvqU/Osh2ljMxIJC8nFYDvvXs2n7t8Ktu+dVVrkW5mvPTZhbxvWtcU5TKwddTFYk5HJ7r7KqDrvh8RERGRPuelzUU8vqaQm+aNaZ0TuLNCIeOZT13I3tJaZo7KAIJuF4um5fLzxdv5+eLtfPP6mbz/3HEnHd+aveU8+/Z+3nPWmNY5iccOTebfL550xLHqRyyd1VEXi0PzHycC84C1BN0sZgErgPO6NzQRERHpbS9tKiYxLsTXr59xUudnJMWRESmOD/nXBRN5bsMBAJ5ev++kC+TK+ibu+MMqctMT+UIvTiUnA09HXSwudveLgX3AHHef5+5zgTOBgp4KUERERHrO9uJqHnhtJxsKKymvbeSlzUWcNX5Ily4Zfdb4LD5/xVRmj8nkrYIKgsV0T9zdj62nsLyen7zvTDKSe3cxEhlYOjPHylR3X3/ohru/ZWbqWiEiIjIAlNU0kpkch5lRWF7He+97g+Kqhtb9IYOvXXtyrcfHYmbcvnASmUnx3P3X9Tz79oGjrkxXWF7HiIzEI5Zzdnd+8sI2nly3j89eNoW547K6ND6RzhTI68zsV8DvIrdvAdZ1X0giIiLSE55YU8Cn/7iGW88dx4TsFL7/zy20hJ1f3jqX2sZmdh+sZcHknG4rQK+dPYKHlu7kW09v4NLpue36CL+6tZhbH1jOu+aM5itXT+ORN/dy9oQhzB2XxQsbi/jR81uYPTqDj12Y1y2xyeDWmQL5Q8AngDsjt18G7u22iERERKTbVDc089rWYtzhrj+tJezBwh8ACyZn863rT2fs0OQeiSUtMY47L5nCv/9+FYs3F3HJtLbp1377+m4S40I8uiqfx1bn4w4jMxL5/o2zuetPaxg3NJm/fGJ+69LWIl3puAWyu9cDP4r8YGYLgB8C/969oYmIiEhX+9Jj6/n72kIAzhybyW8/cg57S2spq23kvIlDj+jO0N0um5HL8PREHlq6q7VAdneW7yrlutmjuPW8cTy34QA/fmErhRX13PyrZUzJTeWBD5yl4li6TafWeTSzM4H3Ae8BdgKPdWdQIiIicvLCYaeyvomMpKBvcV1jC49ubeTnm15n+a5Spo1I59LpuXzkggmkJsQybUR6r8UaFxPilnPG8oPntrBpfyWnDU9n0/4qymubmDUmg5mjgp+bzhrD/O+8CMBfPjGf9EQNypPu09E8yFMIiuL3ASXAHwGLzGwhIiIifUh5bSNv7CjlpU1FvLi5iOKqBiZkp3DuxKG8vLmIwoomZo1u4Y53TOJTi6b0qTmBbz5nLA8u3cUV//MqSXEx1DW1AHDmmLa+zyMzk/j9R89haGqCimPpdh21IG8CXgWucfdtAGb26R6JSmSQaW4J46CvC4/C3Xv8K1+R/mR/RT33vbKDB5fuxB3SEmO5cEoOM0am88qWYv6yMhjc9v4pcPu7LujtcI9qaGoC/3bhRP7rH5uoa2rhK1dPY8bIDKaPbN+yPX9Sdi9FKINNRwXyO4H3Ai+Z2TPAIwQLhUgf5+7UNbVQ3xQmKzJ1D0Bjc5iG5hbSTuCTd21jM3tKa2lsDnP6qIwBX6iEw0G/t5W7y3hjx0FGZyXziYvyun3AyucfXcfzGw7wn9fOYGJOCinxsUwdntatj9ldwmGnxb212A+Hnb1ltQAMS0s8YiUud6ekupGtRVXsKqmlrqmFxLgQO4trWJtfTmF5PZ+/YipXzBzepfOwivQF9U0tuENhRR2VdU3kDUvtVOtofVMLizcX8c+3D/DY6mBpguvOGMl7zxrLvPFZrX9/ty+c1Pohc/Hixd35VE7ZrNGZAGQlx/HRBRN7ORoZ7I5ZILv748DjZpYCXAd8ChhmZvcCf3X3f/ZQjANWZX0T9y7eTnltE/sr6hiSksDccVnk5aQwY1QGqQnH/vyyv6Ke5zbsJxQyquqbqahr4mB1Ayt3l5FfVkdDcxiAKbmpZCXHs6OkhuKqBmJDxvmTsjkvbyi7D9YwbUQ6t503HoCK2ib+8dY+GlvCJMSGeLuwkkfe3Etj5L5OH5XBVaePYEhKHENSEkiMCxEy45E391LT0MxnLpvCjJEZxwq5TwuHnVe3lfDDf25mbX5Fu33PvLWPL101jcLyOp5at4/65hYWTM7h3IlDuXbWiJP+0PDS5iI+/cc1DEtLYMuBagA+++e1rfsvnZ7LpxZN7pM5LSyvY11+OeW1TewsqeHlLcUkxMWQkRTHmj1l1DS2cPmMXKbkpvHnFfkUlNcBkJoQy8cvmsj0ken89vXd7C2rY39FPdUNzUc8RkJsiKEp8RRVNXDnI2vITk3gi1eexjvPHEUo8tVwbWMziz5/XpIAACAASURBVDcX09QSbs1TU0uYxZuLWZdfzitbisGMvJwUthyoImTGwx8954Q+JIqciJaws6c0+EA4Oiup3bdCJdUNPL66gPUFFazaU0ZFbRPVDc2Eo9bIGDc0mY9eMIG4mBCjs5KJCRlFVfUcrG5kaGo8+WV15JfV8cSaAmobW4iPDfHB+eNZODWHi6bkHPX9qL80bMwcFbQWf2rRlF6ORKRzs1jUAL8Hfm9mWcCNwBeAQVkgF1c1sGFfJQmxIcprm1i6vYSUhFiq6psIOyTGxrC/so74mBBV9c3UN7cwdkgKc8dlMSQlDndYvrOUrUXVvLathMbmMCnxMeRmJPJ2YSWPrsoHgonZR2YmMTEnlZzUBOJijB3FNew7WMfEHctZur2Eppa2d9XYkJGRFEdeTirn5Q1ldFYyLWHn0VX5VDc0c9GUHGLMCIVg2c5SXv5Hceu5O4pr2BaJ53BXzxrBlTOHU17bxA/+uZnvPrPpiGPSEmNpCTtX/+Q1xg5JZuaodNIT48hNT+TyGcMJuzNjZHq7N+mKuiYKy+s4bXga5bVN1DQ2MzRSdJtZh1+rVzc64bDjwJ7SWgrK6khNjOW04Wkkxp1YC+Mflu/hsVX55JfVsa+inuHpiXzu8qncOHc0oZDx+OoCfvnKDj7/l2Dq77PGZxEXk8CTawv5/bI9rNpdxvCMRNbll7NmTzmZyfGkJMSQm57Isp2lhMPOtbNHsmhaLknxIYoqG1g0PZe4mBB/enMv4bAzfmgKGUlxfPrSKRRXNZCRFMe6/Ap++NwW1uwt53OXTeXhZbvZX1lPQmwMCbEhpg5P4+azxzIpN7VTz7OpJUxjc5imljAVdU28vv0g88ZnERMKsXZvOdfOHtnp/ojbiqq54WdLqIoUtWZwfl42oZBRXNXAhVNyyE5N4LFV+Ty9fj8XTMrm9ovzSIiN4Zm39vP9f24BICctgdOGpzE0JZ6FU4cxc1Q6E7JTCJkRdmdkRhKhkBEOO69tK+FbT23ks39ey7ee2sCnFk2hoLyO+17Z0RpXXIwxJdP43JIXKa5qwCz4UBdj8NfVBeTlpLKtqJrHVxdw9ayRZCbFtRbadY0tPPP2PnYU11BV38za/HKyUxO46vTh7C2tozns5OWk4B4sm5uZHMeU3DRSEmJxd3703BZW7injZzfPITM5vtOvPxl4fvz8Fn7y4jYgKJDPHj+EUMioqGvizV2llNc2kZuewJyxWaQlxjI8I4mkuBiaWsIcqKznkTf3cs8Tb3f4GCnxMVw0JYebzhrDrNGZDEkZGK+5tMQ4dv7XVb0dhggQDLrr7RhO2rx583zFihU9+pjX/2wJa/aWt94OGYQd0hNjCYWM8tomEuNCZEcGEYRC8HZhJYenecyQJBZNy+X6M0Yxe0zwtZK7sza/gn3ldWzcV8nu0lrW51dQXB20/E4alkpddSWNMUnMz8vmvWePCda4T4ojKS7mhFoJSqobyC+r45N/WM3+ynpGZyZxzsShXHfGSCYPS21tgR6ZmdR6TmV9E6XVjcTGGLtKanGcmoZmLpySQ0lVI0+/tY81e8rZsK+ytQXlkI9cMIF7rpkOBF09bvzFUtbmV5CdmkBJdduKTTlpCUwfkc6KXaWMz07h7AlDGJOVzJ7SWl7ZUkxjS5j8sqA1Mjk+htrGltZz42KM6SMzmDM2k7ycVNISY6moa2LMkGQMWls71+WXU1bbRH5ZXetjXzFjOFfMHM5lM3JJjm//ubGusYX9lfXEhowxQ4KuFi1h59YHlrF0+0EARmUmcebYTCrqmqhrbGHzgSrGZCUzPjuZ5zcU0dgSbr2/zOQ4slMT2FZUzY1zR/O9G2cf9f9o6fYSbr5/GRB8CLl0ei7uQTxLtpW0FqhDE40Lp43kypnDOWv8EB5fU8CK3WXsPlhDSVUjNY3NVNUf2UI7KjOJhuYwJdUNzBuXxY9uOqP1+R3i7uyvDD44mBnPbzjAR3+zgvTEWB780FmkJ8aREBtz1C4oNQ3BNxvRryGAtwsr2Ftay8WnDTuhLhPhsPOdZzbx9Pp9ra8BgK9eO535edl879lNPL+xiNOGp/G5y6dyweTs1vtvaG4hLhTivO+8wIHKhtacJsTGUFnX1Pr/EzJIiY8lKyWe0prG1pbtQ3/n0WJCxpCUeKrqm6hvCs6fmpvGRVNzuHxGLpv3V7O+oIKD1Q3ExYaYNSqDD54/noTYGCrqmkhPjMXMaG4Js/lAFW8XVLI2v5zSmkZmj8nkhjNHkRwfQ0NzmPTEOOJjQ7h76wfj+Nij91dfvHgxCxcu7HReB7qezEdNQzNnf+t55ozL4h2nDeOJNYUUVzUQdicjKY6xQ5L5zGVTO+w+VVbTSFM4TEFZHXWR7hfD0hIYkhK0Ho8fmnLSSyrrtRFQHtooF2BmK9193hHbVSCfmNe3H8QsuFjHxYaYPTqTppYwyfExrVPpHN7HsqymkfK6JsprG6ltbAlazVITTurxu/rFfOj/v6u/gnN3thZVs+VAFc9tOMATawrJy0nhshnDebuwkle2FLNo2jBSEmIpq21iam4qZkEL5FsFFQxLT6C0pondB2uobWwhZLBgcg7pSXGUlRTxVplxxYzhzBmXRXZqPI3NYdbmV/DSpiK2HKg6opiJFhsypo9MZ0puGpV1TXzpqmlMyE45qefY0BymoTlMRlLcEfsO5bS2sZllO0rZfbCGzOR4Xt9+kN2lNZw1fgi3njeOYWmJx3yM7cXVGDAiI6nd66qironVe8rYVlTNP1duYWOZtRbMh8wek8nU3FS2FlVT19jCdWeMIjEuREJsDOsLKvjD8j1kJcfxiYV5/O+L28hJTeCD549nz8FahqUnUN3Qws6SGv6+tpCpuWmclzeU5zceIL+sju/fOJt3zx19wjnrCu7OCxuL2FlSw0cumNDaCuzu/PjPL/Chay46ZgGx9UAVa/ODovUfb+1nVFYSYyMfoGaPyWR+3tDW7hdV9U3sq6hndFYSITM27a8iOT6G6oZmCsrqeHr9PtIT40hPimXysKDg+dOKvazNL28tYrOS4wh7sDBDS7htW1ltE5OGpTJ7dCZv7ipt/UCZmhB71O4mGUlxDEtLoLqhmX0V9cSEjInZKYzPTiEvJ5V/vzivNe5nX3iJ5pzTqG9qCR4j8gG8L3APuh/sOlhLTeS5hAxKaxo5UFnPN68//ZiF/8k62ntmQ3ML8TGh1r/REx0IerC6gc0Hqtiyv4pdB2vJSUtgdFYSz28s4u9rC/nDv57LeXlDu/JpdAkVQwHloY1yoQJ5wOiPL+aKuiau/d/XaIy0VjaHnX+7aCJfunLacc91dw7WNBJjRlbka8TFixdz0UUXHfOC5u6s2VtOYlzQwlzb2ExyfAyZyfFkpyScdOtLX7V48WLmnXcBP35+CwXldXx0wUQmZqd0+FV/ZX0T/+9vG/jQ+eOZOSqDpdtLuOP3qzlY09juuLgYY+rwNGJCIbYXVZMYF+Kb18/kipkjuvtpnZS+8Pexr6KOtXvLyU1P5MyxwRRV4bDzzw0H2LS/kvyyOoamxLN8Vyn7K+rJTU/ktvPGMWt0JhOzU6hqaOZ/nt/CuCHJNIedusYWdpfWUtsYFNl5OamYweZIcbajuJpxQ1MYnp5IQ3MLhQcr2F/T9r6enRrPjJEZzM8bSkuk68o1s0YQewozphRV1rO7tJbMyDdYtY0t5KQl0NgcpqC8jtKaxtZvatISY0mOj2H1nnLe3FXW7hujw91w5iiGpSfwypYSMpPimDUmgzFZyZRUN7BpXxVjhiSRk5ZAU4vzsQsnUlTVwO6DNQxLS2B0VnJrF6tw2Nmwr5KG5jBrV68ib/osymsbKSyvZ/HmIpbtLCUuxkhLjKOxOUx9UwsTslOIjQkxbkgyW4qqcIewO1X1zVx9+ggcZ+uBarYWVVMa9XcSPSUZQG56Aku+8I5Tym936Qt/H32B8tBGuTh2gdyphUJETkVGUhwvf25hawv7gcp6xnVyVggzI/sore0dtfaYWWthMlikJsTy5aund/r49MQ4fvCetq4d8/OyefPLi9iwr5KslHhqGpoZk5V8xLchcnwjMpIYkdG+W0koZFwxM+jGczwZSXF89doZnX68pdtL+PrfN1Df3BKMMwDuv20eE3NSWLqthHX5wYCw/4oad/DHN/cye0wm00akcdn04Uf9f3Z3Xt9+kNV7y9lyoIq3CytJiouhrLaxXReXjsTHhFq7r6QlxjI/bygXTx3GxJxUkuNjyE5NID42RMjgup8t4a+rC4iLMU4flcHeslpW7i6jsSWMWdAl6MXNRa2Dhn/43JbWVnkIulzNGp1BbWMLheX17QvxN5a3/pqdmsAH548nKT6GqvomYkMhmlrCFFU1sLOkhmfe3s+E7BRmjsogHA5mBPrdst2kJcQyOTeNy6bnMmlYKlOHpzE1N42ctAQq65oprm4AnJzUxD5ZHIvIiVGBLD3iUEGbFB/D+JPoziDdLxQyZo7qezNmSMfm52XzzKcubL29ePFiFk4PluvNy2kbxFlQXkdSXAwPv7GbR97cy/Jdpa0F5pghSaQmxJGWEEtqYizDMxJ5Y8dBdhTXAEGr6MTsVMrrmjhjTCYfnD+eyblp7D5Yg5mRHBfDvoo6EuNiGJ2VRGZyPKkJscwclUFzS5iaxpbW7j3H8uQdF1Bc1cCYIcntpgjcX1lPamIs6YlxhMNOSXUDS7aXsGJXGdNGBAM7d5bU8MLGA1TUNZGVHE9eTioLJmczNDWBVWvWMjbvNE4bkcaYIckdTqFWVd/Eyt1lzM/LbtfVo6klTGzIjvnBPCM5bsB9MyUy2KlAFhEZBEZFBkvecclk7rhkMuGw88TaAjbtr6KosoGq+maqG5rYX1HPil2lhB2+cvU03jlndAezJOQc93FjY0JkJB2/RTUtMe6I6fdCIWs3yDMUMoalJ3LDmaO54cy2PvDnT8rm/eeOO+r9emEsCzvZXz4tMY6FU4cdsV0L+IgMPiqQRUQGoVDI2hWZ0dydsNOnliIWEelJKpBFRKQdMyNGtbGIDGL63khEREREJIoKZBERERGRKP16HmQzKwZ293YcPSwbOHJN6MFFOWhP+WijXCgHh1M+2igXAeWhjXIB49z9iBHH/bpAHozMbMXRJrQeTJSD9pSPNsqFcnA45aONchFQHtooF8emLhYiIiIiIlFUIIuIiIiIRFGB3P/c19sB9AHKQXvKRxvlQjk4nPLRRrkIKA9tlItjUB9kEREREZEoakEWEREREYmiAlmkHzAzrWsmchT62xDpmP5GTo4K5D7IzAb9/4uZjertGET6KjObqveJVspDFL0uArqGyKnSH1IfYWb/YmZ39XYcvc3MFpnZSuDjvR1LX2Bm15rZH4Avmtm43o6nt5jZ9Wb2jd6Oo7eZ2aVmtgz4KIP8/dvMrjazJ4FvmNn5vR1Pb9L1o42uIW10/Tg1GqTXy8wsFvgM8AlgLDDH3deYWYy7t/RudD0j8vVPHPA/wHzga+7+ePR+H4QvVDNbBHwb+E/gLCADeMndnzKzkLuHezXAbhZ5XYSADwFfBMYB73D3V3s1sB4WyUMscA/wPuAL7v5Y9P7B9vdhZnOBe4GvAenAO4Cl7v7QYPjbOETXj4CuIUca7NePrjCoWyD6AndvBjYDpwF3Ab+MbB80b24eaASSgcfd/XEzC5nZ7EP7ezfCXrMIeNLdnyF4XaQBHzazlMHw5hZ5XbQA24AzgduBQdeKHMlDExAG/nKoODazBWYW17vR9ZpFwKvu/jTwBLAf+KSZZbh7eLD0udT1I6BryFEN6utHV1CB3AvM7JNm9h0ze09k01PuXu/u/wMMM7ObI8cN6ItfVB5uimz6BrDAzL4PrAK+aWb3mdnlvRdlzznK62IpcL6ZJbp7EVAPxAAf7rUge0AkD/eb2Ucjm1529yp3vx9IMbOPRI4b0O9fUXn4WGTTL4ARZvagma0HPg88QOT1MJCLwqhc/Gtk00vAtWaW5e51QBNQAXwBBnZBpOtHG11D2uj60fUG9AWmr7HAp4GbgBXA/zOzDwJZUYfdBXwPINJqNOAcJQ9fM7OPuPt24HGC1pCbgJuBt4AbzCy71wLuZsd4XXwA2AQUAn8ys5cIvkp+AkgbqMVh5O/hZuBR4FYz+xIwMeqQ/wTuihRGA7YV5LA83GJmXwEaCP4+4oEbgX+J7H+nmY0dqEXhYbl4v5l9GdgFPAv81sxeJXiNfAfINLOUXgq1W+n60UbXkDa6fnSf2N4OYDBxdzezi4GvuPtLZlYNXAa0AL+NHPPXyCfBz7r7981skbs/35txd7Vj5OEqM3uPu/+vmT3o7tUAZrYGOBeo7c2Yu9NR8lFD8LqoJRiMNQsYGek7dgswYQAXh5cA33X3Z8ysBLgWuAX4OoC7/yPSgvwxM/s5cIW7/7n3wu02h+fhOuDf3P07Zvacu9cAmNk6oJygBXWgOloubnP3O8xsLDDV3Z8zs4uApEO5GWh0/Wija0gbXT+6jz5FdJPDv+6M+sS2AlgAEOkbtBWYYWZTow7/BPDfZrYf6NdT1ZxAHjYCc81s6qE3tohLCf7Q63sg3G7XyXz8A9hCMLBikruvdvenIsfNBZb1ULg9JioPq4FrANx9BfA6MMraz1LwBeC/CP52hvdknN2tgzwsASaY2fmHFYAfAJKAsh4NtAccJxdTzGyBu+9x9+cix10NbO/5SLvfYL1+HM1gv4ZE0/Wje6lA7j5J0TeiPrFtI/iK4/TI7ZcJRpemAZjZGcD9BF8nznH3X/dMuN3mRPKQTlse3mtmbxHMXHD3APrEeyL5SKMtH1eZ2XKCfDzaQ7F2GzOLifxr0C4PS4CQmV0Yuf0WsA8YGTl+EvBzgq9R57j7//Zk3F3tFPLwLjNbS9C14BPu3u8v/ieYi0IiH47M7EIzexmYTNBPu9/rIBeD7fpxorkY0NeQE8zFgL1+9BQVyF3MzM41s0eBn5nZZVEv6EPdWZYDzcBlZhbr7hsIPuXPi+w/CNzu7je6e2FPx99VuiAPuwku/LdFBhj0a6eQj7Mi+7cCH3f3d7l7v20tNLPzzOx+4NNmlnao32xUHrYCbwM3WTBVVT6QC4yP7K8A/sPd39nP/z5ONg8TIvu3ELwebnP3Az0df1fqglzsInjPvMHdS3o4/C5lZueb2a+Br5jZkKhcHBpwNyiuH9AluRgw15BTyMWAun70NBXIXcjMFhK0bj1GMPXO+4EsC+YcbAZw920EX4fkEcztCsHgm92R/XvdfX0Ph96luigPr/sAme/2FPOxK7J/q7uv6tnIu5YFfUR/CrxI0BJ6t5ldBq3TVQFUAa8CCcD3IxeALIILP+5e7O5bezr2rnSKeSiJHLfe3V/v6di7WhflYo+7v93TsXc1M5tI8D7xEkFL3zfM7CpoG3A3GK4f0GW5GBDXkFPMxa7I/n5//egNKpC71izgTXd/GPgdwcTl1Ye+BjGzb5rZA8BK4CfA2Ras+FNKMCJ7oFAe2lM+AnOBJe7+B+CbBK2A7zOzXAjyAPyeoJX4HoIi6NXI7X7/VXEU5aGNctHmbGCjuz8EfBZYQzCV3QgYVO8ToFxEUy56iWaxOAVmdi5Q6u5bIpteIZhuppBgUYONwM/N7FlgL0F/wf90912R828GYt29vMeD70LKQ3vKR+AoedgMnGFmI9290IKR50OB6y2Yhmgi8EUPpmrCzD4MpLh7VW/E31WUhzbKRRszu5agRXCFu79B8DX5HRZM2bfHzJYQtAi+18zeZIC+T4ByEU256DvUgnwSzCzTzJ4CngPeY2apAO6+BriC4MV9u7svJBhgsgiocfeb3X2bRUaeunt1f34RKw/tKR+BY+WBoN9sJfCQBf2xxxC0hqS5+5ZIHrZH5SHcnwsh5aGNctHGzEaY2d8JFnrJAh40s8vdfQfBrC03Rg7dTND3Oh1YP9DeJ0C5iKZc9D0qkE9OCsFXF3dEfl9waIe7LwdyiPSDIuhbl0lkGiYbWGugKw/tKR+Bw/NwIQT94AgWMvgv4M/ufgPBG/3CQycqD4EBlgdQLqLNI1gme4G7fwP4MXBotcRXgdPN7BwPlosuAC509wpQLlAuBksu+gQVyJ1kZreZ2UVmlu7uBcB9wJ8I5lY8x8wOTb+UQLDE4+2RUy8BhkSOo7+/iJWH9pSPwHHycPahPLh7o7u/5O6PRE6dAzxz6H6Uh0B/zwMoF9EiuVgYeR94gcjCHhEHCVrSIZijdjXww0gr+wxgt5klg3KBcjFgc9EXmQ/M1Um7hJkZwVybvwfCBJPQpwB3emQ6IQsWMHgPQX+h30a2zQC+Gjm3iWBaqo09/wy6hvLQnvIROME8vOnuv4s69wKCFpISghXidvVs9F1HeWijXLQ5Xi7MLM7dm8zsk8B0d/941Lk/BEYTdMu6zd039/wz6DrKRRvloh9xd/0c5QeIifw7BfjdoW3A/wKPHXbspwlGYGcSLHUKwYIQE3v7eSgPykcfykMGwQArCKb0uqq3n4fyoFz0Vi6ijvk7sCjy+7DIv7EE/bB7/bkoF8rFYP1RF4vDmFmMmX0b+LYFc3ROJVjrHg/6/twJzI/sO+R+IJVgAMouMxvl7nUedK7vl5SH9pSPQBfkYYeZjXb3Qnd/uofD7zLKQxvlos2J5MLdW8wsHigGtpjZt4DnzCzL3Zu9/w9GVC4ilIv+SQVylMgLdyXBCNJtwDcIvgq/2MzOhta+Pl+L/BxyNUHf0jXA6R70t+u3lIf2lI9AF+RhLUEe8nsu6q6nPLRRLtqcYC7+X+S0ROCDBP1P0whaDPv9SmfKRRvlov/SPMjthYEfeFuf0TMJljP9T+BeYK4FU6k8DrzDzMZ70E+unuAF/ErvhN3llIf2lI+A8hBQHtooF21ONBejCbqV/A74oQfTQQ4UykUb5aKfUgtyeyuBP5lZTOT2EmCsByvYxJjZHZFPeqOBlsgbPe7+xAB7o1ce2lM+AspDQHloo1y0OZFchN09392Xu/ttA7AIUi7aKBf9lArkKO5e6+4NkT5BAJcS9AMC+BAwzcyeBP4ArILWEakDivLQnvIRUB4CykMb5aLNCeZiJSgXKBeDKhf9jbpYHEXkk54DucDfIpurgLuBmcDOQ/1J3X3AzpOnPLSnfASUh4Dy0Ea5aKNctFEu2igX/Y9akI8uDMQRzMc5K/Lp7h6Crz9e834+2OoEKA/tKR8B5SGgPLRRLtooF22UizbKRT+jhUKOwczOJVj5bCnwoLs/0Msh9QrloT3lI6A8BJSHNspFG+WijXLRRrnoX1QgH0NkJOmtBKNIG3o7nt6iPLSnfASUh4Dy0Ea5aKNctFEu2igX/YsKZBERERGRKOqDLCIiIiISRQWyiIiIiEgUFcgiIiIiIlFUIIuIiIiIRFGBLCIiIiISRQWyiEg/YmYtZrbGzN42s7Vm9hkz6/C93MzGm9nNPRWjiEh/pwJZRKR/qXP3M9x9BnApcCXw1eOcMx5QgSwi0kmaB1lEpB8xs2p3T426PRF4E8gGxgG/BVIiu//D3Zea2RvANGAn8GvgJ8B3gIVAAvAzd/9ljz0JEZE+TgWyiEg/cniBHNlWDkwFqoCwu9eb2WTgD+4+z8wWAp9192six38MGObu3zSzBGAJcKO77+zRJyMi0kfF9nYAIiLSZeKAn5rZGUALMOUYx10GzDKzd0duZwCTCVqYRUQGPRXIIiL9WKSLRQtQRNAX+QAwm2CMSf2xTgPucPdneyRIEZF+RoP0RET6KTPLAX4B/NSD/nIZwD53DwO3AjGRQ6uAtKhTnwU+YWZxkfuZYmYpiIgIoBZkEZH+JsnM1hB0p2gmGJT3w8i+nwOPmtltwDNATWT7OqDFzNYCDwE/JpjZYpWZGVAMXN9TT0BEpK/TID0RERERkSjqYiEiIiIiEkUFsoiIiIhIFBXIIiIiIiJRVCCLiIiIiERRgSwiIiIiEkUFsoiIiIhIFBXIIiIiIiJRVCCLiIiIiERRgSwiIiIiEkUFsoiIiIhIFBXIIiIiIiJRVCCLiIiIiERRgSwig46ZLTCzzb0dx0BjZjlmtsnMko6x/2tm9rtO3tcvzOyeyO8LzSy/k+c9amZXdj5q+f/sfXd4HcX59Zlb1Ztly91y7zYuGGNjLGMnmISQAqEnBJIACSQ/PpIQSEJCTQgEU0IPhBowvRgbd8u9yHKVbFWr965bdNvufH/szu7sLSq2LLnMeR4/1r1b7uzs7syZM+d9R0BAIBSCIAsICJyzIISUEkKWBX9PKd1OKZ3YH2UKhkoa/YQQJyGklRCyixBycTeP/RkhZMfpLmMPcD+AtyilHad6IkrpnZTSR0/i0H8CeOxUf19AQOD8hiDIAgICAn0EQoglwqYPKaVxAFIBbAHwcT+X52TOZQdwC4BuKcSnC5TSfQASCCFz+7McAgICZzcEQRYQEDjvEDxlryrNvyeEHCGEtBFCPiSERHHbrySEHOIU3hnctvsJIcWEEAch5Bgh5Ifctp8RQnYSQp4hhDQBeKizclFKAwD+B2AYIWSgeo5EQsgbhJAaQkgVIeQxQoiZEDIZwCsALmbqs7p/JiHkF0Fl2MF9poSQuwghhQAKWV0QQn5HCKlXf+dWbv/vqNflUH//9xGKfxGAVkopX6+jCSFb1WM3QBkA8PfhY0JIrVrn2wghU7ltbxFCQpRgQsgfCCGfBn33PCHkOe6rTADfjVBOAQEBgS4hCLKAgICAgmsBLAcwGsAMAD8DAELILAD/BXAHgAEAXgXwlaqYAkAxgEUAEgE8DOA9QsgQ7rwXATgBIA3A450VgBBiA/BTAE0AWtSv3wIQADAOwCwA3wbwC0rpcQB3AthNKY2jlCb14Fp/oJZrivp5sFr+YQB+DuBFQkiyuu0NAHdQSuMBTAOwOcI5pwMI9nW/DyAbCjF+FIrCzOMbAOMBDAJwAMrgoCu8B2A5ISQJi8Z3sQAAIABJREFU0FTw6wG8w+1zHMDMbpxLQEBAICwEQRYQEBBQ8DyltJpS2gxgFYAL1O9vB/AqpXQvpVSilL4NwAtgPgBQSj9Wj5MppR8CKAQwjztvNaX035TSQCfe3GtVBbgDwC8BXEMpDRBC0gB8B8A9lFIXpbQewDNQCOGp4B+U0mauPH4Aj1BK/ZTSNQCcACZy26YQQhIopS2U0gMRzpkEwME+EEJGArgQwIOUUi+ldBuUetVAKf0vpdRBKfVCUddnEkISOys4pbQGwDYAP1a/Wg6gkVKaze3mUMsjICAgcFIQBFlAQEBAQS33txtAnPr3KAC/U+0VrSqRHQFgKAAQQn7K2S9aoaisvJWgohu//ZGqAKcByAEwh/ttK4Aa7vyvQlFcTwXBZWpS7R0M/PVfDYWkl6l2iUgBhC0A4rnPQwG0UEpd3Hdl7A/VJvKEak9pB1CqbjLYMCLgbQA3q3/fDODdoO3xAFq7cR4BAQGBsBAEWUBAQKBzVAB4nFKaxP2LoZR+QAgZBeA/AO4GMEAluTkACHc87e4PUUoboSjWD6k2jQooanUq99sJlFLm1Q13bheAGO7z4HA/1YMyZVFKvw+FlH8B4KMIux4BMIH7XAMgmRASy303kvv7RgDfB7AMir0jXf2er7tI+ALADELINABXItSaMRnA4W6cR0BAQCAsBEEWEBA412ElhERx/3qaueE/AO4khFxEFMQSQr5LCIkHEAuFbDYAgBrcNu1UCkspzQewDsB9qp1gPYCnCSEJhBATIWQsIWSxunsdgOGqd5nhEIAfEUJiCCHjoHiKTwqEEBsh5CZCSCKl1A+gHYAcYfd9AJIIIcPU6ygDsB/Aw+p5LgHwPW7/eCjkvwkKof97d8tFKfUA+ASKx3kfpbQ8aJfFUPzNAgICAicFQZAFBATOdayB4u1l/x7qycGU0v1QfMEvQLERFEEN4KOUHgPwNIDdUMjqdAA7e6HMTwG4nRAyCErQng3AMfX3PwHAggA3A8gFUEsIaVS/ewaATy3P2+he4Ftn+AmAUtUGcSeAm8LtRCn1QQkovJn7+kYowYDNAP4GYyDdO1AsF1VQrm1PD8v1NpT6NtgrCCEXAnCq6d4EBAQETgqE0m7PtAkICAgICESEmppuO4BZvbFYSBe/NRJAHoDBlNJ27vtPAbyhBhsKCAgInBQEQRYQEBAQOKtACDEBWAEggVJ6W3+XR0BA4NxDr62iJCAgICAgcLqhBv3VQbFnLO/n4ggICJyjEAqygICAgICAgICAAAcRpCcgICAgICAgICDA4ay2WKSmptL09PT+LkafweVyITY2tusdz3GIetAh6kKHqAsFoh50iLrQIepCh6gLHaIugOzs7EZK6cDg7/uMIBNClgN4DoAZwOuU0ieCtt8L4BcAAlByit6m5tGMiPT0dOzfv/80lfjMQ2ZmJjIyMvq7GP0OUQ86RF3oEHWhQNSDDlEXOkRd6BB1oUPUBUAICcs1+8RiQQgxA3gRwBUApgC4gRAyJWi3gwDmUkpnQMnz+WRflE1AQEBAQEBAQECAR195kOcBKKKUnlCTya+EssSoBkrpFkqpW/24B8DwPiqbgICAgICAQBeglOJoZVt/F0NAoE/QJ1ksCCHXAFhOKf2F+vknAC6ilN4dYf8XANRSSh8Ls+12ALcDQFpa2pyVK1eevoKfYXA6nYiLi+vvYvQ7RD3oEHWhQ9SFAlEPOkRd6OiNuthY5sd7x334/dwoTEs191LJ+h7iudAh6gJYsmRJNqV0bvD3Z1yQHiHkZgBzASwOt51S+hqA1wBg7ty59HzyzgivkAJRDzpEXegQdaFA1IMOURc6eqMu1n12BEAFkoaPQ8b8Ub1Srv6AeC50iLqIjL4iyFUARnCfh6vfGUAIWQbgzwAWU0q9fVQ2AQEBAQEBgW6CkP4ugYDA6UdfeZCzAIwnhIwmhNgAXA/gK34HQsgsAK8CuIpSWt9H5RIQEBAQEBDoAU6nM/OOd/cj/f7Vp+8HBAS6iT4hyJTSAIC7AawDcBzAR5TSXELII4SQq9TdngIQB+BjQsghQshXEU4nICAgICBwxkGWKVbuK4cvIPd3Uc5arMut6+8iCAgA6EMPMqV0DYA1Qd/9lft7WV+VRUBAQMGjXx/DgrEDsHRyWn8XRUDgrMeXh6tw/2dHUdvuwT3LJvR3cU4b+iK4X0CgvyGWmhYQOI/xUVYFMvMb+rsYAgLnBJyeAACgwXFuh9B0+KX+LoKAwGmHIMgCAv2E6tYONDn7tyP1SjIkoQYJCPQKzCalSw1I5+Y7xZoKt69vCPL2wgYUNzj75LcEBIJxxqV5ExA4X7Dgic0AgNInvtsvv08phV+SIcvnZmcuINDXsJiV9A6Bc/Sd8qre6r5SkH/yxj4A/ddGCpzfEAqygMB5CkmmoFT5X0BA4NRhMSkEWZLPzSC9DlU57ugjBVlAoD8hCLKAwHkKvzoNLAiygEDvwGw6txVkt6oc95XFQkCgPyEIsoDAeQqfpKhcwoMsINA7sJqVLvVcHXR2+JQgRBGkJ3A+QBBkAYHzFCxX67namQsI9DVUAVmbnTnXwIixsFgInA8QBFlA4DyFX1WQZaEgCwj0CtRX6pz1IDNrhVtVkk8neho8/MLmQuwqajxNpTl92F/ajLImV38XQyAMBEEWEDhPwQiyUJAFBHoHAZUYn6seZI9KkPuC//ekDmWZ4rlNhfjqcPVpLFHvg1KK29/NxotbinrtnFmlzXhzZ0mvne98hiDIAgLnKXSC3P1jHl6Vi4+yKk5TiQQEzm6wwea5mgeZBen1xayTvwcNU5PLB79E4fCcfmW7N1Hb7kGzy4cOf++NOH78ym48vOpYl/tRSvHZgUr4IjyrNW0dWH2kptfKdTZCEGQBgfMUXs2D3P3G+c2dpbjv0yOnq0gCAmc1GEE+V2dlmMWiLwgya5+6g9o2DwDA4T27CPLxmnYAgL8H19pbyK9z4N6PDuNIQ3g/+XWv7sFd7x/o0UDlXIMgyAIC5ym0NG/nZl8uINDnYMTYfw56kCWZaoG9fcH/vYHuBwLWtHUAAJwe/+kqzmnB8RoHAN2a05doc/vV3w6/vbzZDeD8TuknCLKAwHkKLUjvHFW7BAT6Gixl4rmoIPOp3U5WQX5k1TFsLWjo1r7eHtgOapiCfJZZLI6pCnIkm8OpICDJ2FrQgNzqtrDbnara3lWaT9dZpsr3JgRBFhDoB/CktN3jR/r9q/HfHX0bWOEXad4EBHoV57IHmU/tdjIEmVKKt3eXYktefbf274nFghFk51lG5pjFIiDJ2FXUiK+P9F6QoU+S8efPj+LlzOKw21ld8c1/aaML6fevRkGdQ/uuLzKWnKkQBFlAoB/Aj9rr25XG/X97y/q0DN6zfKGQ17YV4909fVtnAgKdgRHj/pgyP52oaHbj7V2l2ueTubwOvwRJpt32tPbEYlGrWSwik7niBme3z9cX6PBJKG1U0rsFJIo3d5VixYaCXju/LyCjyemDJ8KiLu0epiDr363NrQUAfJJdqX3n8gqLhYDAeYms0uZ+GSGfCQrT2a4g/31NHh78Iqe/iyEgoIEpq2dTmrecqrYuyeOPX9mNF7hUZCejIDP7Q/cJ8kkoyL5AWMvYoYpWLH16K3KqwtsN+gP5dQ7IFCBEUXu9AblTgt9TtHX40eGXItYj+y2+uizqSjf8PXIJBVlA4PxDvcODH7+yG/d+eLjPf5tXmPpLwNWC9LrZmdOzVGkWEOgrBM5Ci8V9nxzBk2vzOt2n3uHR/rZbTCfVZjnUALrurjLIe5C7ipNgBJnS8ISupFEZADS7fN367b4As1eMGxiHgCzD65dCLCIOjx+3v7Nfy9LRE7A6iUiQvcr9CEeQ+T7BLRRkAYHzD8xTl1vT96oC3wD1V1fa05X0+I5t6dOZp6NIAgJnNdh7fTZF/jc6vV0Gt/EtRJzdclIKcnuPFWS9Dn2dHEMpRW2bB4nRVgDhA/Xq2r0ATt9sWUCS8bcvc1DV2tHtY47XtCPObsHo1FgEJAqfJMPtkwxlzK1ux/pjdThU0drjMtV2RZDDWCwsZoUS8m29UJAFBAT6FPwULGsQCSGnfN7q1g680c1gP18PLRa86l3cIJZGFRAIBnuX2s+SdGOUUrS6/RF9qvp++t8xdnOfWyw6y2jR7PLBJ8kYOzAWQPjBSZ0a58F+u9Ih456VBxHopRy/+0qb8fbuMvzxk+7niD9e045Jg+NhtZgUi4V6jbyK3KIq3uy5yi5rwbzHN6Kto+vnS1OQI9xbRxiLhdVMQo45mwZ7vQ1BkAXOW/SnY4CfgmV/nzo9BlYdrsajXx9Dq7vrqURfD5ea7u7UqMDZD49fQvr9q/FhVnl/F+WsAhv4+gKyIevDmQq3T4JPknu0kluszdI3FgtOQfZKkeuSEcHRqXEAEJbsM4LM7s8rhz344lA1Cut7J3CPaQfdHThQSpFX48DkIQmwmU2aggwYCXKTSpCZOJFX2456hxcNjq4tFyxwMZL67giT5s1iUihhM9d/iDRvAgLnIVij0x9EmVdje3NRAda4djYlqf1ujwnyuRWZLxAZrGN+dmNhP5fk7ALvlW3pxiC1v8HK2JWCzCO2C4tFpOwTPVaQOdLuC2MTWHW4GmtzajWCPKZTBdlr+G12NtNJzNrJMsWKDQVaBgpAJ8bdPV+zyweHN4AxA2NhMRH4JVmrNz5QjynITERhZLU7gwxdQe5BkJ6qIPNebaEgCwj0IZ7dWIAl/8rs96Cv/lREeVLamwE9eifU9Tn9PUzzFlzO/r5/AqcPaqzOWZWN4UwAX19nUkBYJLSqq6nxBDm7rAU//e++iERWIcjhz+f0BjDxL2vxxDehQX9MQQ5HdsOBt1gEH+P2BfCnz47ihS2FmlLKLBYdYcg+8+Nq7a7638lYRU40uvD8pkKsP6akRKtoduOn/90HQMlI0R18cUjJd5wYbYXFbIJf0lcpZMFzQKiC7FQD5rrTZ9S2dxWkFy6LhUIJm5xCQQYEQRboBzy7sRAlja6TCjzoTfSnIhowEOTeK4emMHSjE9KWje2EBB2vacfB8hblnEHl7Ekapt6GIOenF4EeZjgRUMATrr5UkIsbnCe1IiYjyDyp3JJXj20FDREzJ8TZzRGfC6aqvrI1dHGKnnuQIwfprT5SA4c3gLImN6rbPLCYCIYnxyjXwime7+0pQ1G9Q8vCwZ5rdraTacPYynSs/cwua9G2dUdB3lHYiEe/PgYAiI+ywmYmCMiydj4+yJANsvzBCnI3Zh2rW3UP8v/2lmmDoDbVc66vpKcfwxRk/tntyezCuQZBkM9SvLC5EC9lFnW94xkGvmHlG5b+AGuo+8ViwbVK/l4kISziuDudEFvetDMF+YrntuOHL+0Ke872bgSKRILLG8ADnx1Fm/vkziH80KcX7F735uDtbEFduwf7S5tP6lj+ve4rBbm8yY1lK7Z2ewlnHowI8aSyosUNQCfPwYi2WiIOUCua3drfwYSdtRe8OJBX225YlIJHZxaLlVkVABQymV/rQFpCFGLtFuVa/DrB/MsXOVi2YpvWXviDbHUnQ/5yq9sNZSrifMwmogzeO7v3pU26NSMhyqIoyAFZI+uGID23MUiPEeTOFGQ2+9PoVGwlDm8Af/48B89tUuxSMx9Zj5te36sp+uG4Nm+r6I5d71yFIMhnKT47UIVNx7u3ZOfpBKUUXx+p7nZHWtmiN6D9qUAC/UuyeA9yb47Q2RRcd+pW8+N18zYET7d3J5I6Eg6Wt+KDfeXILj85IsI32vxMxHMbC3HfJ4dxTO3E+gK+gIyXMot6tPLXmY6e5sg+l3D5s9twzSu7T+pYiXuZWvqIIJ9odIJSoEElRD1Bq/oOewOyRmjLVZLbHEEBt5hIRItFOUeQg4kVU0Z5srv82e34/cfh89Dzx/PHFNY5kF3WggvTkwEAe080YUhiFKKtZgBAhy9ybAX7jm05FQWZrUTKL7JiIgTrj9Vh/j82Rbz//PfxUVZYzAR+mbNYcAoyszr4gwL4OutvmU0iGHXcjEB2WYuexYLbJ3jgYyJ9009TSpFd1tyt4PK+hCDIZyEkmaKypeOMmPrYX9aCu98/iJ3FTd3an5/K8/oluH0B/HdHyUlND54q+tNiwTfe7D72QpY3LoijGwRZbfi6uyxuiIJ8CqmsmrXgoJO7B3yHee9Hh7S/Pz1QiY/2V+I7z2/vsxmKD/aV48m1+Xh9e/fS650N0BTk85AgR1JOuwOJUiTFWEEI0HwK5+kJartI59UZWjmyxohQRbPi6Y1EVkymyN7dik4EkJ7nQQ5PkPeWKIPq2xaOBgC4fBKGJEVrBJmtjBquXWMDP15BLmvqfspKSilyqiIryIQAJY0u+AJyxAEGX0fxURbYzCb4ArL2roVTkANBCnJnqm4EfgyfJBv6WW8Yi13w654aZw9R730BGdU9yPfcHTS5fLj65d344mBVr573VCEI8lmI2nYPfJJ8RhDksiblZe/uEpn+APeCSjL+ta4Aj3x9DOvUNeD7EsHTVCc73X9Sv803VCdJEsPBGSZI77VtxUi/f3WIOqBnsdC/+yirAj98aWfYcwfXV317zxUrBqainGwqLF6trWzu0Bp5X0DG9GGJANDrjXgksEHfmaZ+nArYs+ENyMivdYRs35JXj/Imd8j3PI7XtPfLwLcr/PKd/Xjgs6Nd7tfdYDIekkxhNZuQFG3tMwW5WiXIPRlsPr+pEJc/sw0tXJvXoQoWbGo+UvkJCVWQPztQiS359Rq5BkLrr7M0b+EUUZ7we8OoyYMTo7TvhiRGIdqmEGTWL4azIbDfYeXPrWrD4qcysedE9wSeqtYObebMF5ARkGSDZYIQ0mVmkMoWvY4Soq0hii9TdimlWpCebrHoOkjPHEFp8QVkeMLMcvGn4gc+JgIkx9hCBjors8qR8VSmwU5zqqhR/dKDE6N77Zy9AUGQTwGy3LnXqDN4/BLu+t8BbbqmJ2Ad08mqb72JKvVl7y5Z50e+Xr+M1g6l/hz9ECnLl+XLQ1WY+ch65NX2ztS8LNNOp8H4Bi5co8WjqN6J3398uFs2FmcYBfnva5SI8uCGzqd1FnpZ7vv0CA6Whw+eDFZ+2FKpJwOtEzlJWwLf+fokGXUOFrEtIS3BDkBXkk432PKsZ4IvOiDJeCqrAze/vvfUzsMxoKte2AGnN6DVpy8g4453s/HfnZEV84pmN654bjs25fW/DSwYG47V4YN9Xed3DpcNoStIMoXFRJAca4uoIPY2alp71gYDwIoNBcivc2jtL6BcL0/eIingzGfL496PDuPWN7MMpCmSxSKcguwJMxjxBHmQKaV46KtcHK1S+szkGJu2fXBCFKxmArOJaPct3OxHi9tvKHuZWt6CutBBYDgw9ZiVqbzZbXjvTUQfWES6H/UOXViIs1u0wDgG1oa7fJLWzoVYLDqZ9TOb9POlxul15JfC5+aWafi/E6KtsFtNKK534ocv7dQCHcub3PBJMt7YUYKKZjfS71990p59hho1E8nQpKgu9uxbCIJ8Cnh/XzkufXLLSSm5+0tbsPpoDW5/J7vHx5Y3KyPW3laQm5xe7ZyyTPHEN3ldTj8xT3F3OxO+cfRJsjba7Y+sBAFtuo1izdEaAIq3+2jlqS89fdf7BzDuz99onyWZ4o0dJbq60QMP8t3vH8An2ZUoqOs6qT0L0rvp9b3a4I0RuOB0Pb5AZJ9puE4smADmnILP91QV5GB1iilXvoCMJLXjZH7s7qCgzoG1OSc3i2GzKM1od60qpxPFDS7kNsnYUdR4SumZ+Cwo3oCMGQ+tw+KnMgEonlefJHdqsWEqJPOktrh8+Mc3x/vF1uTw+JF+/2q8t6esR8d19Wy2dfjRFOT7DcgUZhNBSoytzxRkls5r4/G6bt1zfvaFT+fV4ZMMBDeixYKQiBaLypYObYAabPlweJmC3LlaHK6cvoCMunYv3tpVis/VafikGKu2fUCcDYQQxFjNWoAZLyiwfV/ZWoyVWRWaB5m1kfzAoDMcq26D2USQlmCHT5IN9gpAqZtmF0udF/5Zr2/XvcBmE4HNbKRhbBaQf360PMg+4wxhRbMbq4/UGI5n7READOEUWb9Ew+Y05pt/vh+Oj7LAbjHhRKMLB8tbseFYHQC9zlZmleOj/Uqw5FeHq8Nea3fBcjYPEQryuYOs0mY4vQGDZ6greAMSApKMfeqIq7qt59PArNM5FYLsC8j44mCV4YWY89hGTXkqb3bjla3FuOPdzgl8VTfVi+IGJ5pdPkPj6PXL2mi3JzOxkkredxQ2dv+gMODLwhqz17adwPde2IGvj1Tjqhd2dJu4B+/3jUq22Pdshbvn1UhinpSyoJKuytmdnJ18B7lXnTZkCoUriDDqQXqh5w2+n5TSEAKYU3XyA4nmMPlXe4JgNZx17D5JRrLaGbp78F5++5ltuPO9ng9WAf1enmo+a1mmeHd36Sl5u3nVvLuqWDgEq38yBRpU5SuvRjlvZ7YqRi7ZMf/45jhe3XoCG1X19h9rjkc89o0dJdjdzZgGoOtniC0S8caOkh4FHXY16P/tBwfxq/cOGL6TVIKcHGvrsywWzEp0uLINt76VhTa3H89vKow441TGWWPqOLLm8Uta35IQZTHYL3iYwlgsGJQln+O0v3mEC9JjCBcI5g0apAUT64QonSCzQXGUzaw9D/y95onX+txarfzsHnXXLpBX68Do1FgkRFnhC8goagglyOEygzB4/JLmxWYIVpDZQKKJJ8jBWSzUtviHL+3EXe8fCHqu9fPxNhRfQA77TEeyWCREWQ1ke3tBo1au1DgbPH4Z/96sZNIaFG8POS+gpLTr7rLYVjPBgFhbl/v2JQRBPgWwSHn2IlBK8dS6PJQ0RlZdJ/5lLa5+eZdGXijtXiolWaZYmedDXm271sB51Gmnk8GKDQW458ND2KxOgbLz7FcDm1jjVNve+ZKWbOTdldpy21tZeGpdfoiCTFQFubOOi1KKX/8vG1vylbLWuChe2VqMm9/Yi/s+CR8BDSiNXmOQwnOkslXrFPgGPNhnufpIDY5UthlU21a3L2x9ByQZox9Yo5FfHox4s5E7U2z4aO+ubAbBjWMkeAOSQeVl6eOYx42pD3m17dhzoqnThUI8fmNAR0CmBgI4IiUa9Q6vQQ3pCfRpSBm1bZ6IJKeo3hGWaAR3vhUtbsiUwi9RxNotsFlMcHHP5HMbC/HO7tIuy8Xub0/IDbu3fN1TSnGiG7lpnd4A1ufWQpIp9pQ04cEvc7HxWB08fqnHGSQ8fsnQGYXzDncXkcg+pRTHVRuSqxMLiyuIILPPz2wswAOfHY2o5nr8Eh79+hhu+M+ebrVtr28/gVmPbAgZVOwobNRIDzuPTGmXnTVf58EWHW9A0q6n2eXDjqJGTSDgj9cU5CAFVpIpHvjsSMSBfaPT2+1MKL6AjLImFyilmvoGAPtKmvHJgUqs2FCAg0F55g/VB3DX/w5gf6kevFrT5kFitEI0PX4JFc0diLaaMXZQnKYgB98HQnQi9eWhKix8YrNh+7hBcVoZGSilGkEOZ33oiiD7ggiy1Uxg4qwE7BqiOQWZT585OEEncDLVs1i09FBBbuvwIyXWBptFCawrrndpijmg1I3WtoW5l+z5eewH05Dz8OUAAIs5vAfZqCAbLRasrWlU+xMH9/zzmVSG8gRZkiMqyMdr2tHu8RsyGiVEWQ3q9s7iRgQkGc0uH6YNS8TUoQnatpRYu3Z9rJ9qcHhx8xt78buPIvfRDLVtHUhLiDLc0zMBgiCfJDx+CSdUIsxGZRXNHXhxSzFuf2d/p8cermzDwYpWLV9hdxTognoH1pb6sT63Tmv4JZl22/coyRT/WpevTQmyqSG/RCHLFPd8eMiwP3vhHJ2oRJJMNe9QVySvvcOPkkanobxev6TVAT9y9UuyQZ2sbOnAmqO1uPXNLAB6AztqQAw+2l8ZsVO57a0s/GONvqKTX5Jx1Qs7cdHfN+HdPWUaCWhy+UIGAgfUxTEuf3YbKprdqG/34IJHNuCVrSdCfue4qqg9u7EgZBvz+LF2hpHRP3+eo+2jZbFA+MaBlbOzewGEKnqsodQVZGX78me34/rX9mgdWLgO6+dvZ+HFLXqebV9ANpDSGcOTACjPcqSpZEqp5lsLBiOgbR1+LFuxFUuf3or1YQI1l63Yhqte2BHyfXBgY0VzB1h/arOYEGszGwjOMxsL8Ncvc8OWhYfbJ+HLQ1WY/egGHKlUCEZBnaNTPzMbHPIkf1dxEy57eiu+9czWkADURqdXq5eV+8px+7vZeHJtHnYWKcSpvcOPbz+zDS+HyXM+65H1+Ofa0FXKAGDSg2vxM/UdAYD8IAW50enttuofyQpR2dLRLQWZ1Vdw6rGCOicSo61w+aSwv3GM87XzAV887nr/AK56YQcK6xx4cl0+OvySIYUVpRQ3v7EXi57cAkBvn+Uu8tMCxtSFwYO237x/EBc+vhGyTLHxeB2kMDEokkxhJoqC3OIy+l2rWjrwwb4K3PzGXnT4JKw5WmPYPvexjbjrf0ZFOhIeWpWLxU9loqK5I4T07ChU8iEH5yR+9YgXq4/W4OFV+nvQ1uHHEJVEdagK8oiUaCTH6Ap48GDURIiWBWJtTm3IIIERZJ7gdqgDPrO6rDIDs3+FGyAb4gwCksGyYA0ilYwgp8bZNIFK4vqa1DidxFLos2ZNGkHunoLs9kmIUwfgPklRkJliDqgWiwgK8vy/b8JvVx4EAAxLjkacmrfZFsGDHKwgByRZq4PgASyfeYVvz4cm6cq5LyCHbcckSnHtK7vx5o5So4IcbTEoyA5PAIcr29Ds8iEl1mbwgMuU4tY39+HCxzfie/9W2msmRDFLaGdocvkwMIIK3Z8QBPkkUVDn0NQG9iKwaY9Ia5fzjaEvIGPp5DQAXRMfQFEGAKXzLGt2aynBeGL6+OpjeHd3acgcX3m0AAAgAElEQVSxpY0u3PpWFl7YUoS/fpWr/qbyQsVHWXCwohVfHjJ6iFiZOlOx6h0ejfDyNgG/JOPDrHKDeuaXKKpaO7TGMdZmVjzIagP54pYi3P/pEQDAta/uxpX/3qGRCL5Tf337CWRWKGWbPFgZwYZLy+SXZJxodKHZpXfQuZxn9sEvcvCf7QrZZQ35mNRYbXsdl6Gh3uHVCPQn2RUhv5Wl2mXSEkIDDFiHy1ZYCm9nUH4/Upq34ACNSAi2UPxjTR4cHr/uQQ56Ln2dWCyOVLZp9QModcQ3ykw9ePCLHMx6dIPmg/t4fwUeU1eJ+upwNeY9vilsAAdTp+odHji9ATS5vLjzvWytUT1Q3qIR9HDqTjgFmfWfNrMJMTYLiuqdGukMhw6fhFWHqw3vpcMT0PKLF9Y50er24crnd+DtXZH9q+x951VMNnhu6wjgjnez8VGW/tzMfWwj5j2+Sd2uHLPnRBN2FCmzSg+tOobyZje25BsXfpBliha3Hy9nhq5SFowYmzlEQf7RS7tw5b9DBxvhEGnxmkVPbtEWpOjseQy2WPBYPnUwAGWQxMrIBqG8/58fXO050YSfvaksf8xmd/7wyRGNRPF2AJ7kUqr7LmUZmo8yEvhZmuB2fL167Koj1VinWqg6/JKB3GkKcqwVPkk2vHONXFv0mw8O4tf/O4AsVc1l9bWxm7nt2e9f+2povubtqkLNDzCO17ajIwAsHDcgRK1lBNnjl1HZ4sbIlBgkx9i0djX4OTIR5d5vLWjQys9ACDBabUd5gsv6k+QYG/wS1d451v6HV5CNi1XwfZ0lSGlkBHn5tME4UtmGkkaXYbU5togIoDwTXpn9hv788M9zq9sXdjDl8gUQYzNrqdnq2jwYxpFQCv35Cw48rG33aAHQvCWBz2IRbTXD6Qlgw7E6HKpQ6tZmMSEgG5+lYLtbawevIOvvLk/ea9s9IaQ9PkpZNtzhDaDF7TMsmpUQZYXdYjbsv72wAU0uLwbE2rQ6B5TngbVXJxpdeGVrMR5brfQD/H6R0ODwYkCsIMjnDPgIftaQRiLGwfsxLJ00CICSdojvQMOB5X6saHGj1e3HCHVZTdY4d/gk/Gd7CR78Mteg/L2UWYRlK7Zim9qpsReEbww2Hg/tNPjO/rpXd2N3cRMopYaXr4ojLry36ZXMYvzx06MG475PklHT6tHIYKzdAq9f1ohjXbuiblBKtUaEpV3jVaXHVh9HZqVSduav+vEru0N8bdWtHZBkip3FTRpB+5RbsclsIiFWmPljB4TUgwJdKSpucGlLLzMwghzOW8c6GW3hBUpD9usqfylTBBxdeFODCUu9w4sPsyo0tSXYosFU2Egr6fFeOW9AMjTK8VFWjEmN1QYOXx1WAmdWHanB27tL4fFL2lKn17yyO0QZYyoLI1BXzhgKmepJ93/00i48tS4/TJn8OF7THlKHVS26gmy3mhFrN2NXcRNuen1vxBmGR74+ht98cFCzGQHA/H9s0mw5NosJu4ub4JNkVLQoBI5PBUgpRXmT26D8MjS0e0AIcNmkgQCU7CDhng9GHA5XtuFw0JT40co2ePwSjlS2gnZhDwgeyF4wIimE2DBbD/8cVDS7NaWcR3eWKg9+3vaeaMLP38rCkcpW3K+mUWsIM4MwZqBCoN7dXYblz23Dlrx6LHpyC258fS+OcASZV9Cuf20PMvONyx8fqmjFd6YrZJsNuJ5al4cLHtmgX7NDj9z3BmSD+s7uB6V6xhl+4NXhk/DatmJ8eajK8Az938pD2JRXr3ndeSuF5kFW1TV+doUfoLM2l3mtu8p4sTanBtllzXhjRwmue3W3RojCWeBYe7G/rFkbcLLfefrHF+DGi0Ya9meptdy+ACqa3RieHIPkGKt2XVvzGwyDd9Zm3/LffSEWtsEJUZoyaiTISnmZx5S1h2wKP1wbyPcpvoAMD9d/8somoHimAWD51CFqmesN7wRLAQco9yhcV13Z4saLW4qwq7gRt7+bjd9+cBDv7y03XKPbKyHWpivITm8A8ZwXutnl1XMsd8IHBsXrYgrvQR6cGIXCeid++c5+vLenHDazCYnRVry3p9ywIMljXx83kF2+beAVZPauKWXzGfzngBK8yE7j9gUMfUFCtNGDPGlwPLbkN8Djl5EQZUVCtD7oCE75+cQ3edhzQukXE6O79hUzX/OZhj4jyISQ5YSQfEJIESHk/jDb7YSQD9Xtewkh6X1Vtp5gxfp8PLUuz7BSV1274qFknZ3HL2FnUWOIMseP8iakxWFkikJy82odeF9NOyTLRhL6u48O46GvcpGlEmSWZmZCWjwAIDO/Qfs9hqfW5Wsqz+vbS7QRPaDb97WACUnW/NAMlFKNHH13xhAcrWrDyqxyPPhlDm56XfEGpt+/Gr/5QJkuIsTYwLEpN6c3AI9fQn27B35JSYTOSHWc3RJCXByegEEtZCNm3mPHgxHk8mY3TjQ6tbJLMkWp2hD4AjKueWU3NufV4V3O98gGJwxDEqMiBhpQaoz2/hNnj6CUagS5yeULIQ2s4WJTW5JMQ6a5mDIiyTRs7l6mINc7vJ1O9YfzhH5xqEprgJ3egKHTalIVLUq7ziLi9cuGYwmAqWq+YQCaV7u6tQN+iSK3uh2xdr1TWn20BifUBr7Dp0+XHlAHQ1OGKIr09sLGTj38b+0sxdUv7wqZkq1p64BHzcphN5u0RQMAPaiM1QHDFpUYB8+e7FLJhNsXwA71vapv9+KX72bjtreztLr6wUu7cOlTWzQrAz8FXK8qInwgUXlQIJA3IHUakOeTZDyzoQBXvbATnx2oMhDGYASrXReMSEKTyxdCYFjZGBY9uQVXvRCa9zrY/sDXJ6C0Xy6vhL0nmvDfHSUoqndqxPHX3GCoyeVDQJINcRbpanv0wpYiUArNG15U78TRqlZMVp8F9s7xA4fgQcL4QUo7yNrWF7cY1fVVxX5NmAiuC7cvAEqV7DLj/vwNWlw+wzPe4Zfw9zV5+L+VhwzkluHq2cO1crM22+2TYDERpKhEkN2X7LJmPPhFTsg5Vh+tRk5VqE1JWS1OaVfa3H7c+d4BXP3ybmwtaMDekuYu/enzRqdge2GjZkvbVdyEwTEEgxOj8PcfTsfbt83T9mU+1epWD1w+SVGQY21w+xR1vLjBiWFJ0bh8ahqeuW5mpz7REckxGqni23fWn6RoBNlo/wqnIOdWt2vqdnCAWbDFgvl4Rw6IwciUGGwvbDQ8w/zzG0nIqmzuwFPr8nHjf/ZiX0kzdhQ14k+fHzXM2Lh8AcTYFQXZ42cEWSeK/IzJ42uO4w/qKoH8/TKbjMFodo6E8mo0ACTHWrVz/vJt3brpk2Rt6WjAmHFEkinuXDwWh/76rRDbQnaQuBNrs8DHPbudBelNGhyv9d9WiwkJnDIcbKW7dWG6/ht2Y9vB8PH+Clz2dCaeWpeHZpcPA85XgkwIMQN4EcAVAKYAuIEQMiVot58DaKGUjgPwDIB/9kXZeoq8WgfW59bhWE27Nmq958NDmPTgWs0G0eTy4abX9+KWN/ehts2jBevwD/GEtHjDyPNIZSvaPX48uS4f17yyS/v+0wOVeGtXqdapMfI5cbAydXLfJ0fw3KZCPLnO6Eu8/9MjqGv3oL3Dj4XjUrXvWVAcG9E7PQEtrySDyydp2/91zUyMT4tHi9uPonon9pxoxm6VUDPiOjw5OmS0DyjqwPObCnHFc9u1UTVLqh4XZYFPkkMaxgPcC8yyENQ7vJgxPDGk8RjCBSCwRuSBz45i7J/WhKSn+/3HRzBpcDwWqCrxcFWBZ5gyJCFk2o6/niZuenR4sl6OkkYXGp0+zB+TAgD46xc5eGtniaaMMMWRNcqSTENINFNyC+udWPjPzXh+U6E2uKKUakrBvzcX4ba3shAJ4aa8c6ratalWtzdgaMh4ohSuw+Wrw8ut9KRsIxiVotdhaZMLbl9Ay8l6sLxFI7FP/Gg6CAE+VGdJwqllbMD3cmYxlq3YGvEam10+uH2SoeyAEmhS51afO4sJxQ36/ecV0hLuezbYiJSiqL0joA08GxweVDS7kV3Wgl3FSoDj4YpWzB6ZpO3Pq4/1Di8GxdsNU7vBQXu1bR44PIFOvXevqTaX6tYOg1L5uDp9WVTvhF+SQzqoC0Yo5eJV5Hi1LHURAivr2z14fPUxJSBKLecV0xSFdvrwRMO+c9NT4PQGcN1re/DI18ewbMVWTc3kB7mUKveMt5EFR6pv44LWiuqdyJioqO4sXoK/P8F2KiYyfHagEpvzjDNhN8wbif11kmHGx0SAv3x3MgClnXt6fQEeW61k1Ghweg2kiifjB8KsyniZOsj+yRv78Km6UMbuE03Ir3MgmRFk9Z4FW3QGxtuRMXEgCuqcuPLfO/Dubn37v9bl41vPbMPVL+/Gz95Uzs1Q2ezGrJFJuHLGEIMljMf4QXH44JfzcevCdBTUOeANKHUwIUUnKlF8KjC1XS1UB3ojUmK0tGitbj8anYo/9NWfzMUPZw03tAvB0+cjUmK0aXlvGItFikqC2EwBI7bhCDKlwO2XjoHNYoKX898CoQSZx7LJadhe2IgWl37/jAQ5vMhQ3BA+jSa7XmbXYQoy6895ghzcLn2cXQlZppj2t3Xad6lxNsMgI4nz8gb3cSmc7SB4gMyvocCeVSYQ2S0mJMXYNDWfIfg5tpiJpiB3+CRDdhK3L6D1YzazCdE2s8YLLCaCWFvk604fEItbLh4FwBgv8siqY7j3w0Nw+wL4wydHcKLBhRe3FEOSqcEnfqagrxTkeQCKKKUnKKU+ACsBfD9on+8DeFv9+xMASwnpjcV3exdjB8WhpNGFnKp2zB6VbNj2yQHdJhEfZcH+0hbM/8cmXPb0VqzYUGCYnk2NsxteLJkCWSXN2FfShOM17WEVvUExSnUQohMKAHhjewkK6pyYNFj57pJxqahp82DZ01sRkKkh1Qt7L1mDlV3WEhLo938fHER+rQMWE0GU1aRMt7l8msd1xXo9GG1ArA0pMTbjEtLaKlyKss2/2Iwgx9oUi0WwiswvD+z2SahscWNbQQMGxdtx0egUw76855etxLNSJWGHgha7aHb58MKNs7SGclCC8WWcPCQB18wZYfjM0OGXtGhhwOh/Y+rxVTOHAQA+O1iFh1Ydg92qvFqsg2Tqbodf0upx8QSFCPDeOkqVDCNPrVfsBU5vwEBM95xo1joyHkX1jrD+Sj5p/EOrjhk8qDxpCReolzFRV9m9AcmgUpoIDMSOUuCrQ9Wa6n+oolVrGK+eMxzfmpyGT7Ir4QvIYYP6+JymwWQ9yqo3U+x5qeXSIzKSVONSFWSLyTBYOFShdyR/V9OLUUrh8kkhzxSPYzXtKG1yw2IiqG7zaNf//KZCzabA4ggA45R9SaMLgxLshg7qRKPLoBhXtXTA6QkgfUAMYm1mLbiJB2sG4qMshlmM/2wvQavbh+XPbsPnB6tCpjgZQc7jCDJTfMIRZEmmeGz1cfxnewl2FDVoFgt2X2YMMxLkeO665gXV4agBxsFnvcNruO5gUsXfb5kCF6YnIz7Kghe2FOGVrcUGUhycGWJIYhQsJoI9J5px21vG4Og/Lp+IaAvw+o4S7buZI5K09tDtDeDlrbo6WFTvNKjpJ7jBVHZZC4YlRaPw8Su074ZxA+XieqdmY/P4ZaSopKfR4cX+0mZ8k6Pnqh0Yb8fPFqQbyNCH+/W+4wXOIpeZ34AVG/T29kSjC1OHJuCFG2djw72LEQy7xYRLxqfCbCK4YEQSAjJFcb0LrR1+JNn1tiCKI4xMaCioV56VkSkxmh+0weFFo9NrIC8mrlu+MN1470ekRGuK6F8+z9EGhIxYxamk6v7PlHiTzoL0UmJtuP7CkbCrfl+jgqwct+Lambhn2XjDcd+/YCh8koyvj+gDqyjOYsHa30e+P5WrD1PYWQIAaHb5sa+kGctWbIUkU0VBtpg0gYh/x8PFw+RUtxnKztsrAOOAkX+mgrcFo5DLsPRX1VrJ3iVWrzyFGpoYFTIbazaZtNgNt08y8I7kWJt2L+0WE+wWszaQsZpNhlmh4FiD+CgLHv7+NMwcnqhde4vLh//uLMFnB6sMVirtWs9AgmzpepdewTAAvMm2EsBFkfahlAYIIW0ABgAwRNkQQm4HcDsApKWlITMz8zQVOTz8TX4lolSWMJDqJGxgNDEERUxMpFg60op/ZikPx1s7ipCdrzfULXVVOHrAGJDxYeYhHK8OwBMA1m7KBMcLEGcFRsXKqHcTDIwmqCzivHSSjFmDzBgW40EegFS04fJ0C9aVKp14bbkebFVb34jMzEyNEG04YlQ2vjPaio2F9dqocuvWrfA6PKhpkcGsUvs5EptgCcDjcmBntYw/vbUB3063orpWeQmzcgqQU2VsMAprlDrzOFvR5pRRWW20FGTm6I/J/kNH8dv3lRfP52hGatA0b+lxPX3MzkPHMcild3bfHDWu6T4y3oTKY9lobFLKVl1mzEYRaKpA3sEavLosBs8c8GBmggfH1T4t+/BRHK0PYEAUwYBogtLqeu25ez/bg3gbYGkyZhzoUAnUziNFmEQrUFSiXEdlXRO279kHALB5lXqsa9Tr00yAsUkmbDhUgouialHvDlVW/vX5LtwwyY5qpwxbwI3MzEz8bG14W8KUFBOONuqNc3qsDEu8GfvrjB3S1q3bYLcYx6MzYtrgHWrBzuoAdu/Lxnu5eiOYX5CPGHX/AVEEEgWe/kaZQrabgd0FtSDORpgIsHP7NkyLDmC9y4fnPtmMaEvouDf3UDb+Oj8Ka0r82F8nwWYCJiSbkdMkwUaoVt+lFcr9O1yor4QWT9Ro6VYvAIL847n4yRQbCpoltHopdufrz0JNYwsyMzPhkxSlZbjFAX7NOTMBrp9kw/+O+/C16quenmrCwXrl2ofHEewtacaLnysqd1OV/k473B5kZmYiqzaAkkYv5iT7UFWmdwQ5+cX4xqG/b1v3HUJ1o0Jc/nWpHSbIuGOjXhYT0fODP7TqGCYmG/WMT9ZtR0Cm2Jp9HINijXV67MAeRFuA3UcKMDag/KZFVq5h58FcJLYW4uFd+ru3dlMmSquV7Zn7jsCjDprbGpRgMEu7TjYeXhCFrEr9PbX72hFrBVx+ICWK4LaJMv6mT4Jh864sVDdxXtyDkWdBAKC9LBcxJgmOAMWz6/MwPtmMBBtBu48i67AxE0lB7mHEWCjaw7hPDu3bhYwhFN9U6HUzwupCcb6ivt/91g5YCAV7E15aZ0xH9dUB/V5tyK3FnDQzdm7fhkkpJkxMNqPkaBb+eGEUXj7sQU5RORI4App7UHnH//DJkZByPT7fDCsqUNSktI1DYok2uAsHpzeA7421YlWxOhvVVIPMzPB5ov82347kqHpkZjbA4VDajpUb94JSwCT5tPeo0qG3K+V5Shnz1FiPkpz9aOhQyrNmexaqmr0YbOnQji0v0ys7VTYqkq66MmTvUxRvhzeAj7/ZgrRYE/ZXKGUfb1EGEXZZeVcCPuWZO5yTi/gWZSBgMQEBGVg6jGLvru0ADaC0vBJSi/4MejuUdi8FQIoFyMzUt1FKkRZD8Ak36Cgv1gcZbS7lua8p1dvsRCs1zFQMjSWoVu/J0ZJqbDtepdVJdVkJ6lr19pM/dzg88vEew2eTz2ngLQ6ffu+bq0sN+/qdoTMXDMH+82c35GO8rFxzWVkJMjONfeBAmx/VULiEU+2WXY52dXBCUNfUgvwCZZB0z2w7xknl+Ir13zSA+hr9fCXFhah36+WuaTH2P9HNhcjMLILX3YEaF5CZmYkcrh965qvQNqCy6DgyWzqvy75GXxHkXgOl9DUArwHA3LlzaUZGRp/+fmpVG14/ugOxNjMeuC4DHz+qBIRcO3+Mwf+25IJx+P6sYfhnlpIj0ukHdlfrD8jCCyZj+exhwGZltbWLRqfgcJMLHQGFWE26YB5ibGZgvRLtvmB8GgLOJgABzEwfhHGThwP7lYUNYmxmvHDbYvxvTxlwohgTx43FyJQYrCtVvIDzLpiGt3KVv80x8Vi8eAGwdg0AoMpJMSEtDtfMGY6/r8nDc79Yhto2D65/bY8yDZixENscx3CksRwxdgvmj4nVzPcAMHnkILi8EvJbGvB+ng/3XbsYtvxsAM2o9MdCokYll72Y6cMGo6a4CQnJiUCtrnyWcw33qHET4D6iBPtEJw7A/dfPwfSpNZr3ecmiBbjHXo5nNxYC8QORkTELg3ZuRL3Di46gWbQ//2AWMqYOxtsl+4CGBsyaPhnvHNM7xO9lXIipQxWV7PJlwP7SZqzMVyLEx4yfhMy6EkwZYYPdYkZlixsZGZeivMmNw2u34P8tm4CrFo/BfdvWaudT7bBoJ7HIyLgEXzccBsorYbLHYOLUKcCefbj0gonYUJaLarfescbaLZianob9Zc0YPmUuEjx+YNsuXJiejKzSFkwekoCsBg+WXzQOf1p7GIuHW/H2DzKAtasRjOsvHIHEaCuOblMGA1/ctRAXjEjCiQYnLnvaaGNYcMkliI+ygqxbramWl86fgwUSxc5Xd8MROxw1riIQoqiakydOwpiBsXjx0G5YbXZcM2soXlVT4H135jB8dqAKcalDEFVZhYyMDCySKV48vBbeuKGYMDwR2G9MK7h08UKkxtlh3VOG/V/k4IKRKfjg9vm49a0sHKtuA3vPP6jYD9TUQbInAFA6j2mjhyG3qQKtfjMAGXNmzcSi8Yo6/9cvcwze86iYWGRkXKpM32/YiBmTJ+DKS2JQ2dKBB7/IwaUTBuLxW+Zh+5NbUN7sRmqcHTdeOhEHVaLzhytn4tGvj+GjIqWS5s6choHD3UqKP5MJGRkZyNlcCKAAj9+yFGtzavFWrnKtqYOHYezUIcAO5bkaNnocUFWC9GFJuGLZLKWAG/X7OHVoosH+lN8StPBC3AgAhbAnDUJKaiyQo3cuGRkZGLhvC4pcwPApc5Rp89w9KGtvhRyXhoyMmfgZ98xMn30RYkoOAw3NIIlDMCohCsjPx/SJY7GmJA/XLLsIrxzZBgBYdukC/DjGiszHN8HpDWDi6BE41FQB+AP43RVTcdNFo/C3Xfq5ay1paPaU4+rZw/GrDKVtuidTafdmDE9ETlWbNhCIs1vwg8svw3sndqGurAUeCShqA6YNS0JWaQuSBo8EjunEZskl8/H+if1oD1pl8p5l45GRMQFNHZvxTYU+ELhp6RzE2i14JntHSH0eb9Y/Xz41Tc3QoJDBAAWWXzgRGQtHg+9yMgCsrdkBc4wNlmgrgGrcvWQcvrNsAsxbvtEUvUmD4/H+L+fD5Q1ghDrjkSMXAkUFuGrOaBypbNOsa8EYlhSNf/z0UqxSp+nnz5yMjLnKbNcP6w5hULwdr6rv+I1XXqYdF5BkPL5vPRpMKQBqkRRr196jsiYXsDMTAHDFZZfgb3s2wReQkRpnx/JlS9Dhk/DgzrWwDxwJ55FCzJg4GhkZEwAAhwIFQLHif33o5suwY8VWzVbzgyXzFGU8U+kXx0+fhdkjk1GwrRjIzcN1yy/FzpaDaHB6kZGxCPHZmWjocGH0uAnIuEiZko/duh4Lxw3AkzfOBiEEcbs3IXVQKkYOjgeOKTNAyYkJyMi4JGx9AcB1gQJDXvpZM6YBR5U+0EdNAGTMmTkdvx3Qihi7BU+vNwYE37hwPP6lzpQWtMggRFGt/RLFzKmTcOJgFQDlfl00ZyZeOrwvbDkmpMVhf9CzOTl9KDIyZmifZZniN5uV/njOjKl4K/egtm3K2BHYW1sa8ToBYPt9S7DoyS2YMjQRCy+ZD2xYhwnjxiLj0rEAgNQdG2A2ESyaNgKHtxRhcHKcluY1JSkJLbUtACgsUTEYO3YkcPwYbr1yMRJjrMhDIVBcALvNjvFjRgIlSp1OmTwJF9ktWFOi1KmH01ve/NmFWKLaj94pzUK9w4OMjEWoz6oA9ivt6N7a0BmDpQvnYeLg+JDv+xN9ZbGoAjCC+zxc/S7sPoQQC4BEsCfwDMK0YYn49FcXY9cDSw1ThZeMGxiyH58ncOrQBLz+07nY/LvFePiqqbh6znBYzSa8+/N52Pfnpbh0wkBDarFGp9cQVDJvdIo2RbZk4iDMS0/BxLR4fP7rBdh472IMS4rGLxaNwfcvGIobLxppsFXwgUItLl/Iajpz01Nw+6VjUfrEd2E1mzAiJQY7/rgEH91xMQAgOUbJW9ri8mHaUONU6w3zRhr8XXtONHGpukKj4xli7Uqat+B0XTz4YIppQxNhMhHMHK57Pm1mE+5ZNgFXzx6Ozcfr4fFLIdHNgNJZXq6mlmJjXt4/BRjT4QAwpLdp6/CjoM6BacMSkRRj1fxebBXEuenJhilLHgV1TgQkPf9kk9OnTc/PHpWMb01JM1xnjM2C1DgbKpo7sGzFVjyjTq8+8J3JyPrzMvxx+UQ0u3x4ZJWigh1ukCIG2D1x9QzNC/m9mUO1aXc+opuBJagwc1NyCepSowDw+o4TSIqx4jvTlShxcBYLb0DCj2YpAUtRVhOWqNaM/Np27XiziWB8Whzy6xyaxeLTX12s/Rabphys2mZmj0qG2UQwMS1Oq58tefVYl6sMpmq4YEabRYn0bvEYI+MBxYrEVw+bOZnzmCLVxtotWDJxEH4yfxQ+//UCvHDjbOXa1QjtMamxBqvJ8OQY3Hf5JO0ZiLVb8KuMsfjpxaO0Z7nR6UO83QK7xWyYfnV5AwZvfKvbD4fHGOTD49oLR+CvV+qhGm/fNg/v/nweLh6j+OhZIG5NmyfEAwgo721pkxvLVmzDvR8e1gJp82pDp5JPNDqRqwYA7y1p1uwi350+BL+9bBzGpOrvR4zVjBibRcsgkRBt1ew6LGiOYV56Ct7fq6j9P7l4FMYNioPNYkLR41dg1/2XYeXt8w3T9GzqPIWbWu7wSxgYb0eszYzKoCDW+CirwcMJAO/cNg//t1SZdk+J0p/ngfF2zBqZjKlDE+9oZtQAACAASURBVLD9viV4+Cpliv0HFwwFYLR63L1kPHbdfxn+efV07bsxA0MtMOy8DQ4vKlvcWDB2AH5/+URt2WMA+NmCdHx4+8VIibVp5BjQ7StDEqPw9LUzw5579sgk7Lz/MsTZLVim2nnmcfX1zHUX4IHvTMaa3y7Cqz+ZYzjWYjZh+vBEzUfPz9zwbXZitFW73zepGS6ibWYMTojCx/srQSkwkAugYhaLWSOTEGU141cZChH78q6FmDo00dAGs4WEHJ4ACFHa3cRovQ1lVgDepypTirSEKM0eYLOY4A3IhqwNVnPoLBSPK2cMMXzmr5dda7TNjHu/PRF3Lh5riNN55rqZuGPxWNy1ZKyWkvCWi9OxfJpyTrOJGGxKcXaLFo/EfmtIYhQunTAQ3/zfpXjl5tmGsgQHg/N+5LigtqArX26MzYzhydH40exhaHT6tPbNzKWO2/3AUuz842WabZDPYmM2kbBBekQ9nL+XfB9nNRNcMX0Itt+3xGCPY2Vi4Bdu4VcNHp0ai+lBtq3zNkgPQBaA8YSQ0YQQG4DrAXwVtM9XAG5R/74GwGZ6ssvEnWbMGZWCxGirwd85e1SS4SWcOjTBQETeuW0elk1Jw5iBcbhlQbp27KLxAzEoPgoXB6UYa3B4DZ7Dy6cOxrdHWfHlXQtx40UjkRxrw7r/dylmjUzWkoGnxNrw3PWzkBhtNQSwJUZbsfl3i7FofCpKm9x4a1ep4bfmBnmpAcW7xF4ORrICMkVclEUjMZm/z8Ci8QMNA4VnNxaGROsHw2omip/JLxmyX7DzsLpxegKwmAi+O32I1gjzdcp8vlfPGQaHN4CvDlcbAmsYOeFfbPZE8ffuf7+4KITg8g3DoYpWBGSKGcMSkRRt1XxmLEiDNRBv3noh1t6zCDPUgKapQxPQ4ZeQU92ur6Tn8mk5W+PsFvxx+SRDWWJsZoO3l3myU2JsGBhvx8JxqbBbTNo5Wr3UEFxiDxogMC8kv+wyn3eTgaX34f2FcXarVscev4xrZg/Xzm8iRCvnvNEpmDg4HjNHJGHG8CRtsFFQ5zTU68S0BOTXOtDs9oMQGAY77LzjBsXBRIBF45UOK9pmURpumeJWLkCRn140EeXZb/GqHmTuNydxioTNYjIMVgAlHzfDrJHJWlAd82AOSrCr9c6CO6Nx9ZzhXB2ZtXP7uYVnWGPPB+m5fRLyah2IspoQYzOj3uGBw+M3BOuuultXxZJjrLjtktHa5zGpsVg0fiA+uH0+pgxJ0IIPa9s9qHd4Qry9fJT5+mO1mn+woM4Z4vn88+c58Eoybpg3Anm1Di0GYeSAGNz77YmGTpy9g+xZ4cnBhDTl3r992zy8cvMcrLx9PlZcOxO3LRyNadzKWxazCUOTohFjs+C1n8zF9ReO0L4HQjvLxGgbhiVHh6xCFx9lCQlEGpYcrZEr3oOZ+fsM2CwmEEIwIiUGtyxIx5bfZ+CJq2cgGDaLCVFWM+aM0sloUoR8rqlxduTXtuNgeashmJF1XpMGxyMxJvTYG+aNxBM/mo6b54/C0KRozByRFLIPX/7nb7gAuQ9frmUB4TFlaIImAvCYNTJJyyDBZeUyvCP8byzg+qHLp6aBUop5o1OwgCOQ7FFg9/+mi0Yh79HlWvn5ASoTfRyeAOLsFphMRCHIbkaQ1fYlKA6Db4dYzmF+n86C9ADjAhkAwgoYfF/y7xtmaX/PHJ4Eq9mEP1w+Cd+emobZI5Nw3/KJmh+42eUzeP7joyzYef9lmDZMeb5TYm3Y/cBSvHPbPJhNBMunDTEENg4Mky9fO1fQs9zV0stsIDEwzo4Gp1fzBfNxMlazCRazCZOHqBlf3H68cctcfHLnxbCYCVhT0OGTtP6R1T+7l4QYY0FY/Y9IiQnpT2I48SnaZtYGNtWtHUiKseKqmUPx/PWzDHzJRGAQFM8U9AlBppQGANwNYB2A4wA+opTmEkIeIYRcpe72BoABhJAiAPcCCEkFdybDbjFrmQx+960JISO/rpJlzxiWiDi7otiZTQRPr8/XlmPd88BSjEiJQZSFhG1Ew4EfpSZEWzBmYBxevnkOJg9JUCwJHMItcMEjfYDeIMfZLfjy7oX4z0/nag11Uqx+bXm1DkMkLP9SMUJlMZlgt5jgCciGQDFWZpaIvbLFjYBMcWF6stZx8qNT9vJePGYAJg2Ox3+2nTCcj2WbMIeJ9SREX/GJVw8YeKLJUuxNG5aIlDglIPEPHx/WFHKmdi2ZOAiTBidg9khlwMGi3DcfrzMQd5bGLNZuwbhBcbjj0jHathi7kSCz62WNh9Vs0kjfpWqQ35Y8fUGJ4I6DDW74FHC8+sLq8L9qIBNfVUkxVoOSt2DcAC1YK31ADGJsFqz57SI8c90FyjlumYuXbpqN9FRFJXN6A4Z6nD4sAfUOZTW3xGgrLGaTlqeTddKjU2OR/ZdvafeEXX/wSo38M2YyESTHWDVbjUFB5ghyvN0Cv0QNA89Ye3j1Nl0NNGMBNe/edhG2/WEJ0hKiDAMadrzNbIakpmhsdnm1gBO+rl2+APJq2zExLR4psTasOlwDv0Qxf4xOSniCFXwv+cDS2aOStDqobfOgrt0bosiwhV3GDIyFX6JaDmFlmWLjILaqtQP3XT4R/+9bE2A1E6w/VhuRhLB7yp4Vi9mEZ6+7AIvGp2pq7uIJA7F82mCYTAQ/mj0cf/3elJAldRkSuefMqtYtm8Fh5Dspxor7Lp9kUMqjrCZYzaaQezg00UiO2AA23L0enRqLKKsZ8VEWw31l941XxyJ14KMGxEKmwB2Lx+D3356ofc/0nZQIJMdiNuH6eSO1ehkYRkHjiVWMzRLxeY2EWVx/wSvIfLvMg297Hv7+NOx6YCk+uuNiwwybNvjgjuMJKH+fWXYVj1/S3uWEaCsc3gBkmepp3oIUZP667VYTXL6AYTGqcDOFPKKCtoebNeMJGj9I5fvqH80ejs9+vRAxNgtunj8SUVYTvjUlDddeqE+IW80mxEdZtbYiWFEFjIJMuHSiv7hkNH67dHyIgpwc9OwEJ1piuYNT4+zwBWTN/mgO3hFKPz5tWAJWXDsTSyenYW56iqogK9s7/LqCzA5nz5svIBvvMUeKg1cC5Os6yqoEM05+cC0+2l+JEckxeP6GWUo7xx2WEmsLW+b+Rp/lQaaUrqGUTqCUjqWUPq5+91dK6Vfq3x5K6Y8ppeMopfMopaFr+p6BuG/5RLz7cyWn5N++NxUrb5+P3ywdH7JfpM6B37508iAsGp+Kl26aDbOJYP2xOiwYO8Bgl+guLGaTloKKNdBxdgvuWz4xZMGCSI0lw8JxA7SXPs5uQVpCFL41RY/eZx3HZZMG4UezlWwOTGWeN1rv/BnpsJoJFoxNhSRTHKtp1xrlH6l5RSlViCKbQh7JRcVHh2mICSG47ZLRKKw3er1YKjde/WIDjLSEKKy6+xIcePBbYa/ZztVJbbsHSTFWDE+Oxo/njMAN80bgy8PVeE31/QV3nLPUeh+WFI1lk9Pw+o4S5Nc6tOj+VYerYbOYtKn1+5ZPwp2LFYU8xmoxDFjaPQGYTcQwDc/8tbctTMfgGIIvD+tuJUKAP39nMt5R85yyxQz4VfYMz6JaNSxynjWQdy4eiyir2RBxPWlwAm5ZkI71/+9SzFWneacMTdAUgwFxdqTG2RFj02cZ+EaVqVCb8+o1ZfuLuxZi2x+WGOqP7xSYwtvZIjwmQgwkhO88E6KsWp7X+CgLArJsyKoSiXCkBhFck6qmBoNZddhv+gIympw+Tfnh58DaOvw4pKqMzKozPDkai8IM0P5/e2ceL1dV5fvvquHOU25yczNPZA6ZQwhkJglDmGmCgAgBFBFFHjStgKLSKNCNj4+K7QAPEaGVp+1At7bYqKA0YiOj4EMIYBxAITgACRCS3PX+OGfXOXVu1a2qe2u8tb6fTz65VedU1a5fnbP32muvvRakG/qQHvazeGKw6vPGnn0889JORrc3cu8H1nPVKs9AdBk/DvFDRN7Ysy9l1EZzTR84tZuzVk5ldHsTxywcT5+mFzAIE3gcxf+OynGLx3Pr2dF91/njPF7u2nQeLLey1tmcZOPcXo5eOC71Ghc69q7VgZd9REuynzH0k4vX898fTL/GovS0N6YcHBD8nmGvcdgREObMlVO45+J1XHrEnIyTimwGcpR/PjE9zKKjKcE/HDY7r9dmY/Gk4DoJG8gN8RgH7zcyzXMKMDqHswSC3yaWwfHguOO9K2lOxnnx1d389OkdfPuR51PadDYnUfW8yq6/+fSPtnGtn6q0TzXNq71scjf3PfNyKl829K+kFyU63kbzeGd67qJNM1Pty8T00e38+sojmDyylQ8fOYcfXrSWd6+Zlkp36dqU6ffOZSB/+Ki5XLRpZr/VkJbItRztr1z/6ibP7/3qw/0+zxGLCd89fzVHzA/CTxIxSU2039izr99KohuLXnljT8SDHLx/VOtwv/WYn0Fo09xe3r1mGhcdOrNfu4CqrKIHVklvyJy3bnrKYJkyqjXNG1Qo1520iBvesYzD5o3hzgvWcNvZB3Ltlsyxaflw+zkH8f0LVqfNjtfN7EnFojqi5SSjiEiqtHCmmbgzwvb2KZ84bj63nr2c/7xgNZ8+eRFbQsvRzhPd4Kcicsuqy6d285urN3PcYm/wa2tM0JKM89Jru1k/q4e1M4MY0GxJ6o8JDZxHLxxHPCaM6fRuuvA4f8GGGXz3/FXMG9dJc0M86+AVNU7mj+/0lrLaG7n6hAUs9D19TclYv+W7FdNG0taYYPLIVj569Fz6/PyZ63yP70uv7eaTWxam6e48AXv7+lgxdSTn+SElb+3to6s5mfa9L9g4g8c/dijrZo1m3qh4qngMeB3ju9ZMS3mX3TJ72IMcHlzCk6W+PmXPPuX9G2ZwyRHBwOy8eGM7veW8cIrBbDgvctiDPGN0GxO7PePNTbg6mpIZDU+HM74HCttJhCqXRT8TSG38aG9KsnefpvLrQvYk9s6TE02B2O+8xnQD+cVX3+TXf3otFSKwcGIXJy2bwH49rTz+h1fY9dY+Vk3vocuvLnXK8klZr2lnUIRzLTuiKSZ37t5LT0cjE7tbGNeWnlt25YzAAHcTk2deCtK/tTbEuf7Uxal2nO2HdUTvgf7fPQgvGSqBYew9dh+9YEIX56yZlpqQX3HMvNS14yaNCyZ0ceVx+wP9l9bB81BH855H+dzbl/DJUF/rvlN48I8ufzuakvGMYQ/uysnXQO5ubeC0FV4McEtDnMc+emi/FHqF0tvRlAq3C4dYiAhffdeKtAkH0M9Ay0QsfX6UkYUTu5jZ28ZLr+3m9C89wO69fanr2U1szvzyA4S3oLh8uHv3adpK1rvXTmPVjB7OWTMtZVzmCrGIkilmOWp8vn/DDLZfc2ROZxZ4+k0f3calm+ek7hs3ocy00uA8riNbG5gxQP/ZEtkbE32v6O/jDOGNc3q5/Ki5qQJYz2XJ6RwlPMlRDSrtuqfDoZpNicyrBFFtu0MrIeeu3Y+xnU1cu2UBl26ek9qfEqUa44/BDOSSc9qKSal4ylzEY5K62WIxYdWMUf0ShxdCQyKWls8XvBv7I0fPTaskl22DWRhXjS9Tnke3rNrXpzQ3xFk9o4fu1gaOXTQ+zQBxg4jr3D505BymjmplfJcXMzimo4l3r53Gl7YeQE9HEzN72/jMKYvzWnppSsa5eesBfOL4/bn+lMU8e9VmZvkd0eRQiEg8JuwfWYrORGNEk+hr3Ey+O0Nn2NvRxC8/eigH7TeSid0tXLDBmzUfs2gc62f18MXTlqYZ9O414HmMYzHhHw6blRqIostsbkkPYP9R6e2Melbc4Dwr1CmHBxdXCAKCQhdRA/O/LlzLf7xvVZpXJxfueglPAkSE89d7qysDbeAMc+C0bmJC2o50R3tTghOWjOe8ddPTjJDoJM6FWbQ1Jtizry89xKIhs0Fw4tIJHLtoHOeum5bxeOr1EQP5+h97nvg1/qQ5GY/xzycuZN64Tvb2eUvHB00bSWeLt4chPIGM4gaeb5x7cFr+XfBWY0ZElnJ7I/lV3TU2f3wnvb6HyRmX4UnVSQdMTFspmDuug4P3G5lzOf/9G2Zw3rr9OH5x9u+QL+4ed9fYprnedbl6xigu2zwntcTf3drAx31jODzxdysNmQzkfJg9poOxodCMTJODQtPyOw9lvgZy+DVjQpvUhopb0cqUXnEwDOQ5DtPT3pSWr9xdz27S/vDv/tav2uzqf/qxf58EnzG2s5mvnLWcDxw+OzWeJQuclGXad9GUwdkzFNxnZPq9Xbf87+evGnAS0tWc5ITF4/nKWcu5/pTFWced6Ge2NiY4e9VUrt2ykCWTulKrsTnbHDFuXf54p3949Tq6SS/422vDO1dNZfs1R6Z9vyMXjOX+SzdkdMKFP7kacyBDDaZ5qzU+ftz83CeVmSWTRnDT1gOYcomXiilXiAXAhRtn8uedb/XzOEBgZGSqxtYQD26MqREDub0pyZ3/a3VoI4Bw6RFelaubzlhGczJeUMzd+kj56NNWTGbuuI60jTb5EjUSo4USXCcQ3UHvCHsF371mGqumj2L+hE5uPnN5xvNdR/SqH6ssIjT5O4AzGeGO2d3pHU908BrV1sg333MQs8cEE6XwhGPBBG9j3T/d+etUnHTUOBjT2VRwmI9bLWiMXFsnLBnPVd9/knesmJzX+0wY0cLGOb38V4YiKN2tDVx3khf/HJ5ERJdID5zazc33bWdsZxOP/eFvvByqihj1Ijnam5J8+uTFGY8BrJvVwz1P7UgZxi4O7/Hn/8bsMe1py5gQeKrnT+iisyXJ1oOnsHZGz4BL2s4IiMeEeMRdJyIsmTSC+559OVVhLFr85pw103j7ism0NSaYM7aDF1/d4XukdqWlj8u0FfrTJy/uV5r59IMmpxXPaG9K8oHDhxYC4EgVNvAfL5/azfZrjsx4bkOq/wj6Bud5G4pDIe0ziuAVv/XsA7njsedz7j8J44yQwYTVZeOweWPY9uJOmhLZMwa9/cBJGTOhZCLlxMlhJ/d2NPLDJ4P71vX7m+b2MmVkC3v2KXv70tv0gh8nn+29nWGWa3UjyuiORsZ3Nacq0ULmsIuh4MJFMsUgO49rruwbsZhwnb+nIxPR8XDu2HRvdHdrA986b2Ve7YX0bBcQZLhw40h4EtqYYZNe+O+oIycX4W5nVJV6kM1ANvLyII9sa+Tzpy3NeCzw/vQ/Fh5oXKqmcCeRLbyjGGUnRWRQxjGke2IXTuzqFzrjDOR8vEOxmPQr1RtlTMqDHHjoGxMxXn9rX8YO19Gc8LKNuFCJTN72gTRIxoP43e1+XGoxjINMHmTwBopHLt9UkHds68FTMhrI4UEyPImILr8eMruXhy/fxPU/3uaHWLxFIiZ8570rB+25+MJpS9N+K6fZszt2BanwQjgDbpWfDeOAKd39qpBFSWbweoW5/Ki5/OlVL2c59K/QJSKp63T2mA7ueWpHahALGwqZJrY97Y39SmD/47H7D9ieoVDIBh2ndThLh5uAjC2SYRm+hiaPbEnb/Jsvc8d1MHdcR+4TQzSFPMjF4thF4zl20fgBi2p94vj8HTnup5KBYizofz06TeMxYcOcXm5/4HdZJ4jZvNTOY5orBjnMzy/dQFMyzt0Xr+OzP97GZ/xVnkLDNHLhyttHUx0CXLZ5Dh/85i8Lmixloq0xzv7jO5jQ1cI7Dpo8YCXQfIjq6PaqROVdNX1UZJNeOAY5e2jJQISz31RjmWkwA9lg6DPpZVNGsGXpBN53yPR+x8LGVkM8xvgRzXkv0VWSsAF3x3v7z8hbUx7koXV4Duf9C3egnnG5J6cR/sBlG3hw+19551ceLFjbxkQsFd7x/Se8qmmzi5CsPWUgZ1idKHTp+KD9RjKrt53nXt6ZFhMcvrZyeS/aGhMkYzH29PXx5527GdfVnFeoTTaakvG0AcOtlOzrU2ZkKBntQgAyZUzJRjLHkviUUa1psa+ZNv84XIqncFhGo59ftq8KsmkWYqykDOQMHuTBhlhECRsAP8pQ0rlUuGuqt4ge5GKT2qSX4yfrjaxohCe0Xc1ebv1MJaYhex/hVlUKCbFwk6+GRCxtUlVsnvQrES7I4Aw5cekEThwgnGogzlw5hZvv2w54q7X/+s4Vg25jlOhKqQuxCOv/7FWbiQk8+cdg30ImD3J3lk2s2bj6hAU8d8P9PLdjV850dpXCYpCNvDzIA5GMx7h2y8K0WF9HQ+RGmjWmo59nqlrZevAUbt56QMZjxTaQGxNxrj1xAbefExTPcMZltjAOR1dLQ8owyDVoRUnGAwP5jkefp70x0W8D2GCY2N3i5c7MsQE0H0SEm7Yu40uR3yJsIOfTOSfigirs2Lm76JtCGiKbEaPMn9DF/uM7WFqAtvkaja6YyEDL8m6TbdirN8PPWZzBgVx24oFbMiduUA8v/y6Y0Mnfb5qZSq04VMIGQsLPI1sOnLOiWJ7wUpC3BzliIIcnfK7fDGeUyfQZUVwawEJCLNJWLJMuh3feL8+bExZ7GZxcetFi8dGj56UK3xQ7FVp0j9Ku3Xv7aROPiR/yly3EwqVELKxP7Wlv5IN+iJbFIBtVSynzD4Y9iA0J4eoT5mdc0i2E0S3CK2+V3gv9Mb/SVibcQJYrA0ghbFk2Me2xMwTyMf5Su+4LtJA9A9nrnP76+h4OnzemKEuPTck4a2b0pAyzoTJhRAsTRrRwzQnzaW1McP7XHkkbJPNZ3nPf68VXd6fl9i4GaQZyb38DedPc3rTUiHm9Z56/w1mrpnLmyikDeuanj27n5q0HMGlkSyql38zR7Tzx/KtZKzGWk2gM8kA4b304q0QyHsuYXrPWcEZIrtz0lSQowjLwedEQi3Df5IypaMpRR9YQi3jgDc6X8PiWyuGd96vz59otC/nE8fOLtrkyjDNkX4hUkhwqiyMZcnbu3ptV+/Dm50SGTXqFbEZ1TBzRQiImqZoE1YYZyEZJiXqQ80kjlIurVzWzdm35lj0zsc/fXJItV2wxcJ79fGbmzsgpdLKTTHi/SUuDtyFw7aye3C/Kk1vOyrwhcSicvHwS2170lvrCmUby6ZydEfbiK2+ydNLQveRh3HWeiEnGlZTBUMhEJZ9Bef3s0aky3wDHLR7Ptx55PpWmspJEs1gMRKYY5OGCS4FWbC9kMYlJfr9VPw9yvL8HOftnZH7epS4sZFNX+D6KFrkpJvGYZEyDWgzm+gZyriq1hRKNl971VnYDObxBMLw/wk18BrOaOndcB09ccdiQV7FLhRnIRkkJxzgVa1NEPCZlW/LMxlt+LGyhu6kLIeVBzsNAntbTxinLJ3LWyqkFfUZD3Cu929vRxG9e3pXKn1zNuOW4sPYdTfmEWHjnv7Z7bwlCLLxBZeqo1qJd57l2vA8GN4B3NCVYPWMUT1xxWFEmrUOlEM26WpLEpLq9rINl3awebt56QMogqkbyjYaJFn8IG9QuD3g2shnfLkVjIb99uge5dCEWpWRidzNrZ/akcpQXi6hBv2v3vqyTh3BKzHC4jOv7BlsqulqNYzAD2SgxDSUwkKsB57GNbnIoJq4zH5FHiEU8Jlx9woKCP8N1buO7mknGpWhpskpJV7NnIIW1j8WExaPjnL4+e6aFsMFZ7Jg3t+yfKbxisBSa6zUfGhMxYgL7jW5Ly3JRaeIFhFj0djTxXxeuYdqo6lyWHQqJeKxfuspqI6ikN/B50dWscCRPLm9jNiPNxSxHwzcGIrzh0oWw1Jh9jIiUZEUuyq4BQizCv2c4XMbLy58YVuO7ozp6R2PYkm4g11q3lJ2zV03l9395ndMPnlKyz3AG4GBn5vngOrVPHL//kGPDy0Us5qWmi05OLljSxLoBilaEO/Vi59101/n0DCmeBv2eJRhwnFHsCm9UC6kY5Dy7iGLqHKa1Ic6uAcqaG8FvNJRY29whFpnf+y9+DvNC8kSH2+mcDsNnJCouu/f2pTLuDER4LJ/c3cKcMdW74jEUzEA2Skqhy+C1QldLA58aoJBEMXAbHMthIBcrbrZcXH7UXCZ1D1w+OEo4Xjy6/DtURrc30pyMDzkvaZhSeWQ+dfKiqvO+Bh7kypouP7tkA2/uNQN5IApJJfnQhzdy+y9+z7U/eCrt+bbGBPGYZJ2UZ/NOu88eKKWhY1J3S7+YXden1lqIRTmJ5SFOOMTxokNnVcVG31JgBrJRUhLxGGtn9nDkgrF53XhGQGMiTkxKuxmpGEVBKsGxi8YX/JrwUmuxY5BHtDbwqysOK8o1fvUJ8/nUD58uWXaZQ2YXlk2jHJRys2shdLYk6WT4TORLgbsu87k8R7aFC84ERpSI0NWczJrmLdtE6dazl3PPUzvyqrD67fMO7m8gl3CTXq3TlIzx5p6+vCZA0dXgUmTuqAbMQK5jrjhmXllm0uWInRqOtDUmGNnWWNI0fKXcZFhthL0exTaQIT/PSz6csnwSpyyfVJT3qhVc+MswHWeHFcFvlN+P5fqYqJOxqyW7gaxk9khOH92ed3jNyLbGfnsNUpv08nqH+qK1IcGbe97KyybIVeVzuGAGch1zRgnjZ42hc976/Th+SeGe0kIYjhsrspEM9fz5ZAYxykchpYONypLvJj1HtlUqL33lrozH9mVOjzxkUpv0bCaW4sqVzfSNnMaN9z4Hu/ILoamX1eD6GR0No8YY29nMkiLn640ynDZO5sJ5kEe0JCueJtBIp5SrJEZxCfIg53e+m4RHfcJdA4SOlar8uWuLXW4BE9tjnHHwFFr8zXk2eQiwUcIw6phajUEeDC7OdTAVn4zS4n4bG5yrn1QWizxDLLLNRTsHyGRRqow6LgZ5ckf99Hv50uznOR5o8hAuN10PWIiFYdQx9RSD7OLmip0D2Rg6hZZINyqHc+7m+5M5Qzqa6WCg7DylMpC7Whr4v+es4C/P/bIk71/LtCRdEZXsFvIPL1rLb17OHBYzSrUuRwAAE2xJREFUHLFeyTDqmHqKQXZeymLnQDaGTiGFQozK4sIfCk3JVw0hFgAHThtJc8KutCguxGIgD/KEES1VUZq+XNTP6GgYRj9KUa2tWnHx1sXOgWwMHWcPWYRF9ZMyXfP9rbKcN1CxkL01UrRoONFsMcj9qJ/R0TCMftRTiEUiFWJhHuRqxcbm6seFShRSMMR7XfrjTj/E4rLNs7n/0kNobwoiPvvMQC47KQ9y/QwJOTEpDKOOqacsFm4Z32KQq49seW+N6mWIDmRG+B7kpmScsZ3NtDYEBrJ5kMtPS2qTXv2MCbkwA9kw6ph6Wk7raW8kEROm91RXmWUjFGJhUchVT6HhMMundrN8SjeXbZ6T9nxXs+dBdgZZS2M8daxUm/SM7DQ35N6kV29YFgvDMOqC3o4mHrp8E50lLN1tDI7GpIW/1ArBJr38aGlI8PVzD+r3vPutXeq1sAe5lJv0jMy4LBZmHweYgWwYdciamT389OkdlW5G2THjuDqZPaaDq46fzxH7j6l0U4wcBB7koVlS47qa+cJpS1k1YxQQxMCCeZArgXmQ+2MGsmHUITedsYzde0tUz9UwBsGpB06qdBOMPHCmazHsqMNDE6K2RvMgV5LmPNK81RtmIBtGHZKMx+oqB7JhGMVhsHmQc9ESMpDNg1x+WsyD3A8bIQ3DMAzDyA9XSa/IdlRrWohFcd/byE1z0pug1NPG7VyYgWwYhmEYRl6kPMhFtqNabJNeRcmnkl69YQayYRiGYRh5kYpBLnKIRWsozdvFh80q6nsbubEQi/6YgWwYhmEYRl44526xK645D/JNZyxjfFdzcd/cyIlt0uuPGciGYRiGYeTF9NFeoZ3FE0cU9X2dBzluFlpFcBMUi0EOsCwWhmEYhmHkxfKp3fz0H9Yzsbu4Xl5noFl2ncpgMcj9MQPZMAzDMIy8mTSypejv6bJYmAe5MlihkP6UfKomIt0icpeIbPP/77cuIyKLROR+EfmViPxSRN5W6nYZhmEYhlEdjO5oAqCrxapdVgJXatoM5IByrGVcAvxIVWcAP/IfR3kdOF1V5wGHA58Ska4ytM0wDMMwjAqzZFIXd124htljOirdlLokEY/REI8VPX1fLVMOA/lY4Bb/71uA46InqOrTqrrN//sF4CWgpwxtMwzDMAyjwogIM3rbK92Muqa5IW4hLiHKYSD3quof/b//BPQOdLKILAcagGdL3TDDMAzDMAwDmpNxC7EIIVqEijUi8kNgTIZDHwJuUdWu0Ll/VdWM+WFEZCxwD3CGqv48yznnAOcA9Pb2Lr399tuH2PraYefOnbS1tVW6GRXHdAgwLQJMCw/TIcC0CDAtAkyLgLAWl/z0dUY1x7j4gKYKt6q8rF+//iFVXRZ9vihZLFR1Y7ZjIvKiiIxV1T/6BvBLWc7rAL4HfCibcex/1g3ADQDLli3TdevWDanttcQ999xDPX3fbJgOAaZFgGnhYToEmBYBpkWAaREQ1mLU4/cysrWRdeuWV7ZRVUI50rz9O3AGcI3//x3RE0SkAfg28BVV/bcytMkwDMMwDMPwed/66TQl47lPrBPKEYN8DbBJRLYBG/3HiMgyEfk//jknAWuArSLyqP9vURnaZhiGYRiGUfccvv9Y1s0aXelmVA0l9yCr6p+BDRmefxB4p//3bcBtpW6LYRiGYRiGYeTCajoahmEYhmEYRoiiZLGoFCKyA/htpdtRRkYBL1e6EVWA6RBgWgSYFh6mQ4BpEWBaBJgWAaYFTFbVfrU3atpArjdE5MFMqUjqDdMhwLQIMC08TIcA0yLAtAgwLQJMi+xYiIVhGIZhGIZhhDAD2TAMwzAMwzBCmIFcW9xQ6QZUCaZDgGkRYFp4mA4BpkWAaRFgWgSYFlmwGGTDMAzDMAzDCGEeZMMwDMMwDMMIYQayYRiGYRiGYYQwA9kwqhwRkUq3wTCqFbs/DGNg7B4ZHGYgVyEiUve/i4iMr3QbDKNaEZFZ1k+kMB1C2HXhYWOIMVTsRqoSROQYEbmo0u2oNCKyUUQeAs6tdFsqjYgcLSJfAy4RkcmVbk8lEZHjROTKSrej0ojIJhH5H+Cd1Hn/LSJHish3gStFZGWl21NJbPwIsDEkwMaQoWFZLCqMiCSAvwfeA0wClqjqoyISV9V9lW1defCXf5LAp4CDgY+p6nfCx7XOLlQR2QhcBXwEOADoBO5W1e+JSExV+yrawDLgXxcx4EzgEmAycIiq3lvRhpUZX4cEcDlwCvBBVf1W+Hgd3h9Lgc8DHwM6gEOAn6nql+vl/gAbPxw2hvTHxpChU9ceiGpAVfcCTwGzgYuAL/rP103nph5vAS3Ad1T1OyISE5GF7nhlW1gRNgLfVdU78a6JduAsEWmtl47Nvy72Ac8Ai4HzgLrzIvs67AH6gH9zxrGIrBaRZGVbVzE2Aveq6n8CdwB/At4vIp2q2lcvMZc2fnjYGJKRuh9DhooZyBVARN4vIteIyEn+U99T1TdV9VPAaBE51T9vWA9+IR3e5j91JbBaRD4JPAx8XERuEJHDKtfK8pDhmvgZsFJEmlT1JeBNIA6cVbFGlglfixtF5J3+Uz9R1ddU9UagVUTO9s8b1v1XSIdz/Ke+AIwVkZtF5HHgA8BN+NfEcDYKQ1q8y3/qbuBoERmhqm8Ae4BXgA/C8DaIbPwIsDEkwMaQ4jOsB5hqQzwuBN4GPAhcISJbgRGh0y4CrgXwvUbDjgw6fExEzlbVZ4Hv4HlD3gacCjwBHC8ioyrW4BKS5Zo4A/g18ALwdRG5G28Z+Q6gfTgbhv79cCrwTeAdInIpMC10ykeAi3zDaNh6QSI6vF1EPgzsxrs/GoAtwDH+8RNEZNJwNQojWpwmIh8CtgM/AG4VkXvxrpFrgC4Raa1QU0uKjR8BNoYE2BhSOhKVbkA9oaoqIuuBD6vq3SKyEzgU2Afc6p/zbX8meLGqflJENqrqDyvZ7mKTRYfNInKSql4vIjer6k4AEXkUWAG8Xsk2l4oMWuzCuyZex9uItQAY58eNvR2YOpwNQ2AD8E+qeqeIvAwcDbwd+EcAVf2+70E+R0Q+Bxyuqt+oXHNLRlSHY4F3q+o1InKXqu4CEJFfAn/D86AOVzJpcbqqni8ik4BZqnqXiKwFmp02ww0bPwJsDAmwMaR02CyiRESXO0MztgeB1QB+bNA2YJ6IzAqd/h7gn0XkT0BNp6opQIcngaUiMst1bD6b8G70N8vQ3JKSpxbfB57G21QxXVUfUdXv+ectBf6nTM0tKyEtHgGOAlDVB4H7gfGSnqXgg8DVePfOmHK2s9QMoMN9wFQRWRkxAM8AmoG/lrWhZSCHFjNFZLWq/k5V7/LPOxJ4tvwtLT31On5kop7HkCg2hpQWM5BLR3P4QWjG9gzeEsd8//FP8HaXtgOIyCLgRrzlxCWqekt5mlsyCtGhg0CHk0XkCbzMBZcNkxlvIVq0E2ixWUQewNPim2Vqa0kRkbj/v0CaFvcBMRFZ4z9+AvgjMM4/fzrwObxl1CWqen05211shqDD34nIY3ihBe9R1Zof/AvU4gX8yZGIrBGRnwAz8OK0a54BtKi38aNQLYb1GFKgFsN6DCkHZiAXGRFZISLfBP5FRA4NXdAunOUBYC9wqIgkVPX/4c3yl/nH/wycp6pbVPWFcre/WBRBh9/iDfyn+xsMapYhaHGAf3wbcK6q/p2q1rSnUEQOEpEbgQtFpN3FzYa02Ab8CnibeKmq/gD0AlP8468A71PVE2r8/hisDlP940/jXROnq+qL5W5/MSmCFtvx+szjVfXlMje/qIjIShG5BfiwiHSHtHAb7upi/ICiaDGcxpDBajHsxpByYgZyERGRdXjerW/hpd45DRghXs7BvQCq+gzecsh+eLldwdt881v/+O9V9fEyN72oFEmH+3UY5Lsdohbb/ePbVPXh8ra8+IgXI/pZ4Md4ntDLRORQSKWrAngNuBdoBD7pDwAj8AZ+VHWHqm4rd9uLyRB1eNk/73FVvb/cbS82RdLid6r6q3K3vdiIyDS8vuJuPE/flSKyGYINd/UwfkDRtBguY8hQtNjuHx8WY0i5MQO5uCwAfqGq/wrchpe4fKdbBhGRj4vITcBDwGeA5eJV/PkL3o7s4YLpEGBaBCwF7lPVrwEfx/MCniIiveBpAXwVz0t8OZ4RdK//uOaXikOYDgGmRcBy4ElV/TJwMfAoXiq7sVB3fYVpEWBaVAjLYjEERGQF8BdVfdp/6qd46WZewCtq8CTwORH5AfB7vHjBj6jqdv/1pwIJVf1b2RtfREyHANMiIIMWTwGLRGScqr4g3s7zkcBx4qUhmgZcol6qJkTkLKBVVV+rRPuLhekQYFoEiMjReB7BB1X153jL5OeLl7LvdyJyH55H8GQR+QXDu68wLXxMi+rBPMiDQES6ROR7wF3ASSLSBqCqjwKH413c56nqOrwNJhuBXap6qqo+I/7OU1XdWcsXsekQYFoEZNMCL272VeDL4sVkT8TzhrSr6tO+Fs+GtOirZUPIdAgwLQJEZKyI/AdeoZcRwM0icpiqPoeXtWWLf+pTeLHXHcDjw7SvMC18TIvqwwzkwdGKt3Rxvv/3andAVR8AevDjoPBi67rw0zDJ8KqBbjoEmBYBUS3WgBcHh1fI4GrgG6p6PF5Hv869cJhpYToEmBYBy/DKZK9W1SuBTwOuWuK9wHwROVC9ctHPA2tU9RUwLTAt6kWLqsAM5DwRkdNFZK2IdKjq88ANwNfxciseKCIu/VIjXonH8/yXbgC6/fOo9YvYdAgwLQJyaLHcaaGqb6nq3ap6u//SJcCd7n1qXQvTIcC0CPC1WOf3BT/CL+zh82c8Tzp4OWofAa7zvezzgN+KSAuYFpgWw1aLakR0eFYnLQoiIni5Nr8K9OEloW8FLlA/nZB4BQxOwosXutV/bh7wUf+1e/DSUj1Z/m9QHEyHANMioEAtfqGqt4VeuwrPQ/IyXoW47eVtffEwHQJMi4BcWohIUlX3iMj7gbmqem7otdcBE/BCs05X1afK/w2Kh2kRYFrUEKpq/zL8A+L+/zOB29xzwPXAtyLnXoi3A7sLr9QpeEUhplX6e5gOpkUVadGJt8EKvJRemyv9PUwH06JSWoTO+Q9go//3aP//BF4cdsW/i2lhWtTrPwuxiCAicRG5CrhKvByds/Bq3aNe7M8FwMH+MceNQBveBpTtIjJeVd9QL7i+JjEdAkyLgCJo8ZyITFDVF1T1P8vc/KJhOgSYFgGFaKGq+0SkAdgBPC0inwDuEpERqrpXa38zomnhY1rUJmYgh/Av3IfwdpA+A1yJtxy+XkSWQyrW52P+P8eRePGljwLz1Yu3q1lMhwDTIqAIWjyGp8Ufytfq4mM6BJgWAQVqcYX/siZgK178aTuex7DmK52ZFgGmRe1ieZDT6QP+twZxo4vxypl+BPg8sFS8VCrfAQ4RkSnqxcm9iXcB/7QyzS46pkOAaRFgWniYDgGmRUChWkzACyu5DbhOvZSQwwXTIsC0qFHMg5zOQ8DXRSTuP74PmKReBZu4iJzvz/QmAPv8jh5VvWOYdfSmQ4BpEWBaeJgOAaZFQCFa9KnqH1T1AVU9fRgaQaZFgGlRo5iBHEJVX1fV3X5MEMAmvDgggDOBOSLyXeBrwMOQ2pE6rDAdAkyLANPCw3QIMC0CCtTiITAtMC3qSotaw0IsMuDP9BToBf7df/o14DJgf+A3LqZUVYdtnjzTIcC0CDAtPEyHANMiwLQIMC0CTIvawzzImekDknj5OBf4s7vL8ZY//luHwYarPDEdAkyLANPCw3QIMC0CTIsA0yLAtKgxrFBIFkRkBV71s58BN6vqTRVuUkUwHQJMiwDTwsN0CDAtAkyLANMiwLSoLcxAzoK/k/QdeLtId1e6PZXCdAgwLQJMCw/TIcC0CDAtAkyLANOitjAD2TAMwzAMwzBCWAyyYRiGYRiGYYQwA9kwDMMwDMMwQpiBbBiGYRiGYRghzEA2DMMwDMMwjBBmIBuGYRiGYRhGCDOQDcMwaggR2Scij4rIr0TkMRH5exEZsC8XkSkicmq52mgYhlHrmIFsGIZRW7yhqotUdR6wCTgC+GiO10wBzEA2DMPIE8uDbBiGUUOIyE5VbQs9ngb8AhgFTAZuBVr9w+9T1Z+JyM+BOcBvgFuAzwDXAOuARuBfVPWLZfsShmEYVY4ZyIZhGDVE1ED2n/sbMAt4DehT1TdFZAbwNVVdJiLrgItV9Sj//HOA0ar6cRFpBO4Dtqjqb8r6ZQzDMKqURKUbYBiGYRSNJPBZEVkE7ANmZjnvUGCBiJzoP+4EZuB5mA3DMOoeM5ANwzBqGD/EYh/wEl4s8ovAQrw9Jm9mexlwvqr+oCyNNAzDqDFsk55hGEaNIiI9wBeAz6oXL9cJ/FFV+4B3AHH/1NeA9tBLfwC8R0SS/vvMFJFWDMMwDMA8yIZhGLVGs4g8ihdOsRdvU951/rHPAd8UkdOBO4Fd/vO/BPaJyGPAl4FP42W2eFhEBNgBHFeuL2AYhlHt2CY9wzAMwzAMwwhhIRaGYRiGYRiGEcIMZMMwDMMwDMMIYQayYRiGYRiGYYQwA9kwDMMwDMMwQpiBbBiGYRiGYRghzEA2DMMwDMMwjBBmIBuGYRiGYRhGiP8PRztoQvL7/rkAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light", "tags": [] }, "output_type": "display_data" } ], "source": [ "symbol = 'TSLA'\n", "\n", "end = datetime.datetime.today().date()\n", "start = end - datetime.timedelta(3*365)\n", "\n", "# get stock price data\n", "S = pdr.data.DataReader(symbol, \"yahoo\", start, end)['Adj Close']\n", "rlin = S/S.shift(1) - 1\n", "\n", "# plot data\n", "plt.figure(figsize=(10,5))\n", "plt.subplot(2,1,1)\n", "S.plot(title=symbol)\n", "plt.ylabel('Adjusted Close')\n", "plt.grid()\n", "\n", "plt.subplot(2,1,2)\n", "rlin.plot()\n", "plt.title('Linear Returns (daily)')\n", "plt.grid()\n", "plt.tight_layout()" ] }, { "cell_type": "markdown", "metadata": { "id": "TY6HmdWMKe4y", "nbpages": { "level": 3, "link": "[7.1.4.2 Linear returns don't tell the whole story.](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.4.2-Linear-returns-don't-tell-the-whole-story.)", "section": "7.1.4.2 Linear returns don't tell the whole story." }, "pycharm": {} }, "source": [ "### 7.1.4.2 Linear returns don't tell the whole story.\n", "\n", "Suppose you put money in an asset that returns 10% interest in even numbered years, but loses 10% in odd numbered years. Is this a good investment for the long-haul?\n", "\n", "If we look at mean linear return\n", "\n", "\\begin{align}\n", "\\bar{r}^{lin} & = \\frac{1}{T}\\sum_{t=1}{T} r^{lin}_t \\\\\n", "& = \\frac{1}{T} (0.1 - 0.1 + 0.1 - 0.1 + \\cdots) \\\\\n", "& = 0\n", "\\end{align}\n", "\n", "we would conclude this asset, on average, offers zero return. What does a simulation show?" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 296 }, "executionInfo": { "elapsed": 575, "status": "ok", "timestamp": 1604370977956, "user": { "displayName": "Jeffrey Kantor", "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64", "userId": "09038942003589296665" }, "user_tz": 300 }, "id": "ATto_V3uKe4y", "nbpages": { "level": 3, "link": "[7.1.4.2 Linear returns don't tell the whole story.](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.4.2-Linear-returns-don't-tell-the-whole-story.)", "section": "7.1.4.2 Linear returns don't tell the whole story." }, "outputId": "663d2dc1-1e7c-45dd-c564-65069c124c4f", "pycharm": {} }, "outputs": [ { "data": { "text/plain": [ "Text(0, 0.5, 'Value')" ] }, "execution_count": 23, "metadata": { "tags": [] }, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO29eZRkR3Xn/72575mVtVd1t1pStzaEFtSAAIPBgkEYg4QHNOBNY2NrZoy38Xj3jM3v2P4d4xV7xhjLgJFtRhgMGMYLGBgbYVtItCS0q9WSWq2u7lqyttz3jPkjXrwX8d7L6lJ3Z215P+f0qcrIpV5lSfHNe7/33iAhBBiGYRgGAALbfQEMwzDMzoFFgWEYhrFhUWAYhmFsWBQYhmEYGxYFhmEYxia03RdwPoyNjYmDBw9u92UwDMPsKh544IFlIcS43327WhQOHjyIo0ePbvdlMAzD7CqI6GS/+zh9xDAMw9iwKDAMwzA2LAoMwzCMDYsCwzAMY8OiwDAMw9gMTBSI6GNEtEREj2lr7yKix4moR0RHXI//RSJ6hoiOEdGbB3VdDMMwTH8GGSl8HMDNrrXHAHw3gHv0RSK6CsC7AbzEes6HiCg4wGtjGIZhfBiYKAgh7gGw6lp7UghxzOfhtwD4pBCiKYQ4AeAZAK8Y1LXptDo9fOqbp9Dr8QhxhmGYneIpzAI4pd2es9Y8ENEdRHSUiI4WCoXz/sH3PF3Az33mETx0av28X4thGGa3s1NEYdMIIe4UQhwRQhwZH/ft0n5RrFSbAIC1auu8X4thGGa3s1NE4TSA/drtfdbawFmttgEA6/X2Vvw4hmGYHc1OEYUvAHg3EUWJ6GIAhwHcvxU/eL0mI4Sijyi0u72tuASGYZgdwyBLUu8GcC+Ay4lojojeS0TvIKI5AK8C8HdE9CUAEEI8DuBTAJ4A8EUA7xNCdAd1bTqrVtqoWDPTR6dWa3jJr3wJj84Vt+IyGIZhdgQDm5IqhHhPn7s+1+fxvwHgNwZ1Pf1Yq/mnj04sV9Hq9vBMoYyX7stu9WUxDMNsCzslfbRtrPVJH6n19Rp7DQzDDA8sCn02f1WNxKLAMMwwwaKgNn9XpLBqiYE7gmh3e/jZTz+ME8vVrblAhmGYLWSoRaHbE7YYuI1mJ1Iw10+uVPHpB+Zwz9Pn3zjHMAyz0xhqUSjV2xACCNAGnoI7glB9DZxWYhhmDzLUorBqbfyzI3EU621j/lE/A3rVTjdxBzTDMHuPoRYFlRo6OJpETwDlZse+T0UERbcBrcTCJ1L452NLtmgwDMPsRoZaFNTGf/FYEoBMJyn6GtB91mutDn7o49/E3fe/MLDrZRiGGTRDLQrqU78SBeUTCCG0UtWWkVZar/kb0CuVFnoCWK40B37dDMMwg2K4RcH61H9QiYLlE9TbXTQ7PYylougJoNLyppXckcJGaSWGYZjdwnCLQq2NSDCA2VwcgBMpqBTRxWMJAOZG36/ZrV9aCZBmdavDw/UYhtn5DLcoVFvIJcLIxcMAnEojteG700qAtvm70kprfdJKAPDWP/w6Pvy1ZwfwGzAMw1xYhlsUai3kkxFkXKLgRAopAGb5qdr83WmllYp/BNHq9DC3VsfzK9wBzTDMzmfoRSGXCCMWDiIeDtqf8h0DWqaP3JFCKiqHy/qmlVzpo3UerMcwzC5iyEWhjXwyAgDIxsOeSMExoOV6u9tDudHpk1ZSqSczrbTSZ1wGwzDMTmS4RaHaQi4hRSGXCNub/FqtDSLgorzc/IuuCOKScbNaSb0W4E0rbTRt9ac++RB7DQzD7CiGVhR61jC8fMKJFFREsFZtIRcPIx5RaaVNGNBaJLBe9a77VSV9/fgyvnli9UL+WgzDMOfF0IpCudFBtyeQS0iTOZcI2x7Baq2FET2C8BjQZloJkEISCQWsdUcg+lUr9XqyQW6N00oMw+wghlYU1Gbs5yms11oY0dbttJJLFPRx22u1Fi4e7V/C6p6tVKy30RNsQDMMs7MYWlFQaR0nIojYn/BXq20jUlAzkdRzJjMxJCNB+3xn+am/bYuF/ul/TRuQp5vNKxs0u338X0/gL79x8gL8lgzDMC+OoRUFtUHrEUGj3UOj3cVatYURlVaKO2KhNvhcIixFxBKFUqONbk/YBrQ+bnvFEAW/zmgzrQQAn/zmKXzmwbkL98syDMNskqEVBVVCOqJ5CoDc0Fetpja17oy/aCMZCSIaClrpJhVZ+A/WA+TmHwqQXNfFoqKllRpOWkk9h9NKDMNsB0MrCn6RAgDMFxtodXrOumU0q8mpIz5ioT71T2RiSEVDnv6FA/mE8TP15wCmMS2EwGqVDWiGYbaHoRWF1ar8BJ+2upNzcbnZn1iuAICRPmp1emi0e1ituiKIuhNBAEA+EbGMab36qOn0NfgY0ABsbwKQZnS7K1Csy5SUzj1PF/A3D52+AL89wzCMP0MrCmu1NnKJCIhkakelj04U5Iwi3WgG5Kf5NaNUNeKpShpJhjGSdMRCCIG1qr8BbYqC15gWwjz0BwA+8i8n8MGvPH3evzvDMEw/hlcUNDMZcNJHJ1ZqAJxSVTVBdb3WtgfoqfVivSXTPVp5ay4esSOFaquLVreH8XQUaU9aqQXLajBmKK30EQv5nKYRVTAMw1xohlcUNH8AkN4BADy/LCOFXML0GtZrbay5SlXbXYFaS1YrRUMBxMNB24MAgNWKU/aaS7rTSi3sG0nY12KvV3SvwXVmQ6VlVzoxDMMMguEWBS1SSEdDCAYIJyxRyGtGMwAslRuoNDvIJx2vAZAbt/IaiAgjerWSO4Kom5HCwbEkiExPYbVPX4MQAivVFoQwS14B4NhCGf/w6Px5viMMwzBDLQrOhFQAICJk42FUmh0QORGCihieX5ZppRGXWKzXXF6DlT7q9YTtD+STEeQSYc/mP5aKIBMLG53Rq4a/4Dy+1pJHhMprN9NKH/n6c/iFzz56Pm8HwzAMgCEVBWkAOxNSFco/yMbDCFoJf7WmqpLyCa/XsOKqSlKTUlcMUYiYm3+1hXwighEfsVD0M6bdY7hXqi0U6210unzkJ8Mw58dQikK52UGnJ+wNXqFOYNPXE5EgwkEnreT0KVjpo1oba5ooqAijaK2r5+ibf73VRb3dRT4VQTYRMTb/lUoLU5kYArRBCWvVTB9tNDKDYRjmxTAwUSCijxHREhE9pq3liejLRHTc+jpirRMR/SERPUNEjxDRywZ1XYAz2jqneQr67RFPWimC51xeg16qqvcvqDTSWq2F1VoL4aDshcjFw7ZJbHsNVqRQNLyGJsbSst9hMyWs6jmAN4KYL9bxxccWNv/GMAwz9AwyUvg4gJtda78A4KtCiMMAvmrdBoC3ADhs/bsDwB8P8LoMA1hHpYRG3GmlRNgeRTHiqkpaLrdQanS8fQ21NlYr0msgIuQSEbv3QPcaRlyRwmqtjXwyipGEaUz3m6EEOCMz3OWqf3HvSfyXTzyAVofTSgzDbI6BiYIQ4h4A7hNkbgFwl/X9XQBu1db/XEi+ASBHRNODuja1CXs8hYT6tO+KIOJh7THy+1g4iFg4gJMrKoIwZyit+8xQUuu615CNh81DeapN5BNha4yG2Rntvn4AaLS7qLW6cr1qRgrLlSaE4KNAGYbZPFvtKUwKIVTt5AKASev7WQCntMfNWWseiOgOIjpKREcLhcI5XUSz3UMmFvJECran4I4grA09HQshHHTespGEk1Zyew3FWstqkPOmldyRghxtIT/Nr1ZadqSgewcrVZmKGktFjYjgXCIIhmGYfmyb0SyEEABedBeWEOJOIcQRIcSR8fHxc/rZN189hUfe/2Z7/ITCTh+5RCFr9SS4xSIbD+O5glmVpNJKazWrfyFllrAWa2akMJJ0prM22l1UW12MpiLWGA2zqS1vGdbudft7n6okeS3merHWxhcePtPv7WEYZojZalFYVGkh6+uStX4awH7tcfustS3FNpr7GdA+XkNJeQ2WYISDAXtS6mqtZYuFO1IIBgiZWFjrmHYmo470KVW1IwjjsB7/tJJ6DuBNK33mwTn8xN0PYanU2NwbwzDM0LDVovAFALdb398O4PPa+g9YVUg3AihqaaYto+/m3y+tFHdu6/dl42GsVJso1ttOWsnV1zCSCCMQIPtnrdfadrpHNbvV21002tIvWKm2MGqt9ytVXXeXqlakYLjTRwVrfaXKXgPDMCaDLEm9G8C9AC4nojkiei+A3wTwJiI6DuCN1m0A+HsAzwF4BsCfAvjRQV3XRrxkJourZzO4ejZrrG8UKSj0+0aSYTy/UoMQwKglCpl4GEQyIlitNn1KWNv2Bq/SR4DjE6iyV0+kYAnJbC7uMaCryoB2p5WUWLAoMAzjIjSoFxZCvKfPXTf5PFYAeN+grmWzTGZi+Nsff61n3TGgzbSS8gnS0RAiIUdfc/EIHp5bB+CklVS6aL3uHawHyI07ar2G2vwB2QcxlY3ZDXLRcABrNXnoDxHZBvT+fLx/X0PVP63k9iDqrS4++9AcvucVB+yR4gzDDBdD2dH8YrFLVfukjzzGtNbXoHdHq2F5K9UmRlOmKBT19JHlKQCye7nZ6aLc7GDUEotWp2eXoaqoI5+MmFVJmgHtTh8t96lK+scnFvDLn3sMT8yXNvfGMAyz5xhYpLCXyPmMvwD8O6AB06ge0aILNdJCH8aXioYQChDWai0EiBAMyMF8TvqoZZem5lMR+7zntVoLyWjINqDd1UrKgJZTWDdnQBfKTeN+hmGGDxaFTXDpRAqvumQUL784b6w7YuFudnNEYjQZNR6/XGnKw3qsTV92OzuVRrYBnXRKW9UGP5p0Topbr7Wxb8QxoFW1kkorqY3d7TUAjqfg3vyV8cyiwDDDC6ePNkEqGsLdd9yIS8dTxnq2T6SgG9CmGR3GScuA1quVcokIivWWMVhPCctarWVv0qokVa0DpgHd7Qm7RFaljw5NpIyIQDeg3Z3OqufBHUE0O1380T89Y1dCMQyzd2FROA/UBu1OK6neg2QkiFg4aK/nEhFUmmZfg3ydMNaqsvpIvWY8EkQ0FLCqlfQOaCeCAJymNj3dBDgd0Afyib4d0KvuDmgrInGv3/fcKn77S8dw77Mrm3xnGIbZrbAonAf9PQVLLFL9Iwg9rZSNS69BN6DV6+j9C6OuzV8Z0GOpiF0ZpQRgpdLEqOU16GctqGggQN5IQRnQ3nX2GhhmWGBROA8m0jG864Z9eMPlE8a62vw9xnTc34BW47P1EdzqdVT/gmNAO1VJelop1yetpPwONZ572YoGDuQTPp5CH6/BrlZiUWCYvQ6LwnkQDBB++13X4qqZjLHeN4JI+hvQI8kIVqotrNfl2Gx73aoo0jugw8EA0tGQjCwqelrJmz4aTUXsn+lEEP5eg36fe/Nf7iMWrU4P7//C4zwug2H2ECwKAyB3Fq8BcJWqxsNodXrSgHaVs665OqABIJcMG17DaMrxGlat8tWVatPuawD0CEJu8JdOpFBtddHsSPO43upqvQ/9pq2aonBsoYyP/9vz+Odj5zatlmGYnQeLwgDI9pm2qjboVDSEaCjoWQeAfEorYbU8Bd2AVo/Xx2LkkxFkYmHDJ9BHcANORdFKpYVIMID9IwkAzhgNlToKBcgngvCPFOwIgtNKDLNnYFEYAOFgAP/9rVfinTfsM9adtJLZ1zBiGNBaRBAP24fy6AZ0TksrqecEAvJ0t7VayxjB7fQ7mGmlfNKMIFQ0cPFYEmu1FuTkEdjPAbxnQy+XeYYSw+w1WBQGxA+/9hJcOe32GtS5DFFjPdtvsJ7VezC3WjfSR6pRbaXSRMiaqSRf31rXxEIfuAdYVUkpZ119+leRwqGJFJqdHupaT4ISjH7nNbinrXa6PfynvziKh15Y2+gtYhhmB8KisIWkoyEEyNsBrQuBGRHIx7W6PY8BrZraRqwowV6vtuyy03wygkQkiEgwYH+at89lSDpVTIBTjnpoImU/DgCEEHZJar+0knt9vtjAlx5fxL8+s/wi3h2GYXYCLApbSCBAyCejGEuZkYI7OvD7ftRVqlpudLBUbhrrKoJQuf7RVBREZBvWgNz8x5IR2wR3p4+UKCixkGZ0D9FQAGu1Fno9La30IiMIhmF2PiwKW8wfvPs6vO8Nh4w1/QxofQS37j2Y6SP5/Ynlqmd9veZECkowlDENOP0LOZcBvVptIh4OYt9IXN62xcKqVhpPoSeAUsPxFZb7DNZjr4Fhdi8sClvMaw6N4aDrbOhYOIhYOOA92W2DSAEATq64RCEZMWclpTRRqLZQa3VQb3cxmooiEpLHhq5qkYLuNagNXaWVDk+aaSXA2fz7NsG5xmUIIfCWP/g6PnX01EZvEcMw2wiLwg5hJBHxioLW15BPeSOFnvCKRaPdw+n1OiJWkxvg9DvY4zKUWCSdoz2XrWmr3qokucFfNpk21gFn8y81OmhbYzQAR0hWtfOjAaDS7ODJ+RIesQ4gYhhm58GisEOYycWxz+odUOjNbn7pI0D6Bu71ZwsV5LUx2zkrfaRXJanH29VHlSZGU1G732HN5Qs4BrQUESEEViotpGNSeHSxcIxp/8N9eIYSw+xc+DyFHcKHvvdlCAdNjQ4FA8jEQig1OoYQ6IP1/MTimaWKUcWUt7wGle5RQqI8CECmj66aztj9Dm5PwTGg5Xqp3kGnJ3B4IoUHX1jHWrWNiXTMfi3AiSQU/ZrgAGCp3EAyEkIyyv9JMsx2wpHCDmEyE/OkjwDpE2TjYUMwzBlKZvURIEtC3YP1egJ4fqVqPCeflJu/EAKr1ZYmFmGjVDUdC2EqIzd8JRaqwunwhEwrGV6Dtfk32j3UW13Pup8ovPtPvoHf/cen+74/DMNsDSwKO5xcImJs/IA8pyEclKkht9Gs0J+jHvPMUkXep50PvVZto9zsoNXtYSyliYWWPhpLRWW/Q8jpd1BRh58BrZ8PrUcLhT7po15P4ORqDS+s1jbzljAMM0BYFHY4L53N4Jp9WWNNHuEpN3C/Zje57vUanlmqIBYOIBGRKZq8dejPQlFOOc0bJaya12D5E/mEKRaAY0CvujyFibT8+bqvYJeq1tpGv8N6vY1uT3iMaYZhth4WhR3Or9/6Unzw3dd71lWqyN3prPCLII4vVcwzoz0RhOM1rLlKVdXruKuS3F5DtyewWmv5ioWKGuSxoZpYbJBW+ubzq3j8TNGzzjDMYGBR2KXkEhEEyCxbDWtlqH5eQ7HetlNEgDPa2xaFpLb5V9uywqjatMUinwzbG7eqJJpIR5GOhez11WoLQuhpJefT/3JZFwhvv4NfB/R//9xj+O0vHdvs28IwzHnCorBLGUmEkdfmHilyVhf0qGsEt8I9WA9wRGFM2/xb3R5KjQ5Wq3Ishny80xm9Um1iJBFGKCib7pwprG4D2owI1OXq3c4FK1Iou/odAGCx3LAjCYZhBg+Lwi7lHdfP4j+++qBn3T4fWtv8M7EQgtZubHgNWlpJf44+RqMnoEUKjqewXG7ZIqL3O6ho4OKxJIIBMiKFlWoLF40m7e8Vy5oxrYtFu9uT50lUvBEEwzCDgUVhl3Lz1dP4se847FlXUYGeJiIiOyrwq0p6rlAx5i6p9eOLZfkcbVxGsd5Gp9uz0koR+zXdI7jH01FLLEyj+TK/cRkVUzjs7yuOqa2f7wAAn7jvJP70nuf6v0EMw5wTLAp7jLxtQPuf+uZXrdTs9IzJrSqCeKagvAYnUgBktZA0oKP249Un/ILlD4ynopYHoXoWuig3O/59DWVHFPzEotnp2UeFKv76gTmeocQwA4BFYY8xlooiHg4i5eoMtkVBqz6KhoJIRoLWuk9n9KLyGhwDGpApnuVK0/YaVBMcID/Vh4OETDwkvQb7zGh5/76ROOLhoGfzj4UDxuMAx2sAfI4CrTR5XAbDDAAWhT3GD7/2Enz0Px6x5x4p1BhufbAeAN9+B1WVdNxVqqrWF0tNlBodw1NotHuotTpYLjcxmpTnOOhioaKBsVTUEguzEsmOIDQhKJT900pCCCyXW1ittdDtmWmlTreHRtuMKhiG2TwsCnuMqWwMr750zLOuPv2PuY4CVSkh3YBOW8b0qbWaUfaqhOX4Utl4Tt5aX622jPOkDWPa2uzH0lGMpiKektRDEykQ9fcadMO62uqi3u5CCNizmxS/9aVjePed39joLWIYZgO2RRSI6CeJ6DEiepyIfspayxPRl4nouPV1ZDuuba9inw/tihRUSkhPHwUC0pgWQjbHqbLXfNIdQZhnTq9V2zKtpEUW69anebXBq3OjzeM+W5hQxrTeGV32ms5yvX9a6dhC2S6xZRjmxbPlokBEVwP4EQCvAHAtgO8iokMAfgHAV4UQhwF81brNXCAun0phNBkxqpIA+FYlyXVvFVM/r8GOFKwzG/QO6J6QTXOq7HQ8HTWqlUoNNXcpipFE2BMpqJ+xmWolQKacKs0Op5AY5hzZjkjhSgD3CSFqQogOgK8B+G4AtwC4y3rMXQBu3YZr27Pcet0s7vulmxANBY11pyrJ/9xo3WuIhYNIRIJ42kof6Z4CIFM8y5UmxlNmtdKqZUynoiHEwkGM+KaVIhhNRs2IoNLERaNJREIBQxQMr8HVw1DoMzLj1GoNX3licaO3iGEYbI8oPAbgtUQ0SkQJAN8JYD+ASSHEvPWYBQCTfk8mojuI6CgRHS0UCltzxXsAIkIo6P1z+23+gOMfjCa9YqFOaxt1bf6nVutodnqGpwDIA3iWKy1jCmu93UW91fUY0H6RwljS5UH08RrkUD1nZpPOR//lBH70Ew96+h0YhjHZclEQQjwJ4AMA/hHAFwF8C0DX9RgBwPf/XiHEnUKII0KII+Pj44O+3D2PSv2MpfoZ0BHf9WgoYJezqtPanl40Iwj12JVKyz7ZDXBSVauWWKjn5FNuUWj5rhfKTajiKl0s1rRqJPcBP4VyU47uqHc2+c4wzHCyLUazEOKjQogbhBCvA7AG4GkAi0Q0DQDW16XtuLZh4w1XTOD7b7wIF48ljXXHU3BFCklnXZW9SmM6guOLrhJWI1JoevodVistJ32Ukl7DWq2FXk+g3e3JuUupKPLJqKt/QZ4nnY2HN59Wsofu8RwlhtmI7ao+mrC+HoD0E/43gC8AuN16yO0APr8d1zZs7BtJ4NduvdpzFGjepyoJcDqm3YZ1PhnBc8uuaasJ3VNwZiXpkcKKNSQvb1UlKWNabfZjljG9oqWMVIWTXO+XVvL3GtzG9L8cX8Z77vwGOq5BfAwzrGzXgbifIaJRAG0A7xNCrBPRbwL4FBG9F8BJALdt07Ux2MCA9ulrUOuqVHXcOmAnFpYd04VyE2u1lieCWK02Uai0kE9GEAyQnapaqbbs6qFxH6+hUG5iPB1FvdU1T3bTIoVln/QRAENcAOBfn13Gvc+tYLnSwlQ2trk3h2H2MNsiCkKI1/qsrQC4aRsuh/FhJhcHIMdS6OQT/SKI/gf8PFuoQAhg3GVAr1RaZl+DVq1Ua8nc/3g6gnwyglqri0a7i1g4iOVKExePJVFrdXBiuWr/LBUppGMhY7JqrdVBpSlfz6+EVT2XRYFhuKOZ6cONl+TxDz/5Wlw5nTHWN4oUADlkT09FjSYjOLZgGtCZWBjBAGlegzeC0A1oJUBqWmqhLP2JvKuEtVCWM5QO5BOujmn/Jjj1HPXaOu1uD0efXz3Lu8Qwew8WBcYXIvIIAuBs3F5PoU8TXDKCJWvjVUKiOqZV/8KYPYJb3r9SNQ3ovGZMV5odNDs9uwlOGdOAk1YaTbmN6Yb9vTt9pETBfT703z0yj3d++F7MrdU2eJcYZu+xaVGwegqYIccRBXcJa7TPuiMSxlGglkm8XNZHcFud0ZUWCuUm4uEgktGQ5jWYEUTe6pher8u+CWVmu43pghUpEPmkj5QB7YoglBgsFBtgmGHirKJARK8moicAPGXdvpaIPjTwK2N2JFdOZ/Dtl43j5RfnjfW+/Q6a1zCWjmqPj2BurY56u2s/JxqSI79XVVopbc5WWq22nPMarMF6cl2uFcqym3rUbUxbG/9F+YSx+Xd7whaP5T5pJfc6w+x1NhMp/D6ANwNYAQAhxMMAXjfIi2J2Ltl4GHf90CswmzMNaL9ZSYAzgC8SDCCtnfGQtwxo93NUpVE/A9rsa5D3q427UJHpo3xKGtN162Ae1ex2aCJtVCutVltQk7c9aaWKf1/DfLGO7//ofcbob4bZS2wqfSSEcB9xxdPGGAO/EdyAEymMpSLGGQ/5ZATNjuwNcEcQq1WZVhq3jekQwkHq7zVUW2h3e1iryfTRmO1NOBHEaDKCiUy0f7Oba5NfKvmnlb75/Bq+fnwZj50pbv7NYZhdxGZE4RQRvRqAIKIwEf0MgCcHfF3MLmMyEwMRvBGE8iDS/h4EAHvzB2A3pMn0kVyXZ0xHbK9BNbvpfQ2r1ZYse02bYgHAqlaKYswSHDUKQ0UDqWiof6TgWl8qSY9h2bXOMHuFzYjCfwbwPgCzAE4DuM66zTA2k5kYPv++1+Dt180Y66oaqV9nNGD6ECPJCAqVJlZrLWM9bw3FW640kU9GEbRGawCOMa1eS6WsVtxpJWVM18zzpK+YSvf3FDZpTAPA/SdW7UoohtmtnFUUhBDLQojvFUJMCiEmhBDfZzWaMYzBNftynnEZI/2qlfToQPMURpMRFMpNo9lNPWa12rR7FAAgEgogEwthpdq0N+vxtJ4+co4CVaWqgBlBAMDlU9JrUBNUK80OapYf4YkgSv4G9BNnSrjtT+7FPz/NI7uY3c1ZO5qJ6M/gM7FUCPFDA7kiZk8x2i99lPBvdjNLWPVIIYpH19bRFc4YDQB2T4La4CfSUVuIVipyo1eRghKf5UoLhyeBpXIDqWgI+/MJ64zpLpLRkP1aRN7Nf0nrgNZRJaxn1rmEldndbGbMxd9q38cAvAPAmcFcDrPXyMbDeOcN+/DGKyeM9f79Dv4lrKNW+qjdFbhUm+iaT0Y801Zj4QCi1sE8pUYHrU4P46mo/bN0A1r3IFYqLUMUDo4m+za7ebyGPmLBMLuNzaSPPqP9+wTkoLojg780Zi9ARPidd12LGy4y+xrUp3Z3CaueShp3eQrlRgdL5YYZKVjmcaEsTzfV/ZUAACAASURBVHaLR4IgIowmI1iumH0N+uYPOH0N6hrUEL2lsvy0f+V0Gmu1tjFBVd3XL4Jwew2Ndhe3ffhePHxq/SzvFMPsDM5lzMVhABNnfRTDbEAu4d/sNrJBsxsAtLvCeM5oKiI9BetTv7MetT0IQArMSCJidDXbaSXVHFdxG9ByzMeqZUy3Oj2sWafOeSMI/6qk51equP/5Vdx3gm04ZnewmY7mMhGV1FcA/wfAzw/+0pi9TDQUxHQ2hoOj5uE+aoOOhZ2T3eS6LhZms9tarY0lzYBW6yvVlmFABwOEfMIZgeHMSnLGaKj1UIBw6XhKrlfM86Sz8TCWreF8iqWSf/poqY8xzTA7lbN6CkKI9FZcCDN8fP7HXoNMLGys5VOO1+BudlOMp2LaehTdnsBzhQpeoY3eGE1F8MxSxUgfqddZqcjzGsqNjhEpqI17yRIL9ZwVTwSRxn0nVlFuduzr71eqansNZa/X8I+PL+D6AyNGhMMw203fSIGIXrbRv628SGZvMpGOIRYOGmvJSBCRUMCTVtK9Bj1SGNMqisbcTXBW+igcJGTjYft1jBlKqSjiEXkYkOE1+EQQaoNX02N1AVARQcEVKSxazW7u9Wqzg//0lw/gE/ed3OgtYpgtZ6NI4Xc3uE8A+I4LfC0MY5vEHlHo0wFtRhCmp9Bo93BqtYZxLeoYTUXx5HzJSStlova6nj6azsbsfgcngpAb/FW2KMjDfno9geWKTDmVGx00O11EQ0H7tfTXUCyWGhDCERqG2Sn0FQUhxBu28kIYRvHzN1/hOQUtG5cH8wCmGW2Igo8x/eRCyVOttFIxIwXAMqy19NG1+7PIxOXMpWXNgwBksxvg+AertRY6PYErptJ4aqGMlUrLPrlOCYnbmF4s9U8rdXsCAYKRPmOYrWJT1UdEdDUR3UZEP6D+DfrCmOHl1utnceMlo8aaOpgnn4wgEHA2Sz2C0KMLlVZ6frnqSitFUay3Mb9eByCb3dT6cqWJbk9gtdq0o4vRZNTe0JfKTeSTEUxbgmVHECUzraSbzfZgvWrLGIGx1KdaCQBu/uA9+OOvPXu2t4lhBsJmqo9+FcD/tP69AcBvAXj7gK+LYTzkkxEjRaTWFGakIL/veTqg5eOPLZZBZJ4kt1JtYaXaNJ6jRxCFctPVMd0vraR5DVYk0O0J+zAg9VqAN63UaHdxfKmCp+bLm31bGOaCsplI4Z0AbgKwIIT4QQDXAsgO9KoYxoeXH8wbFUaAnH+UjsksqDtNpPBbf3K+jNFkBCFrxIYyoNUn+/F0zFqP2kPxVFVSOBhALhH2pJWumpGioPwKIQSWyg0tsnCigsU+01bVaxXYa2C2ic2IQkMI0QPQIaIMgCUA+wd7WQzj5Tfe8VK8/+0v8azbk1hdA/QU7qY2AHh6seyZrdTtCRxfKhvPGdOO9iyUnG7qMc2YXtJKVQEnUig3O2i0e3YEofsH6jm1Vhe1Vkdb759W+tN7nsM/PDrv884wzIVjo5LUPyKibwNwPxHlAPwpgAcAPAjg3i26PoY5K/lkBNl42K74AYBEJIS4Ve46nvKmj2qtriEWyoN4akGKwoQrfaQG602oCMIaowHIT/XpaAijqSji4aC9oXu8hqq3hBUAlsvedT9RuPPrz+HTD8xt9m1hmHNio5LUpwH8NoAZAFUAdwN4E4CMEOKRLbg2htkUM7k4Gu2eZz2fjOD0en2TaSX5/ZPzZqQwmoqi3u7iTLGBdlcYkcKTCyUA8tO9Km0dS0c0Y9ryGma8kcKiNaG10uygUGniwGhCrltppbVaG+1uz54g2+n2sFxpclqJGTh9IwUhxB8IIV4FeR7zCoCPAfgigHcQ0eEtuj6GOSu/8rar8OHvu8GzrqICffPPxMIIWdVLfgb0U/MlpGMhu6nO9iDOSAGYsEVBK2EtNV1VTGYH9OGJFEIBMj79F0pNXDltlrYCwKJ+RKhmQq9YJ8v5RRBPLZTw9CIb08yFYTNTUk8KIT4ghLgewHsA3ArgqYFfGcNskol0zP6krWOf5aCljwIBsiuO/NJKykxWqOc+OW+KwmhKlra2Oj0slZ200lgq6kkfTWZjGE1F7PVaq4Nys+N4DT4lrO513ZjWZy4BwC9/7jH8j795rP8bxDAvgs2UpIaI6G1E9AkA/wDgGIDvHviVMcx5MpqKIhEJIhkNedYBYCKjzVDSGuImfERBeQ16qSoAe2SGHkHoHdCxcADpaMgSiz59DbqnUG7YkUzBEAX5fbsrUNRKWwHgzHrdFg2GOV/6egpE9CbIyOA7AdwP4JMA7hBCVLfo2hjmvPi+Gy/CDReNeNZHfSKFUDCAkUQYa7W2XY4KOJu/HSlknIgAkKOx6+0uJjKO17BalU1wiyUZQRCRrFaqmNVKM7k4cokwChVnQ18qNXFoIoWnFsqGf6Bv+oVyEzlLxHo9gaVy0zbVdVqdHnpCeOZLMcxGbBQp/CKAfwNwpRDi7UKI/82CwOwmrtufw3teccCz7uc1yHV522+20omVKuLhoD3Oe8wlFuNapNATwHqthaVyw6hics9QmszEZAShRQqL5QZeMiPbgMy0kiYK2vpKtYVuT1jnSjulrQDw/v/zOG7/2P193x+G8WMjo/k7hBAfEUKsbeUFMcygUZVGHlGwBEB96geAWDiIdDQEIeS6PVjPeo0nbAPaaXYDZKfyUrlpv9Z4KoqC5QeoVNBEOmqlm+TtRruL9VobB0cTSESCplhoXkO/CEJ/PCBN8+NLlRfxzjDMuZ28xjC7mtccGsUbLh9HJmZmT8d8IgXAiSwMr8H6XpWlTmilqoAcgFcomQZ0q9NDuSmPFI1YXdG6Ma02ezuC0COFcgP783LI3nLF9CAUehoKkEKyWm2h3fWW6zJMP7ZFFIjovxLR40T0GBHdTUQxIrqYiO4jomeI6K+IKHL2V2KYF89NV07iz37wFZ4ppHZVUr+0kraejAQRDQXw9KL8JO5s/vI1Tq3VUG52nLSSdQbEclmKxXg6ansN7rTSeEYe8GNGBE0cnkgjEgx41hUFLVJQIzYA78E/n3lgDj/5yYfO9jYxQ8qWiwIRzQL4CQBHhBBXAwgCeDeADwD4fSHEIQBrAN671dfGDDd2RJDpk1bSDGi1obc6PURCAWTiMupwSljNzmg7gqi2sFhuOGmldBSVZgeNdtcpYU3HjLQSIAVDRhAR31JVwPQaZIQgS1fdDW//99gS/v7ReWNqK8Motit9FAIQJ6IQgASAechDe/7auv8uyH4IhtkyLptMIxUN2WchKFSqyB1BjGlpJRV1qHMfbK8ho8ZiWF5DuWk0u6nXKJSb9gY/mYka6aN2t4flSkuu+0QQuUQYRG6vQYsgXGmlpZLszl53lbYyDLANoiCEOA3gdwC8ACkGRciZSutCCFU+MQdg1u/5RHQHER0loqOFQmErLpkZEt5y9RTu/+WbPOdGj72ItFIgIE+Ocze72emjShNL5SYmLbFQz1XroQBhJCFPnlOjLnSvYdzlNSyWGpjJxjGajGxYwqqzoI4Ida0/caaED37l6bO8S8xeZzvSRyMAbgFwMeRcpSSAmzf7fCHEnUKII0KII+Pj4wO6SmYYISIkIt7WHb/NHzAjBXM9inKzY9yXT0RABMyt11Gstz1ppeVKy+priCIQIPtnrVRangjCvflPZb3GdD9R0Kuf3KLw2Qfn8MGvHEe1aZa2MsPFdqSP3gjghBCiIIRoA/gsgNcAyFnpJADYB+D0Nlwbw3hQ6aT9I2Zaye6MTsdc61IswkGyjw4NBQPIJyKa12A2wclIoYHxjHfdKWGNYTwdNU5xWyw1MdnHmAaARCRorK/X5GgOwJtWUhEEnxs93GyHKLwA4EYiSpBMxN4E4AkA/wR5oA8A3A7g89twbQzj4aYrJvDZH301Dk2kjXXHgDYjhXGttFU/OnQsFdW8BnNchvIaJm3/wvIaKk0UrCqiiYzsa+j2BNZqstR0pSrLXsddEcRCqYHRZART2ZhhQC9skFZa7JNWKtba+JuH+DPasLAdnsJ9kIbygwAeta7hTgA/D+CniegZAKMAPrrV18YwfgQChJcd8I7LUCkeT7WS6pjOeCMIleJRkUI0FEQmFpIRgV6VlLJOayvLSCEYkOdFqxEcy5WWNRzP8hrSUWNY3lKpYXsQ/bwGffgeoEcKZgTxmQfn8FN/9S2cts61ZvY2G52nMDCEEL8K4Fddy88BeMU2XA7DnBMqIphwbf5jdlrJ6zUodCEZS0dxer2B9VobkyqtpEUKi6UGxlNRBANkVCvV210A0muotTpoWs1xmVgYi+UGJjNRJKMhPHa6aP8sJQqRUMCIIDbyGuaLdfu5s67KLGbvwR3NDHOOvPKSUfz/73gpvu3QmLE+ehZRCAXImMo6lora1UqqKikRCdmjLhbL0jcAzGolx4CO2a+tNvSFYtOOIIy0UtGa0DqVNtbXNK/B7SnMF/3TSt2ewDefX93wPWJ2HywKDHOOBAOE73nlAft0NIVTleSKINJOaavuNYynonZqZlyPIKyKoqVSw5nOmnY2fzUkb8IymtW68hqUKFRbXbuiaLEsvYaZXHzTJayLfQzorzy5iHd9+F4c5wN+9hQsCgxzgbHTRxn/SMEbQThRw6QmJOpT/mKpYUcK6WgI0VDArkpyvAYngiiUNa9Bq2ICgMWiFJjxdNTY5JWfEAyQZ/O3+xpcZzacWq0BAObW2GvYS7AoMMwF5oqpNN73hkvx766aNNbtCKKPByHvixqPny/WsVZr21GHGq9RKDexoHkN41r6SH2yn8qaEQQgN/ipTBTj1slxzY70JRatFNFlk+m+fQ390kpuYxoA5tZqZ3mXmJ0KiwLDXGBCwQB+9s1X2N6Com+kkO7vNTy/IjfXSU0sxtNR24CezEqxyMbl2dOFsrevAXBEQfY1xLTIQg7LU9HAS2YydgksYHoN/Tqj3VVMj50u4ts+8E946AWeur8bYVFgmC1irE+zmy4W7r4GhR5dqEhB72sIBJwIQjegbVGomF6DikgcsWhgLCW9hpVqCx1r3LaqPCLyRgoLRX+v4dmCnBz7XIHP5NqNsCgwzBYxlYnh+248gDdf7Z9Wcvc16GM13F7DcqVllZ2616UohKwZTKPJKALWsLwly2uYysbsPginWqlhi4gQcsoq4JjMl46nPGmihT7po35iAYBHaOwCWBQYZosIBAi/futLccVUxlhXEcHkBn0NRvooFcFKtSn7GnzTSs4MpWCAkE+6IwjHa1Ab+kKpialMzE5tLWmlrQBwzWwWyxVnvEavJ/pWJfXzGpZKDVz/a1/GPU/zIMudDIsCw2wz/Tqj1agLfYaSerzVuOxKK0XszX8i41PFVHTSSqNaExwA25/wM6YDBFw1k0G3J7BakxHESrWFTk91T2+uhPXZQhWtTg/HFriEdSfDosAw20wsHMRtR/bh3101ZazrHkQ/r8GbPmphvljHlFsUtGa3qUwM4WAAeWvcdrPTxWq15YoUrAiiWMdYKmoPBVQCoFJEl4wlrRJY58AeO1JwlbAulOrGa+sIIYzXYLYPFgWG2QH81juvxesuM0fB22dGuwfupfullaLo9gSeX6l51mUJa9OIOibSjmENSLHwdEaXmpjK+oiFteFfsy+LVreHonZgTz9PYb7Per3VxQ2//hX8/aMLG71FzBbBosAwO5RkVI66mOzTBAeYBrQqbe32hF2qCjgG9EKxbkQdqoFtQeuMjoWDyMbD9sa9qBnQgJlWAoCX7ssBcDb6TrdnC8dSyYwglFgsuiKI0+s1rFZbeOxMEcz2w6LAMDuY737ZLN7kSiupDToSCiCXcE6JG+8jFuPpKNpdgWOLFUzpYuEqYVX36fOSFkoNTGdjdhmtY0DXEQwQrpyW48RVtLFcaaEngIOjCdTbXVS0aqN+kcJ8H7FgtgcWBYbZwfz6rS/FO2/YZ6wloyHEwzKCUGdDA+60Usyzfnyx7FutpD7BKx9iwoog6q0uivU2JjMxxCNBpKMhY+DeRDpqP0dFB6qv4RpXBCGf49/sNt9nXQiBN/7e1/CJ+06e7W1iLiAsCgyzCxlPR41oQK0pprKmpwAAnZ7wiEWr08PxxQqioQCy8bC9XtDSSmrjH8/oEURdeg0ZdwTheA2A+elfbf6VZsfoV5hf9y9hLdbbeGapgodPrW/2bWEuACwKDLMLees103jzS8y0UsoalgfAU5Kq8IsgHj1dxFQ2ZkcdMlJoOBGESiulolpVUgNTmRhSlu+hPuXP26IgIwUlIq1OD8uVJg6OJgC4IoiSOq/BjBTOrDd815nBwqLAMLuQn7/5CvzI6y4x1ogI4+ko4mGZ6lEYEYSPKDy9WPaIRaPdwzPWuAp130QmZkQESiyUiAAyMoiEArh80vQaFkumWCz5RBDFehsN6+AgQBcLr9dw25/ciz/4yvH+bxBzzrAoMMweYjwdNT71A0AmFkLEiiD0zV+VmXZ6whALZSo/OifTNsbmX2qi1Gij2upqHoQjFvNWBJGJhxALBzwlrNful6Kw6OM1AObQPRUpuAfx9XoCD72whofnOK00CFgUGGYP8daXTuNt184Ya0TOaG2zf8ERgqmsN4J4ZK6IdDSElBV1jKejqLe7eHapYjzH8BqsCIKIDLE4Yx0idK3lNeiRwpn1up1WMj0I+ZyVasue1ArIsyHaXeEbQXAT3PnDosAwe4gffu0l+Ok3XeZZVxu9vvln4v4RhF2ttFQx+h0mNA8CcFUrlZyIYFqLLNTGraKBy6fSiIQCtlhUmx2UGh0ngtD8g3k9gtDOkz5T7O81/MifH8Uvfe4xn3eG2SwsCgwzBIyno0jHQkhEHK9BjyCmfNJK3T5ppUfmpChMZ+P2erUlexKUAQ3IZjg9rZSOhpCOhT0iAgDX7lOioEUK68735rqKIOQ4cJ2H54p4nJvgzgsWBYYZAr7rmml8zysPeNadCMJJK2XjYUSCPh6ElXp61BIFdVuJyLGFElrdnuZBxFAoeY3pyUzM/pSvNv4rpzOIBANwHxF6yXgSgL8xLYTpN6gKJ92jUDQ7XcPEZvrDosAwQ8At183iF99ypWfdntCq9TyoKibAv9/h+FIZ+WQEsXBQPjfjeBAAnPRRJopys4N6q4v5kn+1kvINZnLWudElteELnFmv4zrftJJzJrQeQSyWGhBCeg4dVwTxi595FP/lLx846/vEsCgwzFCjNn89IgCcOUp6+iiXkBFET7irmMy00pSWVgJg9TzUbbGYdJW2qrXJTBSLllis19podnq4ajqDcJCMzf9MsQFVXKWLhTKze8I5ZlTx+JkSnuKR3ZuCRYFhhphbrp3Bj77+UttwVkzYkULcXjMiCK2KST1WlYjqBjQAnF6vY6nctF9rPB1FueFEEKNW1DGRjtl9DWesaGA2F8d4KmpGCut1HJ5IAYBLLPwjCHXfUrmJbs+sTKo2O1iucHOcDosCwwwxr7xkFD938xWe9XGfSMFY18RCRRDPFaoIBhzhUGmlx0+XIASMSAGQEcT8el3zGpxqJeU1qFEa+giM+WIDV89kEQy4IgjNmF7Q1suNNsqNDro9gRWXAHzgi0/hPXd+4yzv0nDBosAwjAf1KX9S8xQAf7HQI4iJdBRBazS3ms30sE8THCBTP/NFrYQ1E0NJiyAAYCYXN8Si0+1hsdTA7EjcKnk1vQb1s/2MafUzdZ5eLOPEctU+ZpRhUWAYxodbr5vFz775cmMcN+Bs6NPZfhGE14NwG9B6pLBQMquS1Pr8eh2hAGEsFTWqlZbKTfSELIf1RBDrDRwaTyEYICNSOL3upJUW3Gml9QY6PYHlqikWxVp7aEtbWRQYhvFwcCyJ973hkDEuA3DM40mXKExsEEG8sFoDAExn4sZjT67UsF5ra/0O6nQ3WVY6mYkhGCBMZmL2XCRVeTSdi2EqEzXKT88UG9jnF0H0SSv1esI5+KdoisKHvvYMbvvwvUMZQbAoMAyzaVSJ6oxbFDLeSAFwIoh4OIhMXDbOqQhCjcR2RxCLpQbOaNVKtliUmrZvMJONWxGEORZjOic9CNNrqCNAkB6EJiLL1SZaVumqO4I4uVxDtdXFas2sYhoGQmd/CMMwjOSt18yAiHDIqv5RqAjCnVbS000q6lARhNtrUHOZFksyUrh6NmutW2JRbtiRwlQ2hknNgxAQdtRRKDdxYrlqX8OZYh1TmRh6wtz8+xnT6jmALJnVjz9drjTxb8+u4O2u+VJ7iS2PFIjociL6lvavREQ/RUR5IvoyER23vo5s9bUxDLMxqWgItx3Z75NW8lYlAc6G7o4gpHksUzYz1nOy8bCci1RqYL7YwEwubrzGYqmBM+sNJCNBZGIhLd3UcCKInBQLPa00v97AdC6Oyaw3glAsFt1egyMKOp+8/wX8xN0PeaqY9hJbLgpCiGNCiOuEENcBuAFADcDnAPwCgK8KIQ4D+Kp1m2GYXcD+vJxyesD6qpjwMaDlundCq5ysGsWTC2U0Oz3bn3BHENO5OIjIfp6sYrI6o620koogAPmpfyYXx6Q2oA9wNv5kJGhECo12125+c0cQc2vyOfM+ozT2CtvtKdwE4FkhxEkAtwC4y1q/C8Ct23ZVDMO8KF596Sg+/Z9fZY+lUCivwZ1WUhv9SCJsj8uQ6zHba5jJyeeYEUTd40EslBq2mSxLWJ3IotcTMurIxjCVNSMIFXUcmkj5HhsKeCMFVcnkbo5bKDbwa3/7hGdA325ku0Xh3QDutr6fFELMW98vAJj0ewIR3UFER4noaKFQ2IprZBjmLBARXn4w71lXEYE7raSOC532pJuiKNbbxn1EZPcqnCk27HST6oNYsoxpIikUU5ooqLMYpl0eBCAjBSUiplj0L2FVouCOFL70+AI++i8n8PTi7h+lsW2iQEQRAG8H8Gn3fUKekuFbCyaEuFMIcUQIcWR8fHzAV8kwzPlwqdU3cMVU2ljv1++gp5X0+ybTMcyt1bFcaWLaiiDU6W6LVqQwlooiEgrYUchCqaEN3IsbYgHItNJ0Lo7pbMy3r2E0GTEiAjWkD+gfQfhNaN1tbGek8BYADwohFq3bi0Q0DQDW16VtuzKGYS4IB0YTeOhX3uSJIib6GNAq3aQa1xSTmRgePyPHZcwYEYRsbDtTrNtlsqqHQpawOqKgp5sAGRHM5mKYzMZQbnRQa3XsdSLguv05IyJYq7XRaPuXsJ7u4zXMrdXwjg/9q9Fkt9PZTlF4D5zUEQB8AcDt1ve3A/j8ll8RwzAXnEws7Fmb7Oc1pB2/IBBwKpwmMvIoUMAUksl0zIoInGqldDSEeFiax2c0r0H1WCyWGraZPJN1Igj1Kf/Meh3jqSj25xNGVZLa+PXH2vf1iRTuP7GKh15YxyOndk939LaIAhElAbwJwGe15d8E8CYiOg7gjdZthmH2IBflk7hmXxavunTUWFeRgjKZFfqobv2+CeU1rNcND2LKKj89s15HNBTASCLsRArFhr1562klJ4JoWCISQ7nZQaUpIwi18e/PxzftNdgRhM950jv10J9tEQUhRFUIMSqEKGprK0KIm4QQh4UQbxRCrG7HtTEMM3jikSC+8GPfhhsuMtNKTl+D14BW6Ob0VEZ6DbVW1xQLq/x0vtjArFXCmo6F7fJTlVaattJHgBkpzOa8EYTa+G84MGJEBI121z4BbqHkRBP6cxaK5vqp1Rquef8/4oGTO2+b2+7qI4ZhGBuVPnKP0VDrmVgIyagziGEyE7PPSDDEIut4DdOaWExm5ZkNarOedUUKQgicXq/bTXCAZkyv1xEPB3HFdAaVZgflhqySUgIRIJ9IoU8EcWyhjFa3hyfOlF7cG7QFsCgwDLNjyMRD+ImbDuPW62eNdWVMK9/AWdciCH3zz8TsiGBGEwvlQZzRzmtIRkNIR0NYLDawWm2h2enZ6SPAjCBmcjHbB1FioTb+K6YyWChKYVHY6aP1zYkFAHzjuZVtTS2xKDAMs2MgIvz0my7DldMZY72fMa1PZZ3VBGMyE0Or08NiqYnpnBlBLBRlqep4OopoSDbOTWZNsXBHEIDcyGdHEva62tDVxn/k4AhqrS7Klgehog79NRRzazXjNRTzxTrefec38NkHT5/trRoYLAoMw+x4UtEQ0rGQPU5DoVI83hJW53s9FTVpncEwt1Y31qcyMSxoaaWZXBzxSBDZeNjlNcTsNJXuNRAB1x/IGesrVtQRCwcwX6ybEYQdKZhew/PLUizUuPHtgEWBYZgdDxHhrh96BX7sDYeMdZU+UmcvKKaMaiXdmI6i3RV4/EzRWJ/MxLBYdAxoFXVMWWkovYRV/UxdFCbSUewfkYLljiCu259Do92zO7X1+/p7EKZYCCHwP796HMcWBt8xzaLAMMyu4GUHRmxvQZGIyAhisyWsan2t1jbFIhtFodLEqbUa4uEgcomwte6UtgLA7EgcsXAQ+WTESSutWdVKtgchH6s2+CNWhZUuAPpgPT2CsNNKLg9ivdbG7375aXzmwbmzvU3nDYsCwzC7mpfMZPCSmayxNtGnhFU/Mc6MIGQV0yNzRczknLMfpjIxzBfNJji1bqeVrCmsE+kYiLyRwg0H5SkA6vH1Vhcr1RbGUlG0Oj2sVp2DfJy+BjNSUCKiz2UaFCwKDMPsav7yva/E//iuq4y1aCiIkUQY2XjYKGE10kq6p2AJx6OnXWmlbAzLlSZOrspDe+y0UlaKRa8nML/ewOxIHJFQAGOpqJFWSkVDuHxSzn2ad/U7vNwSC78IYsF6bWfd35geBCwKDMPsakLBgOEnKCYzMU8J63g6CnU+kDtSAIBWp2dUMU1nYxAC+NYL6yByRmyotFKhIo/03Gc9Z9oSC0Bu8LM5eWa07GGoW+tyg7/hIjOCAIC5dXlfuyuwXHUO8rHTTRwpMAzDnBvf88oD+J5XHjDWwsEARpNqlIYeEWjVSj5i8cALa5hMxxAOyi1zOhPDSrWFhsIiwwAAC0lJREFU5wpWBDHiTSvJEtY4QsEAJtIxn0hBeQ3ydteKOi6blEed6r6CEpLFctNu1hsULAoMw+xJfuBVB/H9N17kWZ/KRhEJBjCajNhrY8koQla04a5KAoDnClV74wccb+KhU2vGc2SkYBnNazU76pjOaWKxVkcoQLhqJoNQgGyxWCw10OkJTSy8aaVuTwx84iqLAsMwQ8VsLo59I3FjCmsgQPYZD3q10nQfY1qtP/D8mv2agBSLUqODpVIDpUbHFhJdLObW5OiNcDCAyYyZbgK8EYS6LxaW2/WZdRYFhmGYC8YvfeeV+MP3XO9ZV5/+dU8hl5BHgQL+YvHAC2vIxEJIW+PB7fWTplhMZeJ2+elpa+Ceek07srD8hKtnM4iGArZYqOdcv18Z04P1FVgUGIYZKi4aTeLq2axnfSoTM8xkwBrDbaWQ9vmkldbd/Q4Z+f1RJQpapKBGYJxeq2Of1eg2lY07kcKq3Oz3jSQwnY3Z5afFehuVZgcvv9iKIDhSYBiGGTzXH8jhmn05ex6SQomEvvmnY2GkrFLXfSPetJIShX1aCSsAvLBSw2K54UQKVrWSEAJza3WMpaKIhYOYzsZtD0Klla6aTiMZCeIMRwoMwzCD547XXYrPv+81nvWpPhNap3zSTWrt8dNFRIIBex6TEosHX1iDEFq1UlYO7lurte1qJfV4x2uQaaV9IwlM5+IcKTAMw2wnfpEC4C8WsbBsmuv0BGZyzpGi6jWOPm9GEKrb+sx6HXNrNTvqmM7JmUvdnrAjhf1WWmnQnkLo7A9hGIYZXm47sg/jqSiycfOsaTtSGHFHEHGs1dpmCavlVxx9Xp60pjwFFUGcWa/jzHoDb756ylqPo9sTKJSbmFurIx0NIRMPYSYbx1MDHorHosAwDLMBhybSODSR9qyrSGHWFUFMZ2N4cr5krIeDAYynojhTbBhmtjoY6JG5otEZrSqdzhRlBDE7Io8Unc7JsRutTs+uirrQcPqIYRjmHDg8mUI0FMDB0aSxPmmLhXn2g4oKJtMxe0NXTXPfdEUQqoppoSjPflDrM9k4hHBOfRsELAoMwzDnwNuumcHXf/4NGNE6owFn8/emlazSVm09ECBMZmJ4eG7deI4dKazXLVFwvAa1PihYFBiGYc4B2QUd86z7VSUBjqnsFouZXAyNds94TjYeRjwcxFMLZVSaHUcUrNcY5LRUFgWGYZgLyLdfNo7vvn4W1+43G+T6iYUa251PRuwx30SE6WzMk1bSvYZBwaLAMAxzAZnMxPB7/+E6JCJmHU+/tNJMv8giF8PJFdWjIO9LRELIxsMD7VVgUWAYhtkCLh2XI7EPuyqZ/LwGwDwxTp3/LNcH26vAJakMwzBbwNWzWXzlp78dhyZSxrra/N2ioCKIlNWjYK/n4gOdlMqRAsMwzBbhFgRASyv18Rr2WT0K+uPZU2AYhtmjXDGdxr9/2T7cdOWksa7KTz0RRC6O9Vob9VZ3INfDosAwDLONRENB/O5t12J/3mx2m7EjBf8muEFFCywKDMMwO5DZkTji4SAunzKNabtXYUC+AhvNDMMwO5BUNISv/ezrkXd1TA+6V2FbIgUiyhHRXxPRU0T0JBG9iojyRPRlIjpufR3ZjmtjGIbZKUxkYggFzW1albAOKlLYrvTRHwD4ohDiCgDXAngSwC8A+KoQ4jCAr1q3GYZhGI1oKIhbrpvBgdH42R98DpAQYiAv3PcHEmUBfAvAJUL74UR0DMDrhRDzRDQN4J+FEJdv9FpHjhwRR48eHewFMwzD7DGI6AEhxBG/+7YjUrgYQAHAnxHRQ0T0ESJKApgUQsxbj1kAMOn3ZCK6g4iOEtHRQqGwRZfMMAwzHGyHKIQAvAzAHwshrgdQhStVZEUQviGMEOJOIcQRIcSR8fHxgV8swzDMMLEdojAHYE4IcZ91+68hRWLRShvB+rq0DdfGMAwz1Gy5KAghFgCcIiLlF9wE4AkAXwBwu7V2O4DPb/W1MQzDDDvb1afw4wA+QUQRAM8B+EFIgfoUEb0XwEkAt23TtTEMwwwt2yIKQohvAfBzvm/a6mthGIZhHHjMBcMwDGPDosAwDMPYbHnz2oWEiAqQ/sO5MAZg+QJezm6Af+fhgH/n4eB8fueLhBC+Nf27WhTOByI62q+jb6/Cv/NwwL/zcDCo35nTRwzDMIwNiwLDMAxjM8yicOd2X8A2wL/zcMC/83AwkN95aD0FhmEYxsswRwoMwzCMCxYFhmEYxmYoRYGIbiaiY0T0DBHtyRPeiGg/Ef0TET1BRI8T0U9a63v62FMiClrndPytdftiIrrP+lv/lTVva88wjEfbEtF/tf6bfoyI7iai2F77OxPRx4hoiYge09Z8/64k+UPrd3+EiF52Pj976ESBiIIA/gjAWwBcBeA9RHTV9l7VQOgA+G9CiKsA3AjgfdbvudePPf1JyONdFR8A8PtCiEMA1gC8d1uuanAM1dG2RDQL4CcAHBFCXA0gCODd2Ht/548DuNm11u/v+hYAh61/dwD44/P5wUMnCgBeAeAZIcRzQogWgE8CuGWbr+mCI4SYF0I8aH1fhtwsZiF/17ush90F4NbtucILDxHtA/BWAB+xbhOA74A8swPYe79vFsDrAHwUAIQQLSHEOvbw39giBCBORCEACQDz2GN/ZyHEPQBWXcv9/q63APhzIfkGgJw6m+ZcGEZRmAVwSrs9Z63tWYjoIIDrAdyHTR57ukv5IICfA9Czbo8CWBdCdKzbe+1vfV5H2+5GhBCnAfwOgBcgxaAI4AHs7b+zot/f9YLuacMoCkMFEaUAfAbATwkhSvp9Gx17utsgou8CsCSEeGC7r2ULOa+jbXcjVh79FkhBnAGQhDfNsucZ5N91GEXhNID92u191tqeg4jCkILwCSHEZ63lvXrs6WsAvJ2InodMCX4HZL49Z6UZgL33tx7Go23fCOCEEKIghGgD+Czk334v/50V/f6uF3RPG0ZR+CaAw1a1QgTSpPrCNl/TBcfKp38UwJNCiN/T7tqTx54KIX5RCLFPCHEQ8m/6f4UQ3wvgnwC803rYnvl9gaE92vYFADcSUcL6b1z9znv276zR7+/6BQA/YFUh3QigqKWZXjRD2dFMRN8JmX8OAviYEOI3tvmSLjhE9G0Avg7gUTg59l+C9BU+BeAArGNPhRBuQ2tXQ0SvB/AzQojvIqJLICOHPICHAHyfEKK5ndd3ISGi6yCNdc/Rttijf2Mi+v8A/AfICruHAPwwZA59z/ydiehuAK+HHI+9COBXAfwNfP6uljj+L8g0Wg3ADwohjp7zzx5GUWAYhmH8Gcb0EcMwDNMHFgWGYRjGhkWBYRiGsWFRYBiGYWxYFBiGYRgbFgWGeRFYteD/QkRv0dbeRURf3M7rYpgLBZekMsyLhIiuBvBpyHlSIci6+JuFEM+ew2uFtJk9DLPtsCgwzDlARL8FOWsoaX29CMDVAMIA3i+E+Lw1iPAvrMcAwI8JIf7Naq77NcgRz1cIIS7b2qtnmP6wKDDMOWBNI30QQAvA3wJ4XAjxl0SUA3A/ZBQhAPSEEA0iOgzgbiHEEUsU/g7A1UKIE9vzGzCMP6GzP4RhGDdCiCoR/RWACoDbALyNiH7GujsGOYrgDID/ZY2i6ALQI4L7WRCYnQiLAsOcOz3rHwH490KIY/qdRPR+yLk110IWdTS0u6tbdI0M86Lg6iOGOX++BODHrcFkIKLrrfUsgHkhRA/A90MOYGSYHQ2LAsOcP78GaTA/QkSPW7cB4EMAbieihwFcAY4OmF0AG80MwzCMDUcKDMMwjA2LAsMwDGPDosAwDMPYsCgwDMMwNiwKDMMwjA2LAsMwDGPDosAwDMPY/D++mAXjLUW4+wAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light", "tags": [] }, "output_type": "display_data" } ], "source": [ "S = 100\n", "log = [[0,S]]\n", "r = 0.10\n", "\n", "for k in range(1,101):\n", " S = S + r*S\n", " r = -r\n", " log.append([k,S])\n", " \n", "df = pd.DataFrame(log,columns = ['k','S'])\n", "plt.plot(df['k'],df['S'])\n", "plt.xlabel('Year')\n", "plt.ylabel('Value')" ] }, { "cell_type": "markdown", "metadata": { "id": "T9mbB1N4Ke41", "nbpages": { "level": 3, "link": "[7.1.4.2 Linear returns don't tell the whole story.](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.4.2-Linear-returns-don't-tell-the-whole-story.)", "section": "7.1.4.2 Linear returns don't tell the whole story." }, "pycharm": {} }, "source": [ "Despite an average linear return of zero, what we observe over time is an asset declining in price. The reason is pretty obvious --- on average, the years in which the asset loses money have higher balances than years where the asset gains value. Consequently, the losses are somewhat greater than the gains which, over time, leads to a loss of value.\n", "\n", "Here's a real-world example of this phenomenon. For a three year period ending October 24, 2017, United States Steel (stock symbol 'X') offers an annualized linear return of 15.9%. Seems like a terrific investment opportunity, doesn't it? Would you be surprised to learn that the actual value of the stock fell 18.3% over that three-year period period?\n", "\n", "What we can conclude from these examples is that average linear return, by itself, does not provide us with the information needed for long-term investing." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 386 }, "executionInfo": { "elapsed": 1329, "status": "ok", "timestamp": 1604417493568, "user": { "displayName": "Jeffrey Kantor", "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64", "userId": "09038942003589296665" }, "user_tz": 300 }, "id": "Nfb7cUWUKe41", "nbpages": { "level": 3, "link": "[7.1.4.2 Linear returns don't tell the whole story.](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.4.2-Linear-returns-don't-tell-the-whole-story.)", "section": "7.1.4.2 Linear returns don't tell the whole story." }, "outputId": "3cdb37d3-9f41-4f23-d1a1-d0b6c06710f3", "pycharm": {} }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Three year return : -18.27174276977313 %\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAFgCAYAAACmDI9oAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3iUVfbA8e+dSe89gRQCIRB6C9I1gAVFF+vaO3bXXXV17bvurq5l3VV/9rIqomJXRESlBERqQifUJCQhjfSeSSZzf3/MpElIhpAwSTif58lD8k7emZtLJnPmvueeo7TWCCGEEEIIIawMjh6AEEIIIYQQPYkEyEIIIYQQQrQgAbIQQgghhBAtSIAshBBCCCFECxIgCyGEEEII0YIEyEIIIYQQQrQgAbIQQgghhBAtSIAshBC9mFLKSyl1SCl1dYtj3kqpTKXUpY4cmxBC9FZKGoUIIUTvppQ6B1gIDNdaFyilXgdCtdYXO3hoQgjRK0mALIQQfYBS6n3AFXgT+BIYobXOc+ighBCil5IAWQgh+gCllD+QAjgDD2it33PwkIQQoteSHGQhhOgDtNYlwG7AA/jKwcMRQoheTQJkIYToA5RS1wDRwHLgWceORgghejdJsRBCiF5OKRWCdfX498Be2+fztNa/OHRgQgjRS0mALIQQvZxS6jOgTGt9i+3r+cCfgTFaa5NDByeEEL2QBMhCCNGLKaUuBF7DWuKttMXxlcB6rfWjDhucEEL0UhIgCyGEEEII0YJs0hNCCCGEEKIFCZCFEEIIIYRoQQJkIYQQQgghWpAAWQghhBBCiBacHD0AewQFBeno6GhHD6NHqKqqwtPT09HDcDiZh9ZkPprJXDSTuWhN5qM1mQ8rmYfWTrX5SE5OLtRaB//2eK8IkKOjo0lKSnL0MHqExMREEhISHD0Mh5N5aE3mo5nMRTOZi9ZkPlqT+bCSeWjtVJsPpVRGW8clxUIIIYQQQogWuj1AVkoZlVJblVJLbF8PVEptVEodVEp9qpRy6e4xCCGEEEIIYa+TsYL8R2BPi6+fBf6rtR4MlAA3n4QxCCGEEMIBtNb8cdFWXk9MdfRQhLBbtwbISqkIYC7wju1rBcwCvrB9ywfAhd05BiGEEEI4zvq0Ir7dlsO327IdPRQh7NatraaVUl8A/wK8gT8DNwAbbKvHKKUigR+01iPbOPdW4FaA0NDQCYsWLeq2cfYmlZWVeHl5OXoYDifz0JrMRzOZi2YyF63JfLR2subjXxtr2FdiwaDg9TM9cDWqbn/M4yG/F62davMxc+bMZK11/G+Pd1sVC6XU+cARrXWyUirheM/XWr8FvAUQHx+vT6Udle051XaXHovMQ2syH81kLprJXLQm89HayZiPDWlF7Fu2gakxgaxLLSJsyDjGRPp162MeL/m9aE3mw6o7UyymAb9TSh0CFmFNrXgJ8FNKNQbmEYBccxFCCCH6kKziagBeXnGAYG9X/jArFoDi6jrAmpdcaTI7bHxCdKTbAmSt9cNa6witdTRwBbBSa301sAq41PZt1wPfdtcYhBBCCHFyJe47woznVjHp6eWsSy1i/vSBhPq4AlBWXQ/Aa4mpjPzrj5TaAmYhehpH1EH+C3CfUuogEAi864Ax2KXKZCavrJaymnpHD0UIIYToFX7YmQdAfrkJgAvG9MfX3RmgKSB+ecUBAHLLah0wQiE6dlI66WmtE4FE2+dpwGkn43FP1DXvbmRrZikeLka+uWsaQ0K9HT0kIYQQoseyWDQr9x1hTKQfp0X7Y7Zo+vu5Y26wAFBWY0Zrjcls/bqgwsSwfo4csRBt6xWtph1la2YpANV1Ddz50RYW3z0NDxeZMiGEEKIt2w6XUlBh4rG5w5g3NrzpuJPRgJerE6U1dWyxvbYCHKkwOWKYQnRIWk3bKbWgkpeWH3D0MIQQQoge6+eUfJwMioShIUfd5uvuTFlNPa+tOoiTwVrqbd3BQhosbZeb7c4ytEJ0pMMAWSnloZR6XCn1tu3rWFsJtz6t5RPz6YtGMTrCj5TccgeOSAghhGgt6VAxyRnFjh4GYN2At3hbDpMHBTblHLfk6+7MDzvzWLH3CPefPRSAr7Zmc/pzq45qIvL00j1MenqF7AESDmPPCvJ7gAmYYvs6G/hnt42ohyistG4k+NsFw7lqUhTBXi5Nx4QQQoie4LI313PJ6+tJLag87nM355mJfuh7cstqumQsnyZlkl1awx0JMW3eHujlQk19AyHertw4LZpBwZ4Eebni6Wrkb4t3t1qYemtNGkcqTIx58icue2Mdmw/1jDcB4tRhT4Aco7V+DqgH0FpXAz2rDU43yCm1/sHo7+cOQJCXK4WVJmrqGiislJwpIYQQjlVdZ6YxptyeVXrU7d9tz+HF5fuPef66HGsd4qRDJV0ynvxyE54uRqYNDmrz9jsSYvBydeLJ343AzdnI0ntmsP7hWVwxMYqS6nqKqpoXocL93An0dOGumTHsyi7n081ZXTJGIexlT4Bcp5RyBzSAUioG64pyn5ZtC5DD/a0BcqCXC8VVdfx9yW5mv7Ca9MIqRw5PCCHEKS6jqLrp8/35R68g3//5dl5cfoC1BwoBaxDd2MADwNfFutbV+Hp3okqq6vDzcDnm7VNjgtj6xFmcO8patsLN2Yiz0dBUIWp/fgUADRZNXnktl0+M5IFz4hgQ6CGpFuKksydA/iuwDIhUSn0ErAAe7NZR9QCNK8jhLVaQGyyadalFlNXUM/+DzZTXyhNWCCGEY2QUNS/U7M4pA8Bkbmj6PCrAA4Bnlu1h/gdJzHv1Vx7+amfTOQ221ee9XbS/pqS6jgDPYwfIAM7Go8OOuH7eGA2K55bto7DSxI7DpTRYNP1sr78+ts19QpxMHQbIWuufgYuBG4BPgHhbXeM+7XBJDZ4uxqaNBoFe1i5AGUXVjInwJb2wind+SUdr3VTfUQghhDhZtmaW4mxU3DA1mrUHC9mXV8EVb21g7strKagwNTXl2JVdzoa0ImJDvNiVU9aU61teZ/13zYFCzA0WftqdR3FV5/faFFfX499BgNyWIC9XXr1qHLtzynjq+z1c9sZ6AAbYAnxfd2fKJUAWJ5k9VSymAbVa6+8BP+ARpdSAbh+Zg+WU1hDu745S1ktQYyJ8m247f3R/ogM9OZBfwZ0fbWH4Ez9ywf+tbbULV2t9zNI1QgghxInQWrN8Tz6TBwXyx9mxeLo4cffHW5rq92/PKqWoqo6rJkXx8pXjSHwggWunDKC0ur4ppaLCFiAXV9WxdFcet36YzOR/rej0mEqq6vD3OLp6hT3mjOzHhAH+fL01Gw08NncY0225zBIgC0ewJ8XidaBaKTUGuA9IBRZ066h6gHNGhHHN5Ob3AQMCPfnfDfH4ujsTH+1PVKAH6YVVrN5fwJAwL/LKa3ng8x1Nq8n3f76d059bJXUchRBCdLltWaWkFlRxzogw/D1duGn6QA4cac5DXrozF61hWD8ffjemP0FerkwY4A/Ai7aa/hV1mjkjwvB2deLVlQcBqDNbqK6zbt7767e7SHh+1THHkFlUzW0fJlFpsn5/SXUd/u3kIHdkYnSA9XEvGM78GYMw2Gol+7o7k1NWS5XtcTqyen8Bq/Yd6fQ4hAD7OumZtdZaKTUPeFVr/a5S6ubuHpijXTIh4qhjs+JC2fbEWSilGBDgQeK+AgBumTEIU72FB7/cQU5pLZEB7ny1xbqavC616Jg7eoUQQojOWLghE08XIxeOs3armz9jIFszS7h0QgQLN2Tw1Vbra1CwV3PAOqK/L+eMCOXXg4WkF1ZRWKMZEuaNn4czi1pUiSisqCMq0IkP1mcA1tXqxqupLb25JpUfd+czfcthZg0LpaLWTGAnUiwa3TDVWvrtwhYd+ICmVMfZL6xmwyOzO7yf6/+3CYBDz8zt9FiEsCdArlBKPQxcC8xQShmAzl1D6QMa/0gMCvZqOjZlUCBptqoWaw4UNG3wA/jlQKEEyEIIIbpMSVUdS3bkcFl8BF6u1pdxHzdnPrx5EmC9Apq47whbMkuZHhvc6tyhod78nJLPv3/ah7MRrpkcxaHC6lYBckFlLVGBHs1fV5gI8XEDmtMHnYwGQm3HXlx+gMe/3Q3AeNsqdWcEerly0bijF6fqzNYrs3nltRwqrCI6yJNKk5kl23NwdTZQVFlHTIgX5TX1FEm/AtFF7AmQLweuAm7SWucppaKA57t3WD3fxePD+WprNpMHBhDi40ZjuvFj3+xCKZg+OIic0hq2ZHRNfUkhhBAC4MsthzGZLa3SAFtyczYyZ2Q/5ozsd9Rt/f3csWj4fkcu5w10JsTbjSBPVyID3Mkqti7uFFS0DjJTC6oI8XGjvsHCje9tJq+8ls9vm9K0z6Zl/eL46M4HyMcS1GIVfPOhYqKDPPk8KYsnv0tpOm40KLTWyNYf0VU6DJBtQfFHwERbi+lNWus+n4PcEW83Z765c2rTinKItyvRgR7kl5tYfPc0YkO9+ceSFBZuyKDObMHFyZ50byGEEKJZeW09C9Yd4kiFiSfOH46T0cCGtGJigj2JC/M57vtrbH7l5erEeQOtF4MNBsV9Zw1h5d4CvtueQ8FvmmFd+fYG/nv5GF5ZeZDUAuvV0rs+3kKM7UrqT/eeTrCXK3nltbg6GU/kx23TNZMHMGFAAJe9uY69eRXsyi5rCo5X3n8GK/Yc4amlewB45uJRfJ58mJ2Hy46ZGiKEPToMkJVSv8e6YpyItYPe/ymlHtBaf9HNY+vxWj7xDAbFivsTqG+w4OZs/QMxYYA/765NJyW3nLGRfo4aphBCiF7qqSV7+DTJmv4QHejJTdMHkllc1SrN73hEB3oCcPP0gXg55zQdv2hcBBeM7s+SHTlszSjh4nGt84Dv/XR70+cPnDOU53/cx7rUIsL93JsafXSmxJs9nIwGRkX4MjTUm3WpRSTZ2k4HebkwKNirVWm6c0aEUVxdR3JGCSZz8+uxEMfLnhSLR4GJWusjAEqpYGA5cMoHyL9lNCiMhuYnY+OO4aRDxRIgCyGEOC5aa1bvL2DuqH5Umsy88NM+IgM82J9fyem/yS22V1SgB1/dOZXR4b6s/SWn1W1ORgNzR/Xjq63ZrEstAuCpi0Zy/qj+3LNoK6v3Wzem35kQQ355LQvWZ1B3EvsAXDslmge+2N7UXvvpi0YBMDTMGqDPHd0Pf08XfNysK+NlNfUSIItOs+e6v6ExOLYpsvO8U16ojxuDQ7yk3IwQQojjll1aQ155LZMHBfCPeSMxWzS3LEgCIMzXrdP3Oz7KH6c2OtoB/N+V43jvxolNq8GR/h74ejjzwU2nNX2PUoozh4UC1g18J8ulEyL43/UTCfB04cXLx3L2iDDAmvK4429n88qV44DmqhdSO1mcCHtWkJcppX7E2kUPrJv2lnZ0klLKDVgDuNoe5wut9V+VUgOBRUAgkAxcq7Xus9tOzxoeyttr0iiqNPHj7nzmjAzrsBWnEEII0ViRob+fO1GBHpw+JJifU/IBmgLUrqaUYubQEM6IDWb/kQqG2tInAL68YypGW23iwSGdS/E4UTPjQkh+7MyjcosbV43B2poarPnbQnSWPa2mHwDeAkbbPt7SWv/Fjvs2AbO01mOAscAcpdRk4Fngv1rrwUAJ0KdrKp81PBSzRfPEt7t55OudjP/Hz+zKLnP0sIQQQvRwZbYV0MaAz8/27yPnxREd5Nmtj20wKOLCfFoFohMG+DelC/Y7gRXsE9XRxjsfN+vaX1kbK8gr9+bzly92NHUTFOJY7EqV0Fp/qbW+z/bxtZ3naK11Y1sfZ9uHBmbRnL/8AXDhcY65Vxkb4UeQlyvf78xtOvbRxgwHjkgIIURv0LgC2pgycO0Ua1m37lo9Ph5KKV67ejzf3zPd0UM5SrC3KwBHylunf2zLKuX2hVv4NCmLz1rUfRaiLepYrZCVUhVYA9qjbsIa/3ZYX0YpZcSaRjEYeBVrNYwNttVjlFKRwA9a65FtnHsrcCtAaGjohEWLFtn1A/VE/9tlYs1hM/08FVHeBlKKG3hisjs+LgpXp+MrQVNZWYmXl2MubfUkMg+tyXw0k7loJnPRWm+bj1WZ9XyQUsd/E9zxd+v6rT+9bT7sZbZobvmpmvNjnLkk1prS+NEeEz9nmAl2VxTUaM4b6Mzvh1pv66vz0Fmn2nzMnDkzWWsd/9vjx8xB1lp7H+s2e2mtG4CxSik/4Gsg7jjOfQtragfx8fE6ISHhRIfjMN4Dizn48VZunDaQcH937vxoCw+sqeH0IcEsaLHxwR6JiYn05rnoKjIPrcl8NJO5aCZz0Vpvm489iamQspc5s87A3aXrqzH0tvk4Hv02rsDZN5CEhLEAPLx+BWDm49tncNFr6wjrH0FCwnCgb89DZ8h8WB0zQFZKTQSCtNY//Ob4ucARrXWyvQ+itS5VSq0CpgB+SiknrbUZiACyOzf03mPCgADWPWztH19dZ246vsZWMkcIIYT4rfLaepyNCjdnKRx1vPr7uZNd0pxnXF5Tz43TookN9cbFyUBdQ4MDRyd6g/aedc8CKW0cT8GOVtNKqWDbyjFKKXfgLGAPsAq41PZt1wPfHs+AezsPF6emrnrebvYUERFCCHEqWXugkMyiaspq6vF1d5ZucJ0wKNiTrZmlvLrqICVVdVTVNRDmY91Y6GI0UGc+efWbRe/UXoDsrbU+ajeZ7ViQHffdD1illNoBbAZ+1lovAf4C3KeUOoi11Nu7xz/s3u2rO6YC4GSQP3pCCCGaVZrMXPPuRs78z2oyiqpalS8T9ntwThyzh4Xw/I/7iH9qOdBcO9rZSVHf0Pb+K3HybcksYf4HSWQVVzt6KK20t4Tp385tHh3dsdZ6BzCujeNpwPEl3vYxI8N9+fPZQ/j3T/upqWvoltwyIYQQvYu5wcKsfycCUNdg4deDRZw7Msyxg+qlgrxcef2aCSxPyWe+rblKqKwg9yivJ6by8aYMogM92ZBWhJ/HGEcPqZX2VpCXK6WeUi2u7SirvwMru39ofVtMsHWHaHJGCQD55bV8simTPbnljhyWEEIIB0nOKOFIhQlPFyP3nzWEL++YwqtXjXf0sHq1M4eHsuQP00kYGszw/tbiWy5ORkwSINvFZO6+XO0vkrPIKq7hlwOFTIkJwruHXS1pbwX5fuAd4KBSapvt2BggCZjf3QPr62bGheDv4cwnmzOZHhvEi8v388mmLAwK1jw4kwj/DhfphRBC9CE/peTjYjSw8dEz8XKVPSpdZWS4L+/f2Hzh2sWoqGuQALk9Wmvu/2w7S3fl8vO9ZxAZcOIxSU1dA2mFlYzo78vevHJSC6p46Nw4XJ0MnDYwoAtG3bWOuYKsta7SWl+JdXPd+7aPs7XWV7RoACI6yc3ZyLmj+pG49wjbskr5cXc+cWHeWDSsluoWQgjB/vwK5r36Kyk5ff/Kmtaan1PymTY4UILjbubiZKBeVpDblFVczZf767jglbV8tTWb2noLn2zKpKz6xNt2f7Qxg7kvr+WTTZm8kZiKl6sTl8dHcuO0gYzo79sFo+9a9rSaTtNaf2f7SDsZgzpVzB3Vj6q6Bi589VeKq+r405mxhPu5s3rfqRsgl1TVUVBh6vgbhRB93ru/pLM9q5RbFiRRU9e3y3Lty68gs7ias4ZLznF3s5Z5kwD5t+78KJkZz61iSVo97s5Gnjh/OMP7+fBaYipj//ETf1q09bhadGeX1lBlai5te6ioCoCHv9rJN9tyuHBcf/w9Xbr85+gq8jbVgaYNDmL5fWewN6+cQE9XpsQEsuZAIYu35VDfYMHZaH3/klVczVdbsrn19EEOHnH3m/bsSqrrGjj0zFzAuqqyNauUMRF+GKXqhxCnlF8OFODr7kx2aQ3/+mEPD50bx8b0YhKGBPe50mc/785HKThzeIijh9LnuRgNlNeYO/7GXiCntIZ+vm4n/HwwmRtYujMPgHsnuHLPZdZqWxeOC2drZgnfbc/hm205hPq48fB5w9q9r5q6Bv6+ZDefbMpizogw3rh2AgDZJTUMDvEi0t+dXw8WcXl81AmNubtJgOxgg0O8GBzS3NLx9NhgPt6Yyab0YkzmBhZvy2Hx9hwsGvbll3O6X99+11ttWyWqM1twcTKwcu8Rbv4giemDg5gSE8im9GI+OM7ug0KI3qfKZCanrJY/nz2ErOIaFqzPYMF6a+XRKyZG8tRFo/rUm+afUvIZF+lHiLebo4fS5zkbDdT3gRXkzKJqTn9+FX+ZE8cdCTEndF87DpcB8NrV4/Eo2td0PMDThdnDQpk9LJT0wiq2Hy4FwGLRbD9sXbwytHge7sur4O6Pt3CwwJqJu2x3HnvzyokL8yG7tIaBQZ68fV08FotudV5PdMwUC6VUQHsfJ3OQp5KpgwMBuPqdjdz0fhKr9hVw+cRIzh4eys8p+Ty1oYaK2hPPBfqtdamFnPfSLzz+zS6H5UC3vBRz4EgFANuySjEo2HSomOd/3Mfq/QXH3FWbVlDJ3Jd/4b1f06WEjxC9XHqh9XJsTLAXs4c1r6qGeLuyaHMWT32/x1FD63K5ZTXszC6T9IqTxMWpb5R5yyi2PkcWb8854ftanpKPs1ExbfCx21yMjvBjV3Y5e3LL+f2b67notXV8vzO36fZ1BwuZ9+paSqrrWXDTaWx9/CwCPF14+Kud1JktZJfUEO7nDtDjg2NoPwc5GWvFimSgANgPHLB9bnebaXF8fNycmTk0GDdnA29dO4HNj57Jvy4ezVvXxfPlHVOpqIc3V59YKnid2YLF0rpI+tKduRw4UsEXyYe5/n+bWJ6Sf0KP0RlpBVVNn2/JKCG9sIr/W3mQmGCvpuYqwDE3C7yWmMrunHKe/C6Fa97d2O6mggaL5o3VqWzPKu26H0AI0WVSbStQg4K9mDTQunBwyfgIVv05gZlDg1lzoO/s1diUXgzA6UPs6cElTpSLk6FPlHnLLa0FoNLU+UWz+gYLH6w7xMcbM5k2OAhf92OXWpsVF0Klycx5L//CgSOVuBgNbLO9hh4qrOKWBUkMCPDkhz/OYEZsMP6eLjx+/jC2ZpYy89+JVNU1MDUmsNNjPdnaq2IxUGs9CFgOXKC1DtJaBwLnAz+drAGeil6/ZgI7/noOZ48Ia2pLDdZ3b5P7GXlnbRr55bWdum+LRTPksR948rvdrY7vzC5nfJQ/W584i0BPF77eln1CP0Nbkg4V83lS1jFv35VT1vT5a4mpXPbGesBaEm9kuC+vXGXtO1Nac/QfgyU7cvgi+TBXnhbJo+cNY1tmKVe8vYEGS9vdkrYfLuWZH/Yy79VfWbLjxN99CyG6VuPfuHB/d3w9nDnw1Lm88PsxeLo6MSTUm8yi6mM+v3ub7VlluDkbGBrq7eihnBJc+8gmvcMl1s5z9uZTl1XXNwW0AP9YkkLsoz/w18W7GRXhy5O/G9Hu+WcMCWba4EAuGN2f5fedwfD+Puy2vW4v3ZVLVV0D71wfT7C3a9M5F44NZ1ZcCNmlNVwwpj9nDQ893h/TYTqsYgFM1lovbfxCa/0DMLWd7xcnyM3Z2CowbumSWBfMDZqHv9rJtR2skrYlv8L6ovPB+uYu4rX1DezJLWdUuC9uzkbOHBbKmv0FNFg0B/IruO5/mzh4pPOV/Uqr6/hhZy5XvbORB7/cQWWLVIoGi+aOhcms3l9AckYJfh7OPDZ3GE5GxbgoP766cyqP2DYE+Llbd7uWVNW1un9zg4UXftrP0FBv/nnhKG45fRCPXzCcPbnlbMsq4cEvtrMls6TVOdklzTtxP1h3qFuLoQshjl9RZR2uTgY8bZ1GGzctAwwI9KSuwUJeJxcKepKs4mreX5fOqHBfnIz2vCSLE9Vbc5C1tr5eLrWlNWTZXsfKauqprW/9GmYyN7Als6RV6uL8BZu58NVfqaitx2RuYNGmTADeuS6ej+ZPYkCgZ7uPbzAoPpo/mZevHEewtyujI3zZebiM+gYLa/YXEBfmfVS9ZKUUb147geX3nc5Ll4/tVZtr7dmkl6OUegxYaPv6akCW3Bwk2MPAxOgAVu49AsCXWw5z0/SBdp+f3iKNAaxJ/h9vyqTObGGK7dLHlJhAPk3K4k+fbsPd2cCa/QX85csdfHnH8b8v+uu3u5qC8UBPF4qq6rjroy1EBrgzMMiLH3bmkpRRwg+7rLtnZ8WFMH/GIObPOLpih5+H9dJPaU09ri2Of701m/TCKt64ZkLTpp2J0dZO6X9ctI3DJTV8kXyY4f19GBLizd2zBpNjK1Vzz6zBvLzyIJOeXkFUgAc3TRuIm7OROdLeVQiHKqg0EeTl2uYLanSg9UU4vaCqKaext9qQVoRFw92zYh09lFNGb201nVVcww+78vhhVx6bHz2TXw8WNt12pNxElO15UVPXwPXvbWJTejF+Hs58NH8SI/r7svmQdaFofWoRnq5OVNU18O718cwe1rlV3SmDAlmwPoNr393IhrRiHjhnaJvf52w0MDik910dsSdAvhL4K/A1oIE1tmPCQc4bFcb6tCIAFm7M4LopAzpcecgvr2Xuy7/gbluNAevK6y0LktiXX4GzUTFpkDVAnjo4EHdnI9+1SPzfkllCXlktYb7WHdYNFt3hDvKUnHI+WJ/B3FH9mDQogDOGBHPG84ms3l+A0aBaXR6dOTSYM4YEc047gWljgJxfXkuUbQx788p5cfkBRob7cM6I5id5Yyvvw7Z32JeMj+Dz5MPsyi7n623ZRPi74+3mxL1nDSE+OoAF6zNYviefP31qbRq58v4zGBTshRDCMYoq6wj0artG6tAw64ttSm4Z02N7d95uea11hW9MRM9rlNBX9aZNenvzyrn/s+28fV18UzoDwKSnl2PRcOVpUXyyKZPUwkqKqkyMjvDj9oXJbD5UzJ0JMXyRfJinvt/Dvy8b03TurR8mMz7KD4PihDrYTYkJxNPFyMEjlcyfPrDPlaLtMEDWWhcDf1RKeWqtqzr6ftH9rp40gN+NCWdDehG3fZjM58mHufK09usJbs0sobCyjsAWRbnfXJPGvvwKzhwWws3TBzV1bwrxdmPH384mraCK/61NJ66fN8/8sJffvbKW+Gh/BgV58cqqg2x6ZDYhPq1LEpnMDby84gC3zBjE3xbvxsfNieCyQwwAACAASURBVKcvGoWvR+vE/0W3Tqa/nztfbznMntwKXr16fIc/t7+HdexPfLub/yS4c9P7m5sqbjx+/vBWK03ORgMvXDaG+z/fDsDzl41h/oxBmC0W3vklna+3ZhMX5o1SitOHBHP6kGB2Hi7j/1Ye4KeUfF74ab9dYxJCdI+iKhPBXq5t3hbo5Uq4nzs7s3t/h73GqkTSPe/kcXEyYLZotmWVMjbSz9HDadeH6zPYnVPOnBfXNL2Z+vPZQyiprmfCAH+GhHrxyaZM7vpoC9V1Ddx75hBW7y/gyd+N4Pqp0RiU4rXEg8x5cQ0uTgaevWQUS7bnsmLvEYb388Hb7dib8jri5+HCuodn4+Xq1KdKLjbq8BmplJoKvAN4AVFKqTHAbVrrO7t7cKJtBoPC18OZs4eHMj7KjxeX7+fCseGtVodbyiyq5vaFWwBY/eBMymvqmfrMSp7/cR/hfu68fs2EVvl9YA0wh4Z58+ylowFrveZFm7L4cXceZos1HWLToWLOH92/1XlLtufy6qpUXk9MxaLh35eNaRUcf3bbFD5Yd4hxkX44GQ3HdVnRo8XP9/ivNVTV1zA6wpcQb9c2E/8vmRBBkLcr3m7WX/PGVaf//H4MZw0PbTreaFSEL29dF89/ft7PyysOsOv5VUQFePDyFeN6dLcfIfqioso64sJ8jnn72Eg/NqYVtWqq1BuV15jxcnWS/OOTqHEPyuVvrmffP8918Ghotybw3jxrydO4MB9GRfgyOsKXeWPDm26vNJkxGhSuTgaq6xr47/L9BHm5cNUk66LZpRMi+OVgIUNDvbh4fASTBwVy0bgINqYVHbVw1RntVb3o7ex5y/pf4BxgMYDWertS6vRuHZWwi1KKv8yJ4/K3NvDeunTuTBjc5vcl7j/S9LmXqxNerk4M6+fDntxybjtjkF0vLjNig5kRG8w5/13DvnzrE3bFniOcN7Jfqyd242qIRVvziS8ZH97qfk4bGNDpSzpKKX55cCYXv74Ok8nEezdMZGZc+12nzhgS3Ob9nDeq3zHPuWXGQL7dlo2L0cCGtCKufHsDj84dhkW3fX9CiK5lbrBQUGEixLvtFWSAi8eH8/3OXFbuPcI5I3rvnoGK2vqj3qyL7jU9NojPkw9jMlscUglFa82RChOhPm68uHw/r6w8yBMXDKfK1ICXq5F548LxcXPmQH4FyRkl/PnsIcdcTPJydeKj+ZOIDvTkT59uZX9+Jf++bEzT63p0kCff3jXtqPMaUyrFsdn1rNRaZ/1mo4Rs+e8hJg0KZFZcCG8kpnLdlOimy3Q/p+STklPOH8+MbdrdesuM5s18C246jSU7crh8YuRxPV5jMDwoyJOvt2aTV1bLmEg/nAyKP58zlNwWu8pvnj6wy3esRgZ48P0fprN54/oOg+PO8nZzZvUDMwFYs7+AP3yylWvf3QTALw/OPGqXrhCia+WW1WK2aKLaea7NiA1GKdh5uIy316SRMDS4V250K6+tx+cELnOL4zdvbDhKKe75ZCtXv7OBUZ71TK5vwM257auwx6u6zkxOaQ219RYqas2MCPdp9X/8/c5c7v54K1eeFsmGtGLMFs0T3zaXXn13bTpf3zmN//16CFcnQ4cplJNtwe5H8ycD9Ml0B0ewJ0DOsqVZaKWUM/BHoO+0MOoD/jBrMBe9to6vthzmuinRANyyIAmAe2YP5ki5CTdnQ1O5NIBgb1dunGZ/9YtGz1w8isXbc3j0vGF8lpTFQ1/tbNow+Pv4SFJblIMb1U2bTkJ83PB0Pjl/AE4fEsySP0zn4a92svZgIa8lHuRfF48+KY8txKlgV3YZKbnluDsbOX90P5RSZBVb67u2FyC7OBno7+vOwo0ZlFbXk5RRwp68Cv52wYhWdVh7uopas6wgO8AFo/tRXlPP8z/uY0NNPf7h6Vw6IYIgT9cT7vL20Jc7W3W3u2ZyFP+8cFTT10mHSjAaFJ9ssvYFOHt4KGOj/LhgdH8yiqq55t2NXP3ORvbmlXP5xCgCj5GL/1sSGHcte5KebgfuAsKBbGAs0GH+sVIqUim1SimVopTarZT6o+14gFLqZ6XUAdu//ifyAwgYF+VPuJ87T3y7m3mvrOWtNalNt1WYzBypMBHi7dYlq7ljIv14/PzhGAyKK06LYkyLDQ6XvLGO5Xus6RzB3q59ZlUkMsCDhfMnccPUaD7dnMV+W4qJEOLE7Mou44JX1vLgFzv4wydb2XG4jJq6BjbaOss1lq06lqgAD0pb1IL/fkcuifuOtHNGz1NeW49PH87j7KmUUlwzeQC/PjSLIHfFc8v2cdpTKxj1tx9555fOd6u1WDTrUovwdXfmjWsmMCbClx2Hm6tPZBZVk5xRwpgIX96/cSKBni7cevog7kwYTGSAB9NjgzhjSDB78sq5ZvIAHp07rJ1HE93JngB5qNb6aq11qNY6RGt9DWDP/5gZuF9rPRyYDNyllBoOPASs0FrHAitsX4sT1LgTt6DCxNNL9zYdP1RYxeLtOd22ovLR/ElseHg254wIJS7Mm4fPjWPfP+ew+dEzu+XxHOme2bF4ujrxp0XbmnKtu1pFbT03vLeJX/pQG10h2vLqqoNc/No6/D1c+OpOa431T5OymPrMCl5acYAATxf6+bZf47hxhfnj+ZN45mLrCt3BgkreWJ3K3rzeUeGitLoeH1lBdhgvVyduG+3KmEg/rpoUxbB+Pvzz+z3c+VGyXeen5JTzyNc7OXikkg/XH2LQI0sprDTx57OHMGdkGBOjA9iXV0GDRbP2QCEzX0hkZ3YZoyP8SBgaQtJjZxIf3XpfzouXj2X5fWfw93kjpbqJA9kz8/8H/LbeVVvHWtFa5wK5ts8rlFJ7sK5CzwMSbN/2AZAI/MXuEYs2PTlvBBeOC2fm0GB+3J3PvrxyXl55kNs/tD7JB3RT3mzjpr83r43vlvvvSQI8Xfi/K8cx/4Mkbl2QzHs3TuyynDWwbtx45OtdJO4rICbYixmxsiFQ9F3fbM2mrsHCZ7dNZnCIN2MifPl4o7Wz16tXjWd6bFCHl4yvnTKA2FAvpg4OYirwxupU3l6ThkXD64mpbHxkdpc+R7vaDztzOVxSwy1tNEYSJ0+sv5FvL7JuZNuTW865L/3C0p15ZBZVExXogda66QpsVnE19366jXlj+zM9Npir3tlAaXV90+9uo6mDrfW5R4b7YjJbePK73XyedJiYYE+eOH8EY6Osi1ptXdn193SRykk9gNK67R2cSqkpWFtK/wlrJYtGPsBFWusxbZ7Y9n1FY20wMhLI1Fr72Y4roKTx69+ccytwK0BoaOiERYsW2ftwfVplZSVeXh03sDhSbeHBNdZSNucPcmZOtDNeLn0nP8neeegO63LMvLXDxFB/A38Y59Yl81pUY+GRtTWYbNtf40ON3D3Orf2TWnDkfPQ0p9pcWLTG0MaLrNaaj3dXMb6fO8MCe1aQWGvW3LG8mt/FOHNRrDUQWJlZz4KUOmJ8DTw+pXPd8V7ZWsu2Iw3EhxnZkNvAeQOdGRdi5Pu0ei4f6oI31Z363cirspBdaWFCaOdW87YdMTM0wIi7U/P/U0Z5A09vrKWfp4HHJrvh5ID80VPtuXIsv52H4loLD66uIchdUW+BOovmX9M98HJRvL/bRGKWtR6xkwHcjHBBjAuf7K0jyttAdqUFFyO8fqa1bbPZovnnhloOlVsI91I8ONEdX9ee/Vp8qv1ezJw5M1lrfdQqX3vPdhestY+dgJY9AsuBS+19YKWUF/Al8CetdXnLd0taa62UajNC11q/BbwFEB8frxMSEux9yD4tMTERe+aizmzhjZQ1XD4xktvOiOn+gZ1k9s5Dd0gABg7O5OGvdpJmjOCehFjyy2txdTLgZ2tmUl1nxt3ZeMy878yiapbtzuXSCZEEeLrw9po0TA17mBoTiFJQWWsmIWG63WNy5Hz0NKfSXOSV1XLey79w8bhwHj5vWKsV12W78vj5cDKeQQHckTDOgaM82nfbc9Bs5XfTx5Bga3M7vcHCxF15zIwL6fRl5RETTFTXmQn2dmX4Ez+yNL2epenWdKj4oWFM9zpy3L8bWmuGPbGM2noLe/8x0+4V6Q/XHyK3rBYfd2de3LKXc0eG8fo1EwCoMpl56IXVBHi58eld0wj1sf/NcFc6lZ4r7WlrHkq80vk8KYsQHzfW7C8gxdKPCHcP0qtTiQtzZ29eBWYL/O+WKZw2MIBrc8qJCvTAVN+A0aCaXgsAxp1m4pNNmVx5mv0b7hxJfi+sjvlXSGu9GlitlHpfa50BoJQyAF5aa7uSu2xVL74EPtJaf2U7nK+U6qe1zlVK9QN6146KXsLFycDKPyc4ehh91pWnRfFZUhYLN2SQX17LRxsziR/gzxd3TOW1xIM8t2wfD84Zesza1M8u28v3O3PZfrgMtLXsz5BQLz6+ZTIPfbmjabOjEMdSXFXHxxszKK6q45216Ww6VMxnt03BzdlIndnCMz9Yiw0daFFZpicorqrjye92M6K/D6e3qCvuZDRwwZj+7ZzZMeteC2sA8v6NE3lpxQFGhfuyL6+Cz5KyqB1oYFh5LX9fkoKPmzNPXzSy3c3LZdX13LYwidp6a1vi/fkVjI7ouPPapvRiHm9Rtgvgh115PLdsL56uTvTzdSOvvJaFN09yWHAs2nfz9IHcPH0gtfUNxD2+jNcSmze/P3xuHP6eLoT6uDXV9R/e39rUpq03d4Ferr2yBOGpzp636f9SSt2OtfbxZsBHKfWS1vr59k6ypU+8C+zRWv+nxU2LgeuBZ2z/ftupkQvhYHecEcPLKw+wdGcuAEkZJWxIK+LfP+4DYEtGyTHPzS2zpr98vyO36dgfbH9AI/zdKaw08eyyvYR6u3LhuPBWqxHi1FZcVce9n25rarMeF+bN1ZOiePzb3XyyKZMbpw1k0eZMDhVVE+ltYHdOOctT8pk0KOCE2sp2lb8t3k1ZTT0L50/q1g54CUNDSBhqrZW+L6+Cx77ZycI9JXyTtppKk/US+ey4EM5sowsnQElVHVe8taGpMRLAF8mH6efr3uGm559T8nBxMrDh4dkk7jvCvrwKFm/PaQqyXJwMBHm5MiVGmjX0dG7ORq6bMoBPNmXyylXj8XAxMjE6oEfntouuYU+APNyWGnE18APWqhPJQLsBMjANuBbYqZTaZjv2CNbA+DOl1M1ABvD7To1cCAc7e0QYZ9s6eC1PyWf+giSueGsDEf7uDAzy5GA7K3dHKkyMjfTj9/GRXDCmHzX1DYR4W1eSLp0QyVtr0njd9mL6zLK9fDR/EhMGdK4Doehb3v81ndX7C4gL8+bBOUMZE+FHoJcrS3bk8lpiKvEDAnhzdRqjwn2ZFljLGztMzF+QxIzYID68eZJDx15dZ2bpzlyumxLdbhvprjY0zJsFN03ijGd+JDrEh6cvHsmVb2/ks6SsYwbIXyQfZl9+BR/efBoDAjx58MvtLFifwYL1Gdw0bSBPXDD8mI+XnFHC6HBfAjxduHh8BAAPzonDojVTn1lJQYWJUeE+Ure2l/j7vJE8OncYrk4SFJ9K7Hn77mxLlbgQWKy1rgc67M2otV6rtVZa69Fa67G2j6Va6yKt9WytdazW+kytdfGJ/hBCONqsuBBunj6QYf18ePnKcYyL9COzuLqpi2FLWmsKKkycNjCAqyZF4e3m3BQcA4T5uvHzfWfw9Z1TWXrPDLxcnZqCZSFSC6sA+PDmScyKC23Kabz3rCEUVJi44JW1ZJfWcOawUCb1M7L47mmcMyKUdalFVNlWTrva5kPF3P5hMp9tzqKkqq7VbZ9syuQ/P+/HZG4gOaMEs0UzY0hQt4yjPe4uRp6Z4c5nt09hcIg3Zw0PZX1aEcfaqP7znnyGhnozIzaYqEAPPpo/mS9un8K4KD9WtVNrucGi2ZVT3lR6s5HRoHA2Gpra1Q8KPnU2QfUFEhyfeuxZQX4TOARsB9YopQZg3agnhLAxGBSPn9+8olRWU49Fw08p+fzuN3mV5bVmTGYLIe1cpg31cWvKTTx/dH8Wbc7EYtEn3OFJ9H6pRyqZFRdy1GX+yYMC+X18BCazhTBfN66eHMWupGxGR/hx7eRoftydz+ZDxU1pB51RZTJzqKiKEf2tXTLLquu5+5Mt/HKgEIBlu/PgS3jr2glNV1feWJ1KRlE1nydlkVtWi7uzkQkDHNMfqmW1j5hgLypqzZRU1xPwm5JaK/bksym9mIfOjWs6ZjQo4qMDOGNIMC8uP0D8P5cT7udGRnE1100ewH1nDwUgo6iKOrOFoWHetCXa1vzEySjPZSF6sg5XkLXWL2utw7XW52mrDGDmSRibEL3WGbHBxAR78uAX27nq7Q385YsdTXnHBRW1AHY3bxkS6k1tvYUc2/ni1JVbVkNaYRWDQ9pefXzu0jG8dMU4Hj53GEEtdstPGOCPs1E1tYXvrNcTU5n78lo+2ZRJndnCv3/ax4a0Ih6bO4w7Epqr5Ww/XApAbX0DWcXVzIgNoqymHqWsm+d6QpfNgUHWQPWtNWn89dtdmBssTbf9erAIN2cD86cPPOq8Yf2sqSGFlSa2Hy7D08WJl1ce5NVVBwHYn29NrRoS2naAfM3kAcwZEcaNU4++byFEz9HhCrJS6olj3PT3Lh6LEH2GwaB474bTeHH5fjKKq/l6Wza15gZeumIce/Osm36iAz3tuq+YYOv3pRVUEeHfPQ1fRM9nMjdw+8ItOBsUl0+MPK5z3V2MjI30Y0PaiWW0pRdZ0zse/monf/8uhZr6BqbGBDJ/xiB255QdlQqUUVSNRcOlEyJ46YpxFFSYjrmyerI1Pv/eWG0d8yUTIhgd4YfFoknKKGZIqDdObWwinDk0hEfPG0bC0GBCfd0oq65nxnOr+HprNjdPH8inmzMxKI75JsbPw4U3rp3QfT+YEKJL2JODXNXiowE4F4juxjEJ0SdEBXrwn8vH8uUdU7l+ygC+3ZbDsl15bE4vxsPFyIj+9m1SirG90P7fygNN+ZJrDxTyjyUp5JTKqnJfZG6wsDunjCqTme1Zpcx+IZHbP0xme1YpL/x+LDGdyF+dMiiQ7Vml/GvpHso72Sq90La59M1rJzAy3Pr7Gx1kDTRH9PflpSvGApBXZgJoqgARE+xFgKdLjwmOAQYEenJ5fCR/nG2tHrPjcBlaa+79bBs7Dpcd8w2si5OBW04fRGyoNz5uzkQGeHDvmUM4eKSSuS//QuL+Ah6bOxxPaREsRK/W4TNYa/1Cy6+VUv8Gfuy2EQnRB91/9lB+TsnnH0tSKKgwcfqQ4DZXp9oS5OXKDVOjeX/dITKKqokO8uT9deks33OEjzdmcu9ZsXhWWjq+I9ErbEwr4vK3NgDQ39eNnDJrSk5qQRV3zxzMnJFhnbrfyYMCeXnlQd5ck4bBoPjLnLiOT2pBa82hoiqmxgRxzogwKmrNbD5UgneLQHDe2HDeX3eI/HLrmDelF+HpYiSuBwXGjYwGxbOXjkZrzcINGfzz+xRSCyr5dlsOANdNGWD3fcVHW3OqUwuqePPaCZwzonP/R0KInqMzRSg9gIiuHogQfZmbs5E5I/uRXVrDaQMD+Pdlo4/r/MZL6lsyrbWVS6rriQxwZ0pMIE8v3cuja2v4Zmt2l49bdJ/0wirybMFvSVUdy3blkl1aw9+XpDR9j5db6zWMe2Z3vtnA+AH+TLXV3U09zuYh5gYLty9MJr/cRLiftQ30vLH9eeCco5vh9Pd1Z19+BfvyKliyI5cJ0QF2vxl0BKUUL10xDh83Z9779RDTBweR9vR5xEfbX1ZxakwgX94xhV8enCnBsRB9hD05yDtpLutmBIKR/GMhjtudM2OIC/Pm/NH9jjtgGBLqjZ+HM2+uTiNhaAhHKmoZH+XPs5eMJu7xZQC892s6F44L746hiy62cEMGj32zC4C5o/u1ahgD1i5e540KY3SEHwUVJjKKqjEaFC5OnQ803ZyNfHzLZG58bxNZJfan5mitefzbXfy4O59JAwO4dIJ1fcTZaOCumUd3irx2ygCW7c7jwld/pb7Bwn1nDen0mE+W6bFBLL57Oh9vyuS6KQOOu1qMUkrqlAvRx9iTJHV+i8/NQL7WunuKaQrRh/m4OXc6gDUaFK9cOZ6bP9jMVW9vIKu4hjkjwnBzNrLuoVn89ZM1rMgsI7+8VlrX9nAmc0NTcAzN3RSDvFy4e+ZgskpquP/sIXi4WP889/dzp79t1bYrRAZ4kNROl8ffWrw9h082ZXHXzBgeOKfjtIzJgwL5y5yhPL10L+eODDuqHnBPFebr1iuCeSHEyXHMAFkp5aO1LgcqfnOTj1JKA+Va66O7IAghusX02CBeumIcty9MBmhqLtLfz52JYU78nGFm0tMr8HV35k9nxnLjNCkj1ZMUVZrYcbisKU3mlavGcVp0APd9tp21BwuJHxDADSfh/ywqwIOKWjNFlaamJiMtvbh8P+mFVfztghEUVJp4afkB4sK8uf+soXY/xi0zBuHp6sT0wSe/IYgQQnSF9laQP8a6epyMNcXit9ecvJRSb2utH+muwQkhWps9rLnJQ4hPc3AT62fg3evjSS2oZPX+Ap78LoUATxfmjZWUi54gv7yWc15cQ2l1c/WIEf19CfFxY+H8SSzblcfkQSfnEn3jiu5nSYfxdnNifJQ/w20VVQoqTLy4/ABA02Y1gIfOjTuutAOlFFdPsn+TmxBC9DTHDJC11ufb/m1zSUMpZQR2ARIgC3GSOBsNnDU8lE3pxcyMaw6WlVLMHhbK7GGhXD81mqvf3sjj3+wiJtiLkeG+DhyxAEjOKKG0up6nLxqFRvNzSj4DApprWne2MkVnjIn0w8vViWeX7QUgzMeN9Q/PIqOommve3QjA5fGRDAnz5teDhazce4SEocEnbXxCCNETtJdiMb69E7XWW4BhXT4iIUS7XrlqHFpbN121xdXJyPOXjeHKtzZw8evrmBoTSNKhEh45bxhXTYo6yaM9tZVU1fHE4t1kFVcD1g15vu7ODl1ddTYaePnKsRRW1JFeVMXrianM/s9qDhfXUGfrJvfMJaNQSnHD1Gj25JYTF2ZfzW4hhOgr2kuxaKx/7AbEA9uxplmMBpKAKd07NCFEW1yd2g6MWxoY5Mn390znz59vZ9W+AgDeXJPKjNggIgOkG9/JkF1aw7XvbiStwNp9zsvVCR+3ntE8YlZcKACHCq0BclpBFTNig5gRG0RsiDdKWdMpjAYlVyCEEKek9lIsZgIopb4Cxmutd9q+Hgn87aSMTgjRaYFerrx342nU1jfw68FC7li4hYR/J/L43GEdbgarrW845gr1sWw+VMw/l6Rw71lDSBga0vEJfdy/lu4hv6yW0RG+7DhcRrife1Pg2VNEB3my+O5pxAR7Sec3IYRowZ6imkMbg2MArfUuJLVCiF7DzdnI7GGhrHlwJiP6+/DRxsx2v/+dX9IY8+RPrNp7BICPN2Zy9n9X8/aaNMwNbXfsq6lr4E+LtrH9cBmr9xd0+c/Q21TXmVm+J5+Lxoczd1Q/AEJ9e2b5vdERfhIcCyHEb9gTIO9QSr2jlEqwfbwN7OjugQkhulaYrxuz4kI4WFBJpantUuaFlSb+9cNeTGYLty1MZsH6Q/ztu93sz6/kqaV7uPC1X6morT/qvDfXpJJdam0+kVNqfxOKvmpbZim19RZmDwtl3thwrp08gGcuHuXoYQkhhLCTPQHyjcBu4I+2j93ADd04JiFENxkT6YfW8HlSFlrro25/e00aDRbNF7dPYWCgJ098uxt3ZyObHp3Ni5ePZVd2Oe//eojL31zPGttKcXZpDa8npnLBmP6cMSSYnNLak/1j9TiNtY7HR/oT5uvGPy4c2aXNPoQQQnSvDgNkrXWt1vq/WuuLtNYXYa2L/J+OzlNK/U8pdUQptavFsQCl1M9KqQO2f/1PbPhCiOMxZVAgAE9+l8LHm1qnWmzNLOHdtelcOiGC+OgAFs6fxNWTovj4lkmEeLsxb2x/4sK8+c/y/WxML+ahL3dQZTLz7A970dpaK7e/n7usIAO7sssZGOSJr4ezo4cihBCiE+xZQUYpNU4p9ZxS6hDwd2CvHae9D8z5zbGHgBVa61hghe1rIcRJ4uZs5O/zRgDw1ZZsLBbrKnJJVR13f7yVMF83Hp87HIBgb1eeumgUI/pbqxgopbh4fDhaw+gIX3LKahnx1x9ZvD2HOxJiCPdzJyrAg6KqOk5/bhUfbsjgD59sJb2wyjE/rAPlltcS4S8rxkII0Vu1Vwd5CHCl7aMQ+BRQjdUtOqK1XqOUiv7N4XlAgu3zD4BE4C/HM2AhxIm5bko0dWYL//x+D7P/s5pBQZ5szSqlstbMF3dMaXfV89IJkWzLKuXhc4fx8ooDfJ58mDkjwvjTmbEAJAwN5tlle8ksrubxb6wXj7zdnHj6olMr//ZIeS2Dg6XNshBC9FaqrTxEAKWUBfgFuFlrfdB2LE1rPcjuO7cGyEu01iNtX5dqrf1snyugpPHrNs69FbgVIDQ0dMKiRYvsfdg+rbKyEi8vL0cPw+FkHlo73vnQWrM0vZ7P9zdvuDsjwokbR7q2c1ZrdQ2a9DILg/0MGG1tiLXW/N9WE8MDjTgb4b1ddfi5Kh6c6EZlvaa/pwEvl+4tdebo3w2L1sz/qZrzBjpz6RAXh40DHD8XPY3MR2syH1YyD62davMxc+bMZK11/G+PtxcgXwhcAUwDlgGLgHeO1Xr6GPcRzTECZNvXJVrrDvOQ4+PjdVJSkr0P26clJiaSkJDg6GE4nMxDa52dj+SMEjKKqrjvs+18e9c0xkS2+X6101buzeem91s/dyMD3Pno5slEBXZPwxJH/24UVJiY+NRy/j5vBNdNiXbYOMDxc9HTyHy0JvNhJfPQ2qk2H0qpNgPk9hqFfAN8o5TyxJoa8ScgRCn1OvC11vqnTowjXynVT2udq5TqBxzpxH0IIbrIhAH+TBjgz9zR/ezqkK4/DAAAIABJREFU0He8Zg4N4W8XDMfDxYmS6jr+9cNesoprWLw9m7tnxZ7Qff+ckk9MsCeDgnvWSsfriakAhHjbvxovhBCiZ7GnikWV1vpjrfUFQASwlc7nDS8Grrd9fj3wbSfvRwjRhbojOAbrxr4bpg3k9xMjue2MGPb+Yw5DQ73ZmF5s1/nLduXy4BfbjypJV1pdxy0Lkpj1wmr251d0x9DbZTI3sCe3HLCmlTQ2UPky+TD/+zWdqTGBTBkkOchCCNFbHVf7JK11CfCW7aNdSqlPsG7IC1JKHQb+CjwDfKaUuhn+n73zDq+juP73e9Tde8Gm2Kbj0B3TAjjUJCSQkEoaIYUkBPL7JqSQRgihE2pooZcQ0wI4gLGNi9y73Lssy5Ily+pdunV+f2y5u1dXsiRfq9jnfR4/1t06e3Zn5jNnzsywG/hGRxOsKErvxVrVbyRPZe/k38t2c9bRQ0hLFU4YNSDh8T/7dw4A3/z00by5soDqxhAPfeN0/jk31z3mikcW8KmxA7n2zCO5+owxgDVIbmdZA5PHD3XjoztKWV2A0rpmdxYPL68vK+DODzfzg/PHsWBHGRmpKdz/1dP4w3sbOG/CMF754WTSU9s1SZCiKIrSAzlo64saY65rZdelB+ueiqL0fH51+QlsK6njz++7U6STkZZCNGo4Zlhf7vnKqZx59BAMMa/x919YTkMwAsCpd1jRXdecMYbffe4kZm0q4d2cIu78cDP3TN9C/3SonjEHgJ9eNIE/fOHk/aYpGI7SFIowqE9sBo9bpuawLK+SP191MpecNNIXyrF6t7UQyMtL8hkxIJOyugDXPLmY4f0zeOo7Z6k4VhRF6eUcNIGsKIqSiPTUFJ78zln8/cPNHDmkL/0zU9lT1UQ4anhh0S6++ewyTh07iFsuOQ6Av3zxFBbnlrNoRzlBO5ThsW+dwTVnjAXghgvGc8MF49m+r44n5+Wyt2QfV5x9Aqt3V/HSknxu+uxxPuHrJRSJkp6awk2vr2b2llJ23fsFRITmUIRleVYYyF0fbeG+j7fy7k3ns7uikfzyBpbvquCSk0Zy/fnjOHfCUH748koW51bwf5edwJB+3TtzhaIoinLgqEBWFKXLyUpP5e4EcyNfevJINhXV8sDMrdz42mpE4GtnH8mPPjOe5lCE77+4gs3FtVx9+pgW554wagCPfetMawT2hRM4+5gqPt5YwtPZO/m/y45nT1Uj3/jXMn535Ynkltbz8cYSimuauOzkUczeYo0XnretlLlbS/n3MmuVwak/OZexg/tw7dOLuf7FFVQ1WtPiDembzpfPHMvFJ4wA4NnvTaKouqnVUBFFURSld6ECWVGUHsP5xw7n/GOHc8ywvvzqzbVMHj/U9f5mpafy2o8mE4karGnU2+aMowbzpdPH8Mz8nby4aJfrfb7t3Q2kpwr9M9M4bkR/VngGDP7w5VVkpqUwamAmp44dzLkThiIiPH7dmVz/4gqG9stg0e8/S98Mf9HZLzNNxbGiKMohhApkRVF6HFdMHM3Gv13ZYntHZtsQER795hl869NHMWtTCVtK6hiQmcaVE0dzxcRRDO5rhULUB8J8srmEv07bRN+MNN696XzGDPYvE33+scN57UfnYAwtxLGiKIpy6KElvaIoPZL2eIn3R2qKcMFxw7nguNanXOufmcZXzjySL502hhQRUlqZ9eLcCcMOOD2KoihK70AFsqIoCpCmM08oiqIoNlojKIqiKIqiKIoHFciKoiiKoiiK4kHil3DtiYhIGdbKewoMB8q7OxE9ALWDH7VHDLVFDLWFH7WHH7WHhdrBz+Fmj2OMMSPiN/YKgazEEJFVxphJ3Z2O7kbt4EftEUNtEUNt4Uft4UftYaF28KP2sNAQC0VRFEVRFEXxoAJZURRFURRFUTyoQO59PNvdCeghqB38qD1iqC1iqC38qD38qD0s1A5+1B5oDLKiKIqiKIqi+FAPsqIoiqIoiqJ4UIGsKL0EScbay4pyiKP5RFH2j+aT/aMCWemxiMiJIqLfaAy1hdICzSctUFsoLdB80gK1xX5QA/UQROTLIvL37k5HT0BELheR5cCP0W8UEblKRD4E/i4iF3R3eroTzScxNJ/40XwSQ/NJDM0nfjSftB8dpNeN2F0cKcANwG3AMcAlxpiF3ZqwbsC2RRrwF+A64PfGmHe9+81h+LGKyNnA08AdwEDgEmCJMeZlEUkxxkS7M31dgeaTGJpPEqP5RPOJF80nidF80jEO+9ZUd2IsIkAucCZwE3BYtvptW4SAKPCOU5iJyIUikt69qetWLgMWGmOmA9OAEuCXIjLIGBM9HOLINJ/E0HzSKppPNJ+4aD5plcM+n3QEFcjdgIj8UkSeE5Ef25vmG2PqjDHPAf1E5Ef2cYf8+/HY4kZ70zPAESLykohsAH4HvAD80D7+kM7AHnv8xN40D/iSiAwxxjQBIaAG+D1YFUE3JfWgo/kkhuYTP5pPYmg+iaH5xI/mkwPjkM8wPQ0R+QHwbeC/wPdE5A/ABM8htwO/tj/gQ7q7I84W3xGRPwMB4H0gA/g6cLW9/1oROfpQzsBx9viuiPwJyAdmAq+JyEKsb+U+YLCI9OumpB50NJ/E0HziR/NJDM0nMTSf+NF8cuCoQO56LgXuN8bMAG4FsoDvODuNMR8DW4AbRWSAiHy9e5LZJcTbIhP4qTHmfeBGY8xWuwBbD1RjtXYPZRJ9G983xtyC1V16pzHmBqAZ6GOMaei+pB50NJ/E0HziR/NJDM0nMTSf+NF8coCoQO4iPN1ba4AvAhhjVgFLgbFxo0l/D9wL7ABGd2U6u4I2bLEYGC8iF8Rl1uuBPkBVlya0i9iPPU4QkQuNMQXGmE/s464CdnZ9Sg8+mk9iaD7xo/kkhuaTGJpP/Gg+SR4qkA8SIjLa/j8FwNO9tRhIEZGL7N8bgb3AGPv444CnsLqFzjLG/LMr030wOABbfFVE1mF1A/3cGNPcpQk/SHTQHsXYlZqIXCQi84HjsWLrej0iMlFEspzfh3k+6awtDtV80hF7HOr55AIROdb5fZjnk87a4lDNJx2xxyGdT5KNCuQkIyJnisgc7NHDzsfqadXtADYB3xSRVGPMHmAUMM7eXwPcbIy51hhT3KWJTzIHYIvx9v7twM+MMd83xuzr2tQnnyTYIx+4yRjzFWNMeZcmPsmIyGkisgi4Cxjm2X445pPO2uJQzScHao98Dp18cpaIzALmAoM82w/HfNJZWxyq+eRA7ZHPIZJPDhYqkJOEWDwCvAq8Yoz5iWefd37BOmAhVnzUP8SacmYIUAFgjCkzxuzo2tQnlyTYohzAGLPBGLO0a1OffJJojwJjzKauTf1B489Y0y99xRhTBGAX4odNPvHQWVscUvnEw4Hao9fnExFJF5F/Ac8Cj2MNrJpi7zus8kkSbHFI5ZMk2qPX55ODjQrkJGEH/w8A1hhjXgUQkWO9AkislY3+g9Wq/wvWx7rQ/v1KtyT8IKC28KP2iCEiKSIyAag3xjxqb7tcRAYDYv++C7XFYWULUHvEkQksAC40xnwIvAucLCJpxprrGBH5G2qLw80WoPboMtK6OwG9GRE5F6g0xmy3N/0aWCkitwNXAvuAehF5FKgHjgX+YIzJtc//IdDPGFPX9alPLmoLP2qPGF5bGGsy+nLgQhH5Itbyr32w7LFFRKZixQiqLQ5xW4Daw0tcmdFgjHndszsViBhjwiIiwKlYsaO3GWN22uerLQ5BW4Dao9swxui/Dv4DBgMfYXVh/Bnrw3P2/RJYB1yE1dK7H2sE8QjPMSnd/QxqC7VHN9vij0AOcLX9+yKslZ3OU1sc2rZQe7TPFlhe8xT77+OwGgpDnH1qi0PbFmqP7v+nIRadox9W3M8t9t/OKFGMMY8DU4wxC4wxziTlk4BGaBFzeiigtvCj9ojRqi2AD7EGEg21f6/CWva0GdQWHNq2ALWHl4S2MBZRe9BVvn3Mxc4+UFs4++CQtAWoPboVFcjtRES+LyIXi8hAYw0ceRZ4C6vQPkdExjjHGmO88yueDRQCEXtfr/9g1RZ+1B4x2mGLsQDGmPXAb4FfiMhw4LtYXYPO4CK1xSFkC1B7eGlvmSEiYj9vpn2q00gQUFs42+HQsAWoPXoSKpDbQCyOEJF5WJOLfwd4WkSGG2OajTGNwGysAPhLPOdlisgUEVmFFW96n+nlcy6qLfyoPWJ01hbGmBeAqcAdwFeBHxtjCrr8AZKI2sKP2iNGZ2xhjDFizUzQgFVfn+ts756nSA5qCz9qj56JCuRWsD88Z/aBImPMpcDPgUqsFh0AxpjFWF0cJ4nIIBHpY3efB4G7jDFfMrGBWr0StYUftUeMTtjiRNsWA+ztDwO/MsZcaYzZ3OUPkETUFn7UHjEOoMzoa+yZCYAfGmPu6NqUJx+1hR+1R89FtLHhR0RSsRZySAWmAwOBrxljrrf3p2CtRvNNY8x8e1t/rEntLwCOBs40vXxSdlBbxKP2iHGAtjgfOAa1xSFnC1B7eFFbxFBb+FF79HzUg+xBRC4GVmN1Y+Rifbwh4LMiMhncuJ477H8OVwE3AWuBUw+FD1Zt4UftESMJtliH2uKQswWoPbyoLWKoLfyoPXoHOg+ynyjwkDHmNQARORMYD9wOPA2cbbfq3gcuEZFxxph8rOD4y4wxC7on2QcFtYUftUcMtUUMtYUftUcMtUUMtYUftUcvQD3IflYDb9ldHwCLgaONMS8DqSJyi92qOxJrYu58AGPMtEPwg1Vb+FF7xFBbxFBb+FF7xFBbxFBb+FF79AJUIHswxjQaYwKewPfLgTL77xuwlnP8EGt0dQ7EplQ51FBb+FF7xFBbxFBb+FF7xFBbxFBb+FF79A40xCIBdqvOAKOA/9mb67BWePoUsMtY8xMe8lOqqC38qD1iqC1iqC38qD1iqC1iqC38qD16NupBTkwUSAfKgdPsltxfgKgxZpHzwR4mqC38qD1iqC1iqC38qD1iqC1iqC38qD16MDrNWyuIyLnAEvvfS8aauP6wRG3hR+0RQ20RQ23hR+0RQ20RQ23hR+3Rc1GB3AoiciTwPeBhYy3ucNiitvCj9oihtoihtvCj9oihtoihtvCj9ui5qEBWFEVRFEVRFA8ag6woiqIoiqIoHlQgK4qiKIqiKIoHFciKoiiKoiiK4kEFsqIoiqIoiqJ4UIGsKIqiKIqiKB5UICuKovRwRCQiImtFZJOIrBORW0WkzfJbRMaJyLe7Ko2KoiiHEiqQFUVRej5NxpgzjDETgcuBzwN/3c854wAVyIqiKJ1A50FWFEXp4YhIvTGmv+f3BGAlMBw4BngN6GfvvtkYs0RElgEnA7uAV4DHgfuAKUAm8KQx5l9d9hCKoii9CBXIiqIoPZx4gWxvqwZOBOqAqDGmWUSOB6YaYyaJyBTgN8aYL9rH3wiMNMbcJSKZwGLg68aYXV36MIqiKL2AtO5OgKIoinJApANPiMgZQAQ4oZXjrgBOE5Gv2b8HAcdjeZgVRVEUDyqQFUVRehl2iEUEKMWKRd4HnI41rqS5tdOAW4wxM7skkYqiKL0YHaSnKIrSixCREcAzwBPGipEbBOw1xkSB7wGp9qF1wADPqTOBn4tIun2dE0SkH4qiKEoL1IOsKIrS8+kjImuxwinCWIPyHrb3PQX8V0S+D8wAGuzt64GIiKwDXgYew5rZIkdEBCgDvtxVD6AoitKb0EF6iqIoiqIoiuJBQywURVEURVEUxYMKZEVRFEVRFEXxoAJZURRFURRFUTyoQFYURVEURVEUDyqQFUVRFEVRFMWDCmRFURRFURRF8aACWVEURVEURVE8qEBWFEVRFEVRFA8qkBVFURRFURTFgwpkRVEURVEURfGgAllRFEVRFEVRPKhAVhRFURRFURQPKpAVRVF6CSIyVUS+3N3paAsRuUNE/m3/fbSI1ItIapLvkS8il9l/3yIi9yfz+oqiKCqQFeUwwRYVQREZHrd9jYgYERnXxemZIiJ7DvI9xtnPVm//yxeR2zpwvhGR4w5mGtuLiJwGnA5M6+60tBdjTIExpr8xJnIQb/Mc8B0RGXkQ7+EiIpeJSI6INIjIHhH5RivH/dHz3dWLSJOIRBPkv6EiUiYiizzbjhKRZSJSKSIPxR3/sYhMOjhPpyiKgwpkRTm82AVc5/wQkVOBvt2XnC5jsDGmP/A14C8icnlX3DTJntOfAq8bY0wSr9nrMcY0Ax8D3z/Y9xKRU4D/AH8CBmE1WFa3kq577MZBf/vbux/INsaUxx16P7AlbtsfgFeA8cCXHUEsIt8EdhljViXrmRRFSYwKZEU5vHgNv5C4HnjVe4CIZIrIP0SkQET2icgzItLH3jdERD60PV5V9t9Hes7NFpG/i8hiEakTkVnxHrP2ICIn29eqFpFNInK1Z98wEflARGpFZKWI3OX1vrWFLSw2AWd4rvdDEdliP89METnG3r7APmSd7QH8poj8IP5eXi+ziLwsIk+LyHQRaQA+a3utfyMi60WkRkTeFJEs+/jhtg2rbW/hQhFprVz+PDDfc99jRWSuiFSISLmIvC4igz3727rvFNv7eauIlIrIXhG5wXNutoj82PPb99wi8piIFNrvYLWIXJgowR4PfpqInBfnUW0WkXz7uBQRuU1EdtrP85aIDPVc53sistve96cEt8oGrmrFbsnkz8C/jDEfG2PCxpgKY8zO/Z0kIoKV716J234+8CngpbhTxgNzjTE1wEpggogMBG4D/piE51AUZT+oQFaUw4tlwEBbgKYC3wL+HXfMfcAJWCLyOGAscLu9LwWrMj8GOBpoAp6IO//bwA3ASCAD+E1HEigi6cAHwCz7GrcAr4vIifYhTwINwGgsgX99B659LpYgybV/X4MlOK4FRgALgakAxpiL7NNOt72Ab7bzNt8G7gYGAI6o/AbwOSzhcxrwA3v7rcAe+96j7LS08BCLSD/73G3ezcC9wBjgZOAo4I64U1u7L1j2G4T1fn8EPCkiQ9r5jCuxvo+hWB7Vtx3x3RrGmKUeb+oQYDm2rbHe8ZeBi+3nqcJ6z47X9mnge/a+YcCR/quzBcubmxC7kVDdyr+n2vnMAOfa19tgNyr+7RXybXAh1rf8X0+aUrHyzs20fOcbgcvtBs/ZWI26vwOPGmOqO5BeRVE6iQpkRTn8cLzIl2MJiyJnh+3puhH4lTGm0hhTB9yDJaSxPWb/NcY02vvuxhI1Xl4yxmw3xjQBb+Hx1raTc4H+wH3GmKAxZi7wIXCdLSq+CvzVTsNm4rxyrVAuIk3AUuAp4H17+8+Ae40xW4wxYftZz3C8yJ1kmjFmsTEmanf/AzxujCk2xlRiiX/HJiHgCOAYY0zIGLOwlRAKxzNc52wwxuQaYz4xxgSMMWXAw7R8F63d17n3nfZ9pwP1wIm0A2PMv+1vIWyMeQjIbO+5TrrsZ3G8wT8D/mSM2WOMCWAJ/a+JSBpWWMyHxpgF9r6/ANG469Vhif3W0nuaMWZwK/9u6kC6j8QS6l8Fjgf6AP9sx3nXA+8YY+o9234JLDfGJArRuBdLVM/H+l4zsBo4H4jIf0RkgYjc3IF0K4rSQdK6OwGKonQ5rwELsLyKr8btG4EVk7za0sqA5alMBRCRvsAjWF5Jx9s4QERSPQOxSjzXa8QSux1hDFBojPGKoN1Yns4RWOVWoWef9+/WGI7lpft/WB7edCCI5Ql/TPwDocS+1+4Oprut9MTbZIz994NYYnCWbe9njTH3JTjf8RoOAJoBRGQU8BiWkBqA5fCoaud9ASrsRoF3f7velYj8BsvrPAbLrgOxbNyec38KTAHO8bzjY4D3RMT7ziNYXvUxeGxqjGkQkYq4yw4Aatpz//YiIs8A37V/3mOMuQerx+QlY8x2+5h7gNn7uU5f4OvANZ5tY7AE8tmJzrEbNN+0j03Byq8/wwqx2IjVE5AjInOMMfHxy4qiJAH1ICvKYYYxZjfWYL0vAO/G7S7HEgETPR62QXa3OFghASdiiZuBgBOGICSPYuCouFjco7E83WVAGH8X+1HtuagxJmKMeRhLYDpew0Lgp3EexT7GmCWtXKYBz6BGERmd6FbtSY+dpjpjzK3GmAnA1cCvReTSBMc1ADuxQl8c7rHvdar9Lr5L8t6D7zmxwjEAsOONf4cVvjHEGDMYS5zu9972uX8HrjHG1Hp2FQKfj3sPWcaYImAvnndsC85hcZc+GVjXxn03xcU/e/89k+gcY8zPPIPs7rE3r8f/ftvzrr8CVGLFSTtMxuo52CwiJVgNnckiUiItB3beCCwzxmwETgVWGWOCwAb7t6IoBwEVyIpyePIj4BJbeLnYHr3ngEfEnjZLRMaKyJX2IQOwBHS1HXv51wNNiIhkef8BK7C8mb8TkXQRmQJ8CXjD9lK/C9whIn1F5CQ6PnvBffa1s4BngD+IyEQ7LYNE5OueY/cBEzy/1wETReQM+/w7OvzAHkTkiyJynB3aUoPlNY0PH3CYjj+EYgBWWESNiIwFfnsgaYljLXCtbePjsL4X733DWI2VNBG5HcuD3CYichRWyM33HQ+sh2eAuyU2QHKEHR8O8A7wRRH5jIhkAHfSsu66GGsmi4QYYyZ6Z5SI+/ez/aXdw0vADSIywRbqt2GF/7TF9cCrcaEzHwPjsEJezsCK8V8DnOHpicHOg78g9p3twhr42R+YBOR1IO2KonQAFciKchhijNnZxlRRv8caxLZMRGqxupCd+NJHseIuy7EG/M04wKSMxRLc3n9HYQniz9v3eQpLVG21z7kZK960BCtcZCoQ6MA9P8IKRfiJMeY9rGm23rCfdaN9X4c7gFfswVzfsIXdnVg22UFsEF5nOd6+Vj12fLQxZl4rxz6LNd+v46n9G3AWlrD+iJa9AQfCI1ghKPuwYrxf9+ybifXet2OFoTTTvjCXS7FCJt7xeG832fseA/6HFWpSh/VtnQNgjNmEJRL/g+VNrsIa2AhYDSys3pD2xKIfEMaYF7HCkpZjPXsAK1TCSUu9eGb0sBsulxAXymTHjZc4/7DeYcj+28s/sOLEndjle+3rFQIftJGHFUU5QCTxeBBFUZTegVirqI02xrR7Noveioj8B3jLGPP+fg8+TBCRW4CjjDG/6+60KIpy6KACWVGUXoUdVpGBFYP5aazQgx+raFQURVGShc5ioShKb2MAVljFGKwQgIfoRcsvK4qiKD0f9SAriqIoiqIoigcdpKcoiqIoiqIoHnpFiMXw4cPNuHHjujsZ3U5DQwP9+vXr7mR0O2oHP2oPP2qPGGoLP2oPP2oPC7WDn8PNHqtXry43xoyI394rBPK4ceNYtUpns8nOzmbKlCndnYxuR+3gR+3hR+0RQ23hR+3hR+1hoXbwc7jZQ0QSrpqqIRaKoiiKoiiK4iHpAllEPici20QkV0RuS7D/1yKyWUTWi8gcZ+UkRVGUQ4WdZfXUB8LdnQxFURSlkyRVINtryD+JtRLVKcB1InJK3GFrgEnGmNOwlhB9IJlpUBRF6W4ufWg+17+4oruToSiKonSSZHuQJwO5xpg8Y0wQeAO4xnuAMWaeMabR/rkMODLJaVAURek2nKkzV++u6uaUKIqiKJ0lqfMgi8jXgM8ZY35s//4ecI4x5uZWjn8CKDHG3JVg343AjQCjRo06+4033khaOnsr9fX19O/fv7uT0e2oHfyoPfx0tz2ixvDDmZYP4OXPde9I8O62RU9D7eFH7WGhdvBzuNnjs5/97GpjzKT47d02i4WIfBeYBFycaL8x5lngWYBJkyaZw2lEZWscbiNLW0Pt4Eft4ae77REIR2DmDIBufy/dbYuehtrDj9rDQu3gR+1hkWyBXAQc5fl9pL3Nh4hcBvwJuNgYE0hyGhRFUbqNSFRXJ1UURentJDsGeSVwvIiMF5EM4FvA/7wHiMiZwL+Aq40xpUm+v6IoSrcSVoGsKIrS60mqQDbGhIGbgZnAFuAtY8wmEblTRK62D3sQ6A+8LSJrReR/rVxOURSl1xGJqEBWFEXp7SQ9BtkYMx2YHrftds/flyX7noqiKD2FUDTa3UlQFEVRDhBdSU9RFCWJaAyy0hEqG4Ksyq/s7mQoihKHCmRFUZQkEtYQC6UDXPfsMr72zNLuToaiKHGoQFaUXkhxdRPBsHbl90TUg6x0hG376gD9bhSlp6ECWVF6GcFwlPPvm8tv31nX3UlREqCzWCidIRTRBq+i9CRUICtKLyMQjgDwyeZ93ZySw5emYITGYDjhvkSewIU7yrjrw80HO1lKL0YFsqL0LFQgK0ovw4lxlW5Ox+HM2Xd9wim3z0y4L5xgFovvvbCC5xftOtjJUnoxGruuKD0LFciK0g1sLamlORTp1LlB29MkohK5u2gMtv7u2oolNUZFkJIY9SArSs9CBbKidDGldc187tGF3D5tY6fOdwbnqTxOHjVNoU43WOJpKwZZ45OV1gjpt6EoPQoVyIrSxVQ1hABYvbuqU+c7HuRDXSEbY/jl1DV8sK74oN/r9L/N4lvPLkvKtdryIKuXUGmNUIJZaWqaQjwwYyth/W4UpctRgawoXYwjktJTO5f9DhcP8trCav63rpg/vbehy+6XDNoSwb19ar7c0npyS+u65F5ldYEuu1dPIFHs+v0ztvJU9k6mbyzphhTtn4KKRl5dmt/dyVCUg4IK5MOAKQ/O41vP6kT0PYVA+MAEcugwiUFemlcBwHnHDuvmlHQMrwc5Pua4twvkyx6ez2UPL+iSe015cF6X3asnEEowSM8J++mp3823n1/G7dM2UR9IPKOLovRmVCAfBuRXNLIsT5cy7Sk404OlpXZO4DqVZUoP08fbSuqobgwm7XrN9kC4vhlpSbtmV7DO44mOD7cIald5u2loYyDkoUiingex+4l66uDO6kYrXEwXOVEORVQgK0oX0xCwKv70lE6GWPRAD3Ikavja00t4Zn5e0q7ZbDcEumtg26/eXMvAgG5cAAAgAElEQVSH6zsW/1xY2cg/Zm13f8cL4p7qCezJHC7xt4k8yE4juIfqY5fD5R0phxcqkBWli0mWBznZ8tgYQ21zqFPn5lc0UBcIU9OUPA9ywO5eTlbla4whmkBsJ/LORaKG99YUcfN/1vi27a8reeGOct/veEGcSAQd6lQ3Bjv8Dr3vpLb58Oi+T+hBtjN5tJsUciAcaVej7nD8rpVDHxXIymHJ7ooGltsxrl2N03WcdqCD9JKskJ/K3sm598yhqRNd29tKrMFUnTm3NZpD1nOGIoZI1PDgzK0UVjayY18dVQ1BfvP2ug7FPv7h3Q1M+OP0FtsTVe4V9YEW26auKOCiB+a5KxkmYvFOv0B2uqAdguEohZWNTLx9Brml9e1Nuo81BVWsyu8ZIVPztpayZW9tq/uD4Shn3PkJd3ywqUPXrW0Ke/7uXKOtJ1PTFGqxEmM4Ynh/TRHT1ha521LsTN5dEQwTb5/J+ffNaXW/UwQ54v72aRs5485ZXZAyRTn4qEBWksruigY2Fdd0dzL2y8UPZvPNJE3r1VEabVGX0UkP8sHw1uyrbeaJubk0BiOUJxCH+2OrI5CTNJcwxJbUjkSjLM4t58l5O7nwgXl8/rGF/Paddbyzeo9PTOyPN1YWJtyeaPaAvTXNAPTLSHW3FVc3UdkQZHtJYmEbjRqW7vQ3usribBmMRJi+YS8NwQhvrixod9q9fOWpJXztmZ4x6PaGl1fy+ccWtrp/b00TAG+2YvvWKK1rdv+u6QaB/MCMrVz71OJOnVteH2DcbR8xfcPeVo85/W+z+Ow/sn3bQpEo90zfwouL891tThjVwZoecPW+MD95dVWr+8NRQ3n9/nuFnFCiV5fubtEo7Cl8vGEvawo6N7VmT2ZlfmWviQE3xvSqqS5VICtJ5eIHs7nq8UXdnYweTYMtkFM66QIORizhmMwY5IdmbXPFbWcEybYSy4vYFEpe4ed4kMNRQ8TTxRyOGmZvKQVgSN+MDl83PswiUYPDEcjD+me62xzP/bo9sUF43lCALSW1VDb4xURZXZxADptu9wp2JXuqLIHc0W/dG1bR2bCfA+Gp7J3kFHRu2r/CykYA/jk3t83j9tX6v41NxTWU1gWo8+Q/x2ydbXhOW1vEoriwHy9rSyN8snlf5wcB2umLFz09cVDhz1/P4StPLenuZCSVJbnlfP2ZpTy3MHljPw4m/1tXzDn3zEnaokwHGxXIhzheMZBf3sDCHWVc/+IKolGr2/qp7FxqemiL/1DFCbHobEs6FLbeabLkcU1jiLdX7+FTYwdavzshkB0PcnMSQywcD3I4YkhtRWBlpXe8CAtF4+OCW76HEtvzObRfTIA7XrI1BYlnqViS2zJkp4VAjkQTxpXe9t/13D9ja3sfoV2U1DTz8OpmSmqa93/wQWJPlSUWUzs45Yo3/MAbbtEaeWX1PWagmPNNlNV1zO5ztlqNPm/+c6zWWUHx/95Yy3dfWN7q/rImy2aBAxw8Gh+nrLO1dA07yxsA2F3R2M0paR+5pfVUNgS7tUzqCCqQW6E5FOmRreCO4i2ofv56Dj9+ZRXzt5fRFIqwoaiGB2ZsY/aWfd2YwhhNwQh3/G9TwvjP/bF6d2WnQju6o7vHqfw7W4kEIsmNQa5tDmEMnDPemm+4o12kjcEwBbbXLJkhFjEPcrRVD2RnZoWI9xiHE3iQa2xR1tcTYuHcy9tN673WsrwKJgzv57tOSw9y7Fm8xcuagmpmbUruYhBPZeeyvizSoXxRVhdg7tZYeRAIRzjjzlntXs2wpinEvG2l7u/CSquh4X3WpmCE0tpmHp29vdXVJBs8seX7a7CV1we44pEFfJykxTQenR2bhaStePPWqLPT3p7QBC9Ow8vKj5bBnPIpmfnKS3mTdZ9AOEpVQ5AvPLaQfFt0tYf4GGSHNQXV/PiVlZ2yn8OyvApyekFIREMg3OF5oNfvqeaXU9cccKPOCdfrn5m6nyN7BnV2z1BJrQrkXs1Nr+dw6h2zWL8nOatrdRcBT5f3ztJ6V5SFIlF2V1gFYUMw+aPEp2/Y66vk2sOLi3fx8pJ8/r0sFpsZjSaeecBLNGr4+b9zuH/Gthb79tU2u12eiTgYXT3Xv7iCqStajy91RFNnp/yKzWKRHIXseI9GDrDCCTrqQd6+rx5jIDMthaZQhOcX5vHPOTuSkC7H0258jQGv17gznq9QOEp5fcANh/BW7tv31WGMcQWJ10Ps2D3PIyBC0ShbS2qpaQxRVN3EhBExgZyRmsL0jXtZ5hkMGopE3am7vB7kQDhCfkXjfr/Hez/e0q5nLK1tdmOuO9II/MV/cvjhy6vcXqWaxhDVjSH+9N4G5m8vc49rLU/+4vUcbnhppdvIdb71plCEuuYQlQ1Bzvz7LCbfM4dHZ+/g6eydCa/jTIUIUNnQdoO5pKbZjpXteMM6EdPWxhoDToW+t6ap3V6vjpR78U6YjLQUQpHY9+d83/E9M68tzeem11fz2OwdnY7RDkeiVDZb9w+Go8zYVMLmvbWtvpO2CIb9z/HWykJmbymlyA6x6QzfenYZ1yYpJCKZzq6axpCvEXHrW+v4xes5vmMKKxvbrHcW7ijnf+uK2VPVRE1TqEVDui1eXZpPcbVlV+db6y1zxTsDbvepQO7dnH3MEOoDYXd0PliV5TPzd1LXDTFxncXbgg9Goq4nJxiOssvO5HXNYb73wnLeaEPUdZSbXs/h03fPZmYHvGLOyPxRA2Nxnxc+MI+L/zGvzfPW7ammtC6Q0PP812mb+Olrq1s9N9memfL6APO3l7Eqv3XPh+Nt9QrkiB3ysmhHOVc/sahN8RxKsgfZ+UZG2nZ/afGuNiuUbSV1Pls78cefGjuIpqAV0/jemvYPnmsNx4MciRqftz0rPZXHvnUG0LkBi6FIlFv+s4Y/vLse8M+zfMUjC7j17XVuHvfeN5BAaAbDUb729FKeX5RHZUPQF5Jxz7Wn0hSM8C3PYFDve/UL5CiRqGlzZoslueX8q53zTD+/aJd7r440Isrtijq3rN53bm1zmOtfXOEeF4xEEw4M2mzPaBE18N/Ve3hzVWxw3t4aq7HaHIryvXOPAaxGVSK8jfb4WN14nB6P5iTEvwfDUTd/Aq7n/Lx753Luva3P5uCl3hM/vT8Panz4yJQTRvi2Ow6O+Gd7fXkBszeX8sjs7Vz6UDZbS1rOJLI/Ubi3ptmNgw+EI+7Knm01qIqqm7j1rXVuQ661QYTLd1lludPQsfLJEt7N2dNmmg4WBxpC4uXqJxcxxTPAMqegqoUYvvCBeVz4QOv1liMUCyobufjBeXz67tntundpXTO3T9vkDqxscBdT6pwHuatDHZzxBCqQeznf/PRRgN/DuLm4lvs+3srHGzrelffKknzetiuLaNR0WZD6K0vzE24PhKNu3NKKXZUs3FHObe9uaHHcpuIaN47QIRiO7rfwHZCVxsCsdP672l8gRqLGV5is3l3F3z7YhDGGnWWWYPcOyCqqbnK7aVtj5iarSzhRaEBFQ4Bt++patXcypyUD2FBkdWe3Nh+wMcatgL2F9r3Tt3Ddc8uYsWkv6/fUtDkwKdnzIDvXG9QnHYAdpfUs2Zl4CrxAOMKVjy7g7Ltmu92DW0vq6JOeygmjBtAcihAIRymuaSIciXa4FyH+XmBVvl5hmZYibjhIZ7zwwUiUHaV1rvCK7+Z8N6eI15cXuPd20xOKkhEn6PZUNVEfCFPdaHlHvYP6rpw4ime/N6nFvR3R7c1CznNs31fHJ5v3+Qb7VTUEySur5+7pfu9xJGrYXdHAPdO3tPDofrR+LycfMdB+hvY1ImoaQ+43udMW6q01IAPhaELbO9siUcOtb68DrPcF9iwg9kqLXz5zLGcePbjV79zpsj56aN/9VqZV9jWT0dgtqGz0Cf+/fbCZh2a17JlqC+8gzooEYRbesvOLT/hnALn4REsgO17hYIIQi5//ezVbS+r4wqmjASuU48ZXWzoB9hfC5S2HA+Eo6fasOiH7+RN1/987fQv/zdnDHHuQrHgG6Xm/wSLHw2k3dN5aVciq3VW+VSYPlI7Uo8ks5516MxI1VDUEKa0LuO9rZ1k9v39n/X6v4QxCLaxq3G9I28aiGr7/4gqaQxG38VVllw9OuF6knR7yv3+4mRP+9DFghSWee+8c30xAe2uaOhXiCNh1eNtTVzrPXVKTnN6eg40K5FZwWmTr9tS4FXW1LXqcLlZjjM/D3BZ//d8mfmtnnAdmbuOkv8zwZe7CysakrbIVjRreXlVITWOIJ+cl7i4LRqLk2yEW3q7T+ALnqscX8Zn7Yy3hSNRwwp8/5o/vtRTTXm/JoD7pnHrkIPceYNlr1qYSLn5wHrmllt2++vQSXlqcTyAcdSvLQAc9QbM2Ww2WqgTLHDcEIkSihh37EmfcZHuQN7kCOXGhV1YXcL1B3gpsTWE1O/bVsaHI8gS15cVx9jn1UXO48wt8QEzUZKbFvBBrPRXZ+j3Vsa5yT0VT3RRiZ1k976zew0lHDKBfRipNtkBuDkX56WurmfjXmZ1OV8AjtvwCOSVWmXcihq+mKUR5fZC1hdU8vzCvhZC4yPbigV+AByNRjh/Z3yeS8+wKoawuQDhqGObxIKelpJAZN4gwGI6637fz/nIKqqiwK7ycgip+8uoqzr13Dv/vjTU0hyL8Y9Y2LnloPpuK/V7C5lCEm17P4dkFeb6wD4DKhiDHjezf4hna4q6PNrvCxqnoWhMWwTiB7Igpd2ClZyDkSUcMACyPpVOxD+2XwYCs9BaLgGwrqeMX/8mhvC5IisAxw/qybz/dz87y5gFPXs7bT0X95LzchPOgJzpvf7NReFmSW87UFTGveVldgN0VDZx/7xzXtt4ei3gBffTQvkDM0+bY01tOObHWToMWEi873xhou2wr9Dg+AqFozIPshHUk+G6cMiK+4RuKRGlMUJY2BMIEwhGemmfZ0PF4vrhoV5tCcn8OmEA4wp+nbeSkv8xwywBjDA9/sp2dZfUUVDT6whYORgx3ZUOQ7fuseqy6yYobfzfH32sSzytL8rl92ka3h8rbW9HaM//k1VUs2F5Gbmm9W6+k2uVfvcdD7yVq90Z6xxMAvLBol1veOSL1Dft7jUQN5907l693cgrJqSsKufSh+a2OK4CWIRaRqDmgOPWDjQrkVsiyC4J3Vu/h1SW7gZjocQrR/+YUceWjC8j2DEoB2FpSy7jbPmr1Q/nPcut6TuVT1xziwgfmdWgy/dLa5lZDPd5cVchv31nPi4t3tXp+0ONB9rJmP1MbLbDFtFMJrCmo4pn5lgj3di1mpKUwfng/8issj0xDIMxn7p/H84t2ETXw0Xq/F762OeTG+zW3M8MYY3VJ55U1cMSgLBqDkRaZzWlht7aYwcHyILfmFdhtF4hD+2X4CrXdFY1UN4XcdIbCrVcQznmOCLl1fiOn3dH+yfnrA2FXAH2wrtgNh8hMS+GVH04GYgL5o/V7ufqJxdz3sTXDgreiqW4McfnD86lrDnPiqAH0cQSyfYwzKt+pwOoDYcbd9lG7u1m907x5hXBqirgitTONyl0eMXnXR1taDNI7xfa8Wmn3xiBH6JeRxomjBrjbHDsW27NeDOvvEcip4oqO2DWi7ve9ZW8tkajxxVkuz6t0j5u2tpiNRTVuPk1LET43cbR7bFMo4gpOb8M2EI7QFIowwvZme223enclG4sSD9rz9ho436/3fQ/3TnkXiRKIxPbFZmZxvI8xu43on4kI7LXnkQYY2jeDgVlpvinNAGZv2cdH6/fy3po99MtIY9TALEr360H2p3Xu1n1c8tB8dx7iYDjqlltgCZsHZ27jfdtzllta5zoJ4hsaQIuBl23hTD/oUFYX4N/LdlNc0+yGazjf7I0XTeDOaz7lO94Rvb97Zz355Q1uYypRWd8/KxZ36g3tcUgkWL3s8cQHB8IRV7g730si72w/ezCY4xl2dHkwYhKmsT4Q5q1VeyiuaSY9VVxhfeeHm3lzVSF3f7Q5Ydp+8NLKFttmbipxBekNL63kP3Yvj9PIKKpu4vE5O3hh0S4uenAeFz8Yc+x4v+NXluTz12kbE963LcrqAr4ZnyoaAmy3e1qcVTbX7/HnrXjR+9f/bfLNFb3H0zuaSMRHo8adcjIYicYEsu26dxqHwXCUUCTKtpI6appCfOHxhXz3heX89LXVCXsCguGoW3844TkLdrSeB9qDs0hSW15k7yC9zcW1XPzgPE788wzmbSvl2qcWt+it7m5UILdCiqdJvqbQErquQLY/ICdmdu5Wf6H40fq99nar9dZaC8kpiPLs0IK5cYVrW0y+Z46vYs0treee6VuIRI3bZdLW8qQV9UFfN+6YQVmIwPJdsUoyUYyhEyN59jFDALj26SXc9/FWmkMR9+MHSE+xBHIwHKWoqonZW/ZRVN3kNho+3uifRH9fTcC9nyOMvHaLRg1XPDKf99ZY4uquDzdz3XPLWGhn6mvPGgvAZQ/P913Xqbg3tyaQk+BZMMawrrAaYwwbbQ9wax7kAlvsHDeyP8Gw1S2Zva2U8voAxsQqz7a6Rx3PqnNsQwedxz94cQWXPmTZ6Zapa9zBXBlpKVx8wgguPH44pbb35S3bG+Is+OCNhaxpCrpe0HHD+5GVnooxLZcGdtLreA0esWcJsOxV0+qAL6830iuE01M9AjmBnZrChs89uoB5WxPnp11l/grA6+3sl5HKcI/I9XmQw1aIxcQxMQG9s9S6ljNoZmi/mIhMFXE93Q6hSMyDvLawmsc8MyaAFd7iZWtJnSu++2Sk+kTRj19Z5Yog7/fm/D3CHnTpfYavPr2UL/7TP095ZUOQbSV1rocToC7gF50Pff10jhsZE4rxHuSaxpDbUAa/TaPGGgBaUNnII59YzzsgK42BfdLJK2/gl1PXuN+GM3C4qjFEv8w0jhiURWldgGA4yu3TNnLSXz5uMR2eG2IRjBCNGlekOLN3TF1RwPdfXOGGFKywyzhHpDw5bye3/dfyZsZ7kIf1y2D4gEziqQ+EeXnxLqJR45t1whEZDmX1Aff7z0j1N+qOGJTF+OF9fcePGpgFWI24376zzj13TUE1jcGwz+YDstJd8Z6VHuv9Ka1rxhjjznAAiQdVekMsrJ4N2xvZhkB2BoPVx+XxUDiasMyrbgzx1Lxczj5mCKccMZCGYMRX7zy3sOV4h8Zg2Ner6ez/6WurueKRBYC/Med4ip16NNvO940e54fXEfLPubm8t6aIT/11Js8uaP+AxBtfW8XNU2OD8Srqg2z39CBXN4ZaCGS/QyH23E4YjteDHO9UiUQNN7wcayjUNYdjAtnWJ04PbSAc5c4PNnPlowuYtraIrSV1nH/sMEKR2EIv3vq8MRh2y2mngfnJZkuvjB3cZ7+2aApGeHnxLl/j2+l5KKsLsHBHGc8nmJvZG4N89ROL3Ebaoh3l5BRUtwhh626SnhoR+ZyIbBORXBG5LcH+TBF5096/XETGJTsNycYRPc4HvLuigUjUsMXOHHO3lrorxGzZW+t+kAOzLG+Ad7ofb0HliA1HdCYKtI9ETQsPitNS91amn2zex7ML8liWV+FOUdXWNENOS9zh2JH9OeWIga4Hy3sfL/EzXjhlW0Flo08gi+AKiY3FNXywzi+It5bU+VqaeeWxvx1h5HgIAErrAmzfV8+v3lzHYznNzN9exrK8SuZuLaVPeionjrbuFR+v7HgsNu+tJRwXJwf+SiASNTwwY6tbSXu5d/qWVnsE3l9bxDVPLmbqikKKqpvITEuhujWBXNmIiOWVCkaiPLcwL6G3pK3QgYDrQd5/3JkxhuueXcarS/Pdbavs54i/h1M4DembQU1jkIhnZTinUvNWNE7hfs74odxwwTj62JV0fPy1U/E6wtC5xv0ztvHFfy7yVYb+8+znjLT0IKentO5BXlsaYWtJHb+xY2C96YeWHpJ6T1f04L4Z9M+MiVCvAA9GEghk+xt28tpQz8IlKSniiiL3mTweZIBPPI1ib5e5w7aSOncgTWZaClefPib2nIXVbpnk/L9wRxk3v74GwBX6rTW2Fu0o5/oXV3DW3z/hykcX+Pa5vTn2u5o4dqBPhFkeq9j3d/PUHLeXAeI971GOGNSH99cWuw3WlBRxy8f/rSvmHju+endFoxvX2jczleNG9icSNewqb+DVpbtpDkV5fmGeL986z/726j1M+ON0N8+n2d+I4z12hPQyu4xzziuta3bPyYtrPP3is8clLJf/9N4G7vhgM++tKeLTd83mk837KK5u8g2yzEhLYXNxrfuNxjfqMtJSOO3IwXzJ8069XnqwysLBfdMJhKMs2F7uy3/9M9N4+2fnMXpglvssO/bVMfnuOTy/cJdra7CEWkV9gG8/t8x1oBRWNeFEAAXCsdh4x/vvbQwbY9hcXOs2gpyQIGeQXkVDgJs8Mzk4oSIr8ivZW9PMDy8YT7/MNBoDYbeB4hC/2uTWuLDFxv308jmrLjo9Q8UJBp55hWp5fYDaZmtqtnumx77ZxmDY10j0Yowhd189i3Jji66U11vjWxw2FtW0aCR4Ra+3/qjzxCB7j522tsjt4dlh92xMHj8UsBolzvXSUlJoDkVcgRkMR93G2fJdlYjAt885Gog5N7y9qI3BiG8J920ldcywQ3eKqpv4/YJGnpyXS/a2UreXysvT83dyxwebed/ufYxEjVuuPvzJdm54aSV3fbTFZ8/qxiD1gTAiUFob8NVfTphkZxZ+OpgkVSCLSCrwJPB54BTgOhE5Je6wHwFVxpjjgEeA+5OZhoNBQWUjNU0h94MKRayBZttL6uiXkcqeqiY2763l5cX5fP6xhe4UX04m8MZCeTOQIwSdEeNptrfpHzO3cdXjC3l41jYuemAek++Zw5PzYnFw8V4miLXMPlhX7Bb2bU1U7whkx8s0YkAm54wfRk5BFYGwFbfrTavTincKaCftg/taldyu8gZeW5bvu8dJoweSkZrCwh1lzN8eEwKOkLr7o9igo52eZwqEohRWNvK3D2Ldb14BvaY04mbGhTvKGTUw0ydEHDG1Mr/SLVy3FNdy3J8+5jfvrPN5LJz9TgXwVPZOfvfOegoqGnk3Zw9ROzzkXwvy+Ma/EsdmOY0Kpydh8vihVld6Ag9MQWUjYwb1oV9mGsFwlMWtDIbbvq+OSXfNTijKm+xGSntWryqrC7A0r4Lbp7UM34lPnxNfOLhvOtVNIctjZd/D8Sh7xV3ObssL8qPPjCczLZU+tpCIHxR254eb+ca/lnLT69ZAImdku+PhdcI5HE/8pmLLqxybktD4BjSmpaSQkmJ5ZxOJv1X7LPvUBcKuTbzL+sYLZO8gsKH9MnxeWq8AD4SiZKSmcMnJo9xt8d2JA/ukuYPSgBYhFi8s2uVrEHgrqdOOHNTyWXZXeQSCcNEJI3j++5NaHOeMj7j1rXWssHu2hns8yPHfRjRq+OUba1ptnNQ1h2kORdywrz7pqb4ZJ+I9yPGes3DEuHGxl548kjGDs1rcY2CfmJ2nrS1mVX4lBZWNXHnKaAZkptE/M40TR1vhLN5ZGkIR4xvs1drqhe+vLeKm11e70+w5Xk/nt9OILa8LumLQ+21cN/kobrhgnO99Ojii+/XluwnYMwI528YP78fpRw3m858azftri1xRE9/zk5GaQnpqCv+87kz3ut4FVfpnptEUinDBccMZ1CedWZtLfA6KAVlpDOufyfnHDXPLaids5PG5O3yLreytaeI7zy9nyc4Kt4FQWNnI6H4pbtqcBmmiEItleZV83zOLSWlc3fLo7B2+xsW5EyxRt9C2yfGj+tM3I42GYIRleZVkpacwZpD1TUy+e47v/W6Oi7Xf30Bf533vKm9o0SB1aE8o3UOztnPZQ/MpqGjk8ofn853nrdln5m8vY1NxrV2e+O+7fV8dx9pTOy5IsGJhdWPIDXFw8qV39iGvgM6vaODXb63jLjvsxClf/++y4wFrukMnP6akCLsrGn2zUjnva9amEsYP68eE4dYYBKeB/b5nZqHGoL/H98pHFyDghnBVNBkenLmNH7y0ku++sLxFmIbjOf/bB5tpDIZ5Z3Wh2ziMRA3HjrDu/Uz2Tvd7/9eCPAT45qSj3HL7C6daeb2wsolBfdJblJfdTbJTMxnINcbkGWOCwBvANXHHXAO8Yv/9DnCpJHPN3IPE5uJan2BcsrOCplCEn1w0ARH4cP1eZmwq4eihfbnMrkCdVna5RyBXerpZnELZ8dJt31dPYzDM84vy2FRcy+NzczlmWF8yUlN8YRw7bHHrLbcdb+/HG0vcrpzSuMEt3u4Lp+XrjHQfOSCLcyYMJRCOsjyvkkl3fcLjc2Ki3GmBO5W187/T4ssra3Bnk/De7+xjhvDGykJCEeNWNGOH9OHMowf7nsk7yX8gHHFn/HDYFSdqIlHDANvTN3JAFlecMorzj7VmNrj5P5YnwxlsMG5YX3fy/ndzinyDnZyC82vPLOVLTyxyn+2aJxfx67fWMX9HmTu/amvr3ce6+KwC4vxjhwOxwq+8PsAS2/NQUNnI0UP7kpmWQiAcbTHHq1NBvrZ0N+X1Adez5sV5F6GI8QmfhgSVwCaP1yB+NoD48BLn+xjcJ52appA7k8DogVlUNgQJhCO++Vid7j1HiLVWuE1bW8yW4lryK/yLiTi5fvNea4nmC+6byzVPLuaqxxf5Cu9I1O+tdBqS6akpbreea4NAmPVlsYErjk28eTe+G93bQzO4b7rfgxxu6UEeO7gPL93waaDlctEDstKZ8X8X8cBXT7PS6Mlzf77qZIb3z/D1cngbz6eObSmQE8XOOw2R4f0z3TzgfGuneLzbQ/pmkCrw2JwdXPnoAp9gqmgIMiDLP3eqNxykrjnEe2uK3Jk++qSn+j3IkYhrm5NGD+DHnxnvK4/C0SjD+2dy+Smj+NFnxnPEoFi3rTNFnzOI7LrJR3HEoCzu+mgL+2qbOX5Uf/52zejdTGQAACAASURBVESuP28cE4b3Jy1FWngVV3kajtVxg3OdOP/dFY1M31DifgN1gTD1QeNey2mclNcHCEaiVNhzY4+3wxaiUctDmmgVQKdb2lmO+t6Pt/LI7O2MHpjF3FsvZtovLuDbk4+mrjnMDHuqy/rmMO+vKeL6lyyhGd+dPOXEEb7fZfUBCiubmDhmIJecNJLsbWW+BSmccIchfTNc7/i6Qquh0hyK+OaSvvapJeSVNzAgK42apiDNoQildQGO6Gc9WyAccQW8M4uFt1H67eeX+eaZXplfFddlH7vXGUfFvOJON/6RQ/rQLzOVxmCYZXkVfHrcUG659Hj3nNvf3+SWZfGDUf85N7dNkfzswjymPDiPl5fkc+SQPpw0ekCLY7xl3THD/GEtlQ1BHl7dzHtrimgKRfjT+xvYUVrP4twKtpbUcv2LK9ywJO+3kFNQRXVjiHMnWPVOopCuH7y0gsn3zGFzcS2r8qs46+jBnGvPwBMfyvD2qkIiUcPyXZWU1jaTU1DF0H4ZTBxjlQvvrN7jCuJAKMLSnTFBHoxEY+8vYvjS6WM4wm6AOD193vo2t7S+RQ/xWz87j3Pshs2k0anM/vVFXHbySDYV17KrvIFo1PD8wjwKKxvd/FcfCJO9rYylOysYOSCT1X++jAe+dhrv3nQ+35x0FK8t281Dn2zDGMNH6/dy0QkjuNgzCHrKCSOZNM4K1xyWII6+u0n27NJjAa+y2QOc09oxxpiwiNQAwwBf80tEbgRuBBg1ahTZ2dlJTmrHeGveat7LDZGWAuEovLnIauVl1BQyYWCKO7n6F8an841j6tlSKGzfXUR2dgXLi2If4lefWOB2YS1buYrcjcK6wiaGZgmVzYZfvziHsX0hEBH+cE4f+qU3kx5IYVFBFa+FDbWBeSwpsK6XmYprl9zdViXvFQIFZf6CZnQfKLDrmS1F1QzJFApKbA9m9R5CqVYYxLMzc6hqDPNfz2Cq6XMWsKMqymvrrUKyqraR7OxsGhqtzPfxqh3UNEUYPyiFXTVRGhoayM7O5qtHRdlSJGSmQmaqUFBnMIFGxg9KZY0nbTtK6zl9RCrF9VHy9xSzpN6vPBbktFyG98IxwvRdsK+ymgUL5jN5UJglWNO+vTQtNmfpkVlB8j3neWMwf/vOeobW5rJ6d6yrq7aujoZmq7B5+ZM1fGZsLJs49t5WGSG3OsJVEzLYWWwJnrzyBkb3E6qLrcGRcxcuIWrgz4ut/c9e3pcde5s4Y2QqFXvriEQNW+MqgyP7C7trjVsA5eyu4q3pc2kKGwZlCIOzUijaFxN0c+Zlu3/PnLuAQZnCrpooxw+xxMz0vJh4mDV/CUcNiFXK2Qv9k/CvXr6MHZlCWbG1st70edb+wWlBSoBps+ZTXB+rNPP2Wt/OhrU51OalsqO49Ups4lDDMk+UTXZ2NlW1ls1z8kr5xfNzKa6JVWJPvW/FSAvQHAyxPTcWK9jYUE92djaNwQjPL9rFiOBeThyaSlF9lI3lEUJRuGBMGouLw8yYu4DhffxCpC4ufnLN1lisXH1NFTs2xwR0MBxx33ldQxNV5UGys7PZXJ7YI5WzfDFpKcJIIDt7pys2ABpL8vjWBOFuj9PW6wFvLi+kTxq0trJyKGTde12ZdcCozBD/77wsfjEnzIMzt1G+ZxeB2li6tq7PwWlXbN9Xz91TY4OWPpy7iOYmf+NsZB8osh+9oraRpz+J9TqsWr6UqvLYt7Ri1RocfXfV2CCn9i/l9dRY2leuzqGhOYCpr2D+/Pk0lsfKpYzy7WRn7+CIYJQzRqTymQEVVA4OM9P2mNWUFDA0w+qZWrIol9F9YcmmfF9aZ+XkMlGs8qk4brDxjr2JBxr/9LXVnDjYAML4QSnsrWtiztx5rgf6nHusuWgHp1j5q2jvXrKzK6msiOW3x9+eTWvjQvfVBjhvTCrz51vfrjGGI/oJexusl/DR6lzyqqM442+3b91CdrW1oM4Tl/QlK80qM0f1FfY1xsYzjGgsoDJsxe5OnRWbU3vDhg2kl26hal+QxmCEWXPmUWCXDaGIYeGq2CwRtc1hfnxqBtmFYaZvKGEscwEYlh4GhHUbNlFmr6q3rrCa8++azoVjYyE/8Z1TZXUBnnt/LsFgy+73/5sYIlLk77FasWQRNeUB9lSGiRg4ZUAzu3JjjZ4V+ZVc/+Qs9tRFyavxG/i1Zbt5Z9Vu93e8FiiubKDZ/uxTwk0cOyCVrUDftNixf8yOfSMXjwrzqqfj7u9Ts+1GdYTRfYWFHk/wve/4ew0nj05habF1s5m2U2dkeB+CNfBscKZQHbCMlSqQZoKUNhj+8f5S1haGuWJcOiOyhLVpcNawMEWeT3XetjI3/z/+3kIW7Q5xdL8UVi+z6qt1nl6a8tpGnp+3hXEDUwhEDHv2ltDY7GkERPawdkURw7KEf87eSlZNPnnlzZwxIpW1ZRF+9u/VjOkXE/unj0ilcNMqtu2y8mk6YfZsXs2kARFmA298sowXNlrv+vWF2yivj3LNselM2xli+ZqNLN4V4piBKWxYtZSRwMqlO/n8cFg9OIXs9fmcwF4KKpu4aFSYop2x915ZuJ2h0Yj77rpb58XTY5dfMcY8CzwLMGnSJDNlypSuT8SMjwAr9m92ofXRHztiAHtrmthaZWXiL196PudPDvDlJxcDMGni8Uz5zHiO2r6UaBSmTDmPwqX5sMEqMKoDxvLchMOc/KnTWbyzHJGdvHfLxVz37DIifQeREWhi/OA+XHW51ZW6TXYyf89W5hQJF541jr7D6mFnAYEIXHTRxaSkCK/mr+TEaBMltc2uSK6z66TJ44eyYlclZ0wYTYE9kro5AqcfPYSfTzmWZXmV/P5zJyIiPLF5ATllLUeS3r0y7HpNACKSypQpUwjMnwWE2Fpt2eey047huYW7GDigP1OmXAjAJRcFCYaj/HLqGgrqKhk7ahi3Xnsq794313ePP3zl0/zl/Y0E09PZXVvFb644gaOG9uU3b69jWanfi9MvI5Vbrz2f6Q/Nx6RlMWXKFAYXVvNojvUetoZG4LTVvjD5ZBa/v6FFIe+QMnYiEIsDLm8WIghgWLI3whknjgesimzKlCkYY/jBH6YDcNs3LqZwVkyMX3Ha0Uw6fgT/Wr+KovQxPL8wNpNIXtrR1Aa3cs7EYzlySB/e3LYW72QV5x87jEtOGslddujJV8860hpwERnNi0t20Tcjlc13fo4nty6BcktAh0eeDFihCxPPnMT7a4p5ZvlO/nfzBZx25GBmV28ArJCf4045nfOOHeZ+16ef9WlYEIs9nXLxZxiYlU5lzh6mbl3HEceeAsty+MLZx7H1k+0Ehx7L8UdmQI7loa+PpAEhLjj3HI4b2Z+G9Xv/f3vnHSZZUe7/T3We7slpJ6edzTOb2RxmEwvskhZQySJBEAVFQZQgoiLen9frNeFFvaKYrgJXvIogguS8SBBE0i6wsCxsZvPOTP3+OKdOn9Npwvbk9/M8++x095me6rdPVX3rrfd9C57znihlmDWhkcc2xnck2tra8D16D7CPLfs0j270Cs5IWR3wCrnhAO2dmqraOrBFcnFhAW1t85zP8dzeIlZNGc9H7XKE+SHFaUsm8/Avn2b85Bm0VBc416YikFcCWLsflaPKWDR3LF973LJLh473MfXg3dTVVNDW1krk9S3wlCVWQgEfB9o7iQR9LF+6xPPenZ0a/mLdKzOnTWVsRR5fe9wSYtcd3+oplzilZSLP73qDJ9McMhMKhWhra6P07R38x9qH+PCCCRw+t4GDd1uf7acvHGDlpFGw0fosRy5ZyOUPxqubREqqAet+bBjfyrYn1gLxG/Dstglc+0dr4b99v3YmeoAVSxcze+5BTvrho7y+eTffeDIuGmdOn8bc0SXkP/JX9toe55bJU2hf+ySjG+poa5vAnuc38uuXnsan4IhlbU7s6qn2e6wPvMpdb1j1hufPaKXNVa1j+sa/27Gf1j0S8CnWfaCc72XffXcB8VXFroTw//qSqFMJ5F/bFeGAj9Uzmvjuva8yYfoc9F+sccgI37bJo/n7X1+mqa6atrYWbtv4d3jXGje/tTZzybnW5nra2iY4j88LrXNCxV7e1unxsk+f0kqbK1zH8Nc5BzntJ0/w7FvbmVFfxElHzWPjjr38+Pl7ebOjELA8gYdNn8LCMWW8G32T2155nonTZ3PwiUdRah9aw/u+YiC+M3fWqgWs+/0/eHX7e/zoeUvsNBRH4K39NI0ZR2DrHqePvbNL8z//Sp/DEg74uP6J1CF8zlxt97mcoDVXPLTrRe7bYN1/H1oyw9r1eM4au8aNyuOBDXHhdM6CRsZW5HHZLc8xra7QU11pymHz4M67ncdrr17JV//0Ir9+4i3qKkr50ppW/nTdPdSX5dPWtpB3d+xjy53WGP31Na2smDiKn78YP5ijuKIGXrXadc2aaVx2y3OO5/uxdzvJCfodD/SVJ87lc797jr0H2p0dsdOOXMhvX3uYt7fvZfGESuckxueuWUk05GfWdffw0g5Fh25nzcIprJg4imuxElv/71pv9aHT5jby8Ktb+PW/LAfKGYuaWdrWTOxvd7L7QAfnLWpCa82PHlzHzgNw3fEt3PzYGxQURjjwbtxDvGr5YsIBPz8ft4PV332I7z9v9eVTFk/iGbu83ju7Na3VBVy4ZDSLxpYRDQXYnLeB3/zrWZqKwrS1tVG/eTfXP3Eff34r7mRYt9PqKBceM5fb/+MBfEVVvP/iej6+dCxtC5s8n+eOzc9y70vvM7plOtz/MEtmTWZCZT5ffczqc8csncebW/dw6yuP0VhVRltbcvjYQJLtEIu3gVrX4xr7uZTXKKUCQAGQOhBzkDC9rsjZov/+qdNpKst1tjPK8sJMrS10rjUxuSW5YSf5wGzxXbnKGjiNB+t3a9/iF4+9wREtFdSXxBhbYYnv/Qc7PPVTx7rKSj35xjYntrhTW+91sKOTnXsPUhwLcWRLfGLp6NT4fYol48oBqCiIcNqcOuf1+pIobePKufzI8c6ENb2+yNkuWzim1Ll2256Dni3gvQc72HewI17Qvr2TvHDACdlwB80Ux0JUFESI2iWC8iIBqgtzuOvTi5xrJtcUMLuxmHDQ58TdLp84imOnVvP5I8YnJT9MqMynqTTGOQsanS3bCZV5HDOlitmNxdz297j3WymcbdNLVox1YsbWTLMqX1z5v/GSP8vGl7P7gBWDfd6iJoqiIf7TdWzyb55405N5fMN9r3m2Gmc2FDtJPd//22vUFUf5jh1jaJKY6oqjTuw3wPVrWrnl/Ln86tw5zgEYACsmlnNUayW/W2sJffO97D3YwcIxpdQU5fCVP8bjtHfubXfiK4/53sO8tXUP7+10x797J7zE2skmfs/cw6Yyw7S6QhpLY9z5j3edOLeATznfiYlNDbi26HOC3sSmkoTkI1Pk33wvZXlhZjUUO6+bRMlYOEB7QohF4pb33S9u4rdPxb/vqeV+p+zVjr0HU8Zmu0u1uSffgM/niUGGuJfXVLEAbzhCsx1vlxdJTrJzV8MJBXyebUSztWgIB3zMbCj23BupaKku4MHLljin0X19TSvhgFUbetf+dsZX5HHL+XMpiHrb49ld2rLH470+Z0EjR7jGDsAJ37A+r4+S3DA/OG064N0ODQWszxhzHXdr4sbD9n1gtnvzc4KkiqhzVw4xlRwM4yryHC/vOQsauW5NKzv3tfPq+7to7+hM2hFI5OjJVZ7HDSUx51j1xHyOqbWFXLhkNJ9ePoZLV44DvMnTlQURz3fvvmcBT3gOwOlz6rnl/LnO47MXNDo/p8vYz4sEGWPXsDZJmZUFOTSVxpzSiSfPqmVBszU+G3tt2rmfbXsOOPfjXS+861QbAqtSUSyhfVW5VhseemWzp/58aW4o6bO5cW+TGw5rKOKj8xqcx186eiLXHd/Ko19YCkDU9bdLc0NOqBB4Q4PM4+OmVnP5keP55TneTWh3YtyNp88gFg44yY35kQDl+RGOaq1w4mZNZaaW6nw+NLPWKZFmcI/nTWW5lLvuv/3tnVzkCgUZU57Hny9eyGr7noqG/JTkhp3wJXcZxlg4gFKKvEiAd3bso6og4oQBAkn9E+CIlkq+dnyLM6dMr7O+PzO2HDe1mvK8ePuOmVrlhOu5Mfkkk6oKmFpbyHsf7GdUfpgpNXGtopQ1Fx/RUumE66yZVs2PzpjJ4loTvmjZ9Z0d+ziqtcIZV2uLcxhTnkvQr7j/X9aW2LQ673gG0Fiay+Zd+52juUtyw5TlWWUfQ34fFfkRptQUEvQrzxgwWMi2QH4SGKOUalRKhYCPAH9IuOYPwJn2zycC9+psHpTeBxzmmsjycwJOaZ2iaHJQuYnJrS+O8tbWPbR3dLLHztxMHARuf+YdPtjXzrn2qquyIId3tu9j38EOpw4zWIPRHz+1gNkVfp5av9UTW/zWtj1M/8rdPPXGNvIiAY6zRZ+hMCdIxBbbeeEAn1wS7+z1Jcn1PSe7RPDX17Ty10viItacLgjWBHj6Tx73/O7UukKnY6oU57yZCTTfFiCNpTGm1xWyqrWSrx3XilLK+dxVBRFHxJy9oJHlE8o97zWxKh+lFFeunuh0zHDAz3dOnsZVqyd6BFV7p3aE+0dm1XLhkmbnPcDK2r322Emsv34VZ82PT2D1JVFuPGOmZyK7/LbnPQcH/PzRN5jbFB/0qgsjnoF/+cRRTElIvqorjjqDXCzk56SZtcy0J6NgIG63prJc2saVJQmAPQc6yM8JcunKcZ4s4a2793uqk/zuqbd474P9zv26ZfcBpwShdb1XMBuhW5Zrtc28VzQU4MiWCh59fQvv2vG6FQXxQdos5tzCITHOz52QBXZSUHsnsxqKqciPcPXqiZ6Y2HW2dyYW9nOwQyeVeXNzoKOTmx9d7zyeMcpPod0Pt+85mDIL/sKlzfzbCZOZN7rE05+Cfh+xhKoFV/zvP/jS7f9gf0dcIJsKCWAlIAFJMb2JhAN+Rxwq+xAMf4KAvmTFWO797GLnObdYdn/q2uKo814nz6rjK8e2cLDDOhCnKBpy7ic3boGcWMWmoiCSVEXDlE50M25UHj8+YyaP2KIHIOS37OUuK2lKjJmxp8qOt8xPsYgAb3m88oQFgjumdEptIYfZn+3WtRs4/gfeMCGDuZdnNRTzqWXNnteqi3KosassPJZwWMhtF8wj4Pfx6eVjHVHy+SPGO/dcYTTkfPefWtrMDfaCwZAokAN+n+e7WO7yGKdLKAMrvtzvUxzVWuk8N685Ps6cs7DJ+f7NEfFvbNnNvoOdToJUp4ZzFzYxKj9MeV4YpZQnFjfk91GaY73Hn57f6JTFAyiJhfnlubM5xxb0sxqKPfPgsoTx2KfgprNmcc0xk5znzprfyCmz65y+6O5XOaGAZxFdWeBdFE2qKiAU8HH+4tGOeDOYkw3v+vQiDrcFaWL8atDvcxaAD76ymfxIgNsvXIDfpzyLVrAWB4a64qinH5TmhpnVGP/cpv+buGMztnx9TSvnLkxeZEJc3K6YOCppgWK44qgJ1BbnMK220ONwM4m7+TlW/fUJlXmcMKMGgNWTK8kNBwgFfJ5chkTGllv9Z0FzmWex980Tpzjaw+DzKVZMHIXPvrdi4YCzUD57QSM1RVY/ntdUilKKArtUY8jvo6Xaq28gXsnK1NoviYUI+n2U5oapKc7B51PkhPx89+TpnL2gKen3B5qshljYMcWfBO4C/MB/a61fUEpdCzyltf4D8BPgZqXUq8BWLBE9qGksiwvJ3HCAJvtxolcM4qvCxtIY7Z2aDdv2svuAdcCAWdm7Kc8LOwKvutBKhoqF/M7EAtZN21JdwNhiP4+/u59NO/dTU5TDhm17ueP5jY6A2rHXShh44NIlnPyjx3h7+14Ko0FOnV3Prn3tnLuoySMWaou9IgasCchQmhv2JOaYzmEwW8HjK/J46d0PmFZb6EwkqdIujRgw4jAU8HHbJ+Z7rjEdc8n4cpeYUNxw2gwmX/MXZ4CfUJncGQ0tLpFfXxLlQzNrCPoUT7+xjZJYmGOnVuNT1kDw3XtfZWptoeONa3J913mRIFNrC/neydO4Ze0GmstzeeCV97nFdXz2gY5OzpzXwKP2RFtRkOOpEdpaXeARk6ZN5rNNqi7wiCT3gisa8jseBDf7DnSQE/Rz9OQqfvLQOqeCwL0vvceeAx381+kz+MVjb3DTI+tRSjGnqZjXN+/mvx9a5xznDckC2bRpfGUe0ZCfv9megWjIz5Etlfzgvtecww4q8iNOiaGwLZDcorGxNOZJrEoURvvsHYiyvDCPfXEZgOfIU+NBzrV/z51R7/d5hUVlQYSNO/YxpjyXG06bzoYX1zpe8O174/W+TSgEWAvYKbWF7Nrf7qmpGvQrp75seX6Yx17fyq1Pb6C6MIcD7Z2E/WYxEG9DiS3uUnmQ3ZjJ9fEvLsPvU4QDfuqKo04CajjgJ2hXNgDsRaHiiXVbkmpLJ2Lu2/c+2O+5/w254UBKgZwfCbBzXzuRoJ9YOMBjX1jGk+u38pn/eYbT5tTzs0ff8LyPUorlE71hAeZzuZNETTKZWTCX5oYJ+FTSQsngPugisdTZOJdAzosEaCiJEg35+a8HkuusGqbXFfHo61uoKox4TohcWhvgK8e1ELXHtb++6E0sThRPAEWxENcd38qltzxHJOhzwiTqiqOU5IZpLI0532Hi7kMi4yvi41YwjQcZLDGybEK5Z4E0f3Qpv3jMCpdye+uNB9mc6jq6PAYvWDZdOr6cxWOXOIsXd7JbdVEOIV98UfPk+niJz3DQug+n1xfBQ+vIjQT48RkzafqiFS60enIVl98WD1sbX5GfVvwZ3B7kxDku8aAT9zicyJPrt3FUa4XnvjDzrikdFrITeNs7Ornnn5tYOr7cGWcTv2L3oiES9HPSjBpnF/Oo1oqU5RdN6bVV9gLmiJZKjmipTLoOcO61ohRJaPdf2obfp6gpinLuorhAnN1YzFtb9ziLg2uPbSHX9kgXx0I8/sVlTrvCAV/a8nQQ75+TqvI9zhsjtLuiuiiHcMDH9LoiZ/w0Yjg/EmTzrgO01hR4+plhfnMp9SVRp1qOOUipuSyXYpfHONXCYjCQ9RhkrfUdwB0Jz13t+nkfcFK2/25f8OMzZvLchu3OChisreNGu3xKqqxL40E2HXzd5t3sOdBONOSnLM/KOv/ANUjdfUncW2QyvXcf6PAIU8OYwviAcsyUKm57+m1+9sh65zlTcqquJBqvSBANEQr4nIxhd+3B+hQC2e2tMW34xdmz6dQ6aaCIBH08cvkyfvTg65ZAdom5VGVJTD3GVFnGBlNmyVSCMAT9Pkblh524r1QlsdwU2JUYrlo1kXDAz4cPq+XDh9U6ItB42v/vkwsozw87z1fkR5yYM+MRPHxSheOpOGV2Hau/+xB79ndwoKOT6sIcj3e7PC/sqbVsVazwc2RLRdIRsWV5YccTYQh5BHKAohTbcHsPdhAN+fH5FFetnsjJNz5Keyfc8fy7+JTl3ZhYmc+x33+YrbsP0FAaI+hXHnEMyQLZbetZjcXcZwvkWChAbXEONUU5juhN5UF2h1g0JJw+lnjv7NrfTqfGM0m67xpTlSHXDstxL+yCCTPcaXPq+X93/Yvqohyay/PY8GL8793x/EZutkXe/ztxMhf/5hkgvthbMr7cibs1n93vU9z7uTZ+88SbTkksMwGZkIHm8lxOnV3HES0VjsDO70IcmT7pDiEYXZbriCv3ovKFL68kFPCxZ38H/3x3Jx+58bGUi05Dk2vxnZOibm9VYSSp7mnQr6guirJz407Hs1RREGFVayVzmkooywtz6wVzk2oDp/tc7oMpdid4kP0+xaj8SFoPsjdkwysc3dn+JkSjJDfEHlc1kMRt5vGVeTz6+hZPjWuAMyaFnferK456QiwSdybcmO89EvA7ItoIwt+dP5eZX7ViWvPSiMRvnjSFHXsPehYImTzIZXnhpFCbua7tefduRXE0RMCnuPuflthvLs/F71McN7U6yZaFrvGkpigHvy9uw1RFeoywDgd8zueOBH3EwgFuu2Ce48FfOLY0+ZcTcNsmJ+T3eJCNY2T15EouXNKcsdyXUnDxsrGe58zi3IQmBAM+DnRo1r6xjW17DrJiYlyAJYZoHdZQxMpRe6kda3m/PzKrjuUTR3Hr2g2cPrc+6VAUsO7Rp65cnrRjkArTplR6IdUuLsCvzp3j2ZFJnCfcY0jI78sYZnTeoiY27dzHCTNqMt5z6fjeKdOJha3dL1OZa4y9u2s0gjuUx43fpzhnQSNX3f4COUG/I/h/ePqMlNVhBhuDq+jcIGP5xFFccvg4T/FqpZQTN5no6QArpAFwRPTrm3eze3+HE4/UVO71IruFQ6WrVmg4hXehxlWBoKW6gJNm1ni8Nu4tCjPYJwosdwepSyGQlVKcObfeE3+2YEwpi8aWJRXxPmlGLcWxEA0lUSJBH1NrC52BLVWcofE4jhmVXiCbUkJTatML4HlVAaf0TTrM58637auUStmmupKoZzHi88W/31SCp6Yoyi/Ons1NHzuMuuIoF7SNJuCyadDv8wgUMyH94NT4Vqxpy12fXsQnl3i3f90TWjTkT2rz+x/sZ9ueg87kclhDMT9aYW0L7trfzuSaQgpygtQWR7nx9BmEAz7GlOdRkJM8OKcqAG9wx8rl2O0wg7RPebf+Qym8qom7Jfk5QRpcYRdGALu9DuajVrgGf+Mpc5coSxxYT5heg1JQWxR//0jQ8lA9/OoWdu49yDdPmsKiMVbcZDQUj1FuLI15wkHcIr8sz9rmPnZqPIa12e6/oYCPrx3fysIxZU5YUCzUPYHsxoRngFVWzPnc4QBBv4+CaLBbJ1sVx0LOvZYY/w3W4ttdc3XnvnZqi+IL6ZyEPmC+3xn1xZw0s5ZUmP6RyYPsDhX78GG1HNma2stm/t5xU6uS0WI7CQAAIABJREFUXlNK8ZXjWjhrfoOzZesOyQD41bmzueOihc5js4A24Qe54UDSwjxRgGaasM09Hgn6nOvc5fbMXJDOg3zijBrOXtDo6c+pxvhMFEZD/PrcOdz2iXkeb63Pp1gwppS3tu4hEvQxpaaQ/zlvDp9bOTbpPb52XKtTf9jsIF5x1ISkmGKjzUwpUjNG3nrBPO75bJvzucES659dMa7L9rtFfcjv84y7R7ZWMCo/zEXLxmTcHSzICXLa7HqP9xji/WiBnTcT8vs40N7BX17cRMjvY7GrhJ4vYUw9Y24DzUV+Vrrih0tzw3zcDu/IT+FBNtekcmRdtGwM3/rQFOfxQbtjp/Igp8PvSz6mPh3uceXKVRM8/QCs7/nGM2ZS4Aq3vGipd97JRHN5ruO8M/eFiZE3J9TOTRDwbk6cUUtRNOjZJSjICXZrcTHQDP4WDgIKEzqIEVAlKYLKTWcqigYpyAmybvMudu9vdzw0o8tiniL3btwTYaqO5+7YLVUFtFYX8N17XyXk9/HSV45ISggCPN5v8HpJClN4JwG+fGxLyucLY/HrR5fFOM/eEjpheg1t48opioUyhlhcdsQ4rvnDix6hlEhVQYR3duzLKArGFXc9cBRGQ7AluRpHd2gsi/Hixp1pt8zNFvb9l8az8Wc3FjveKHecl1lUmOuqXJ7XxG1F8IrMVBOoift2i3ClFKPyw+zYe9CTWDmzoZi1V60gFvLzf8++Q0luiNuejocxpPMgg9eDH7O9uOa+167PFfLHPUvuAxVK88L86aIFrPqOVaIoPxLkjosXcvsz7/CF2553tvvdHuTxFXnc/eImWqoLnFhnM4h6PMgJE0dFQYQbT5+ZJIAKc0K8e3AfR7ZWcuKMGserWVOU4xEqS8aVc5O9E+N+76Xjy3nqiuU8/eY2bn/mHRpKop5J1GCOVa4tzixkU32fp82pd0pEpjsaPpDBs+mmqTTG029uTymQqwpzPMfIg7U4NF7lVF7nrmgojfHchh0pkyCN59adbOxOdkokFg7w4GVLkmJRDSYEypDojSvPi3iEzJEtlfh9PpaNt3Z3nrl6BUopHnzgfueapDrQvvTjivmOwwG/k+TlXRBZNujOpB8J+th3sLNXhyK4vchubjprFmAlv/p8iqbkHDrAEmkfXzyaL/3hBXtBuYVzFzUxo6Eo5aExJrTJ3LtuT6FZYKyZluypToV7PFVKee65yoIcHv/i8i7f4z8/MpW2ceVJz4+vyOfxLy5z4tfNIUJ3v7iJec0lnu8lcSG0clIFjzzkPfLdTaq5OBOXrPAuTMzBK8V9dEqce1w5YXpNRiGulGL99at6/bduOusw/vLiJie8tDAaZPueg2nvS7DGli8f2+I5D2KoIAK5GyR6TnNCfr58zCQnWQTg9gvn8/Brm53Op5SiqcyKTevo1M5gOjpFHLLBvW3t3XqO8+VjJvHTh9dRW2xN8gvHlPLujn1JsXNm8E0U925h0NPzWcwW2eKxZfzsY7Oc5wN+n7Pl43z+FL9//LQajp+WOe7p9xfOZ/vegxnbFuhGs792fAtf/r8XUx6+0BWjbSHYVdKVu43/8/F4prrba+YWy09ftaLLicS9gEllAxPikOgFGZUf4eVNu5jf7N3qNBPDTfbBFh6BvCe9QJ5Qme+EqZjPYzytWscXV+7BOVHcu2PcjTfWeIfNyW9h1+Rz8bIxzG2ykub+am8XG0+ZO9M8ladvxcTkclmmaorpA6Z9bk8zwAVto/ndU2+x+0BHkv2LYiFnMpjXnHob2RzmkSr2102q7766MIcvHDmer//5pZSnzUF8/Pn4otEZ37+pLNcSyCnEbmVBxHN0MFghVsYDlCp+sCt+fMZM/vjcRmcx21ASdUKgdu23F0A9eN9UORHpSIx3LY6FHPtanjK/51juQAoxagSbCXvzZ1iIGNuFgz6nX6Y6grqrMQOs8IBv3PlSt67tKaliqBMxu5Y1RTlgVxScUlNISSzkbKFrW/Cbfp4YMgWWcPz7VSu6/TkSr0u1kOuKTPepJ+wgYC1C3ty6h/MXe/uNe+y87vjWbon70WUxz5HgPcGce5DOE32omL4Q9KuU8dLZpKW6wDPO3XrBPDbt3NflIuKYXtpuoBGB3A1SDQBnusrZgJXc5k5wA8vj9sDL71McCzlZ3KMzJB+EA35Kc0Ns3nUg7Q135rwGz9/+zkemeU5XMpgtwZ5s63SFUoqHPr/ESUpKhXZd2xvK8yOeMjupSHX0ayKTqgr4rUu09oRjplaxdc8BTzmdnuCepNx2SOUxTiSVVyngU57YcYC3t3mTMmqKosTSJPUltsNgypvddNZhnpPOwBKhsxuLeejVzc7nMSE5sxqKnZ0Jt4fQ7ekMB3wecWRErbk+sUSc9fs+5jWXeioLmMF/w7a9TK8r5Ok3tzvf/9NXrXA8eyk/s/2/meSN+E1MNh2VH+Ejs+r4yUPrPImGhik1Bdxw6nSWjE/2XAGcv3g0r763K+3rhnTxf+ctauKo1sq0AjES9HfL62PyHlKNHali2etK4omUmp4XEirPj/AxV9my354/lyfXbePCXz3Nll2W0Ooqaa23vJ9w1LEJRwr4rN2U7mBCRKrt2PpM44p5rSw3jPkaUwnkrhLVAM5f3MTpc+sHbIu5viSKT1llMTfYAtnvU1x99ESefWsH//3wOmcrfVVrJb5TVcqdE+jZ/JI4j/bEM+v3KTo6dbfELHjH0cQKSO6vubthsCaspDeYhOW+Eq9xb26oWwukbDK6LDej02+oIzHI3aC3N93RU6rYuvsAL2/a1S0PMsTLIXU3Pq0oFko5scZDLJI75XFTq7h+TWu33j+RmqJoxu1YM7D2RTc1U3gPQ/d6THN5Hl89rnVAkghSCWR3O0wt7USRd/GyMfzq3DndnkDASvb7zPKxLB5blhTTB3Dx8jGesk0tVQV84cjx3HDadMcr6/bouMVlJOhPmfRkJsV4iEVqb6fBJOk1lcY4Y26D9Xfs9y2Ohbq1iClwhblcunJcyphac9+msp9SiiNbK9NO6DMbirnv0iVpE9AM6QSyUqpH3tN0NNl5D6k8c6m8VxX5EefeSneMek8oz4s4W60m3KgxhecxG1QkLKLNAjAn6E+qo5wO40E2oQKZBNvqyZVcdsQ4Ljl8rOOBdN8rJkG5OwJZKTWg8ZfT6opYe+UKmsu9ff7YqdUcbycvO+O4skrNZWMsTLwH/T6r9u1Vqyd2+bvmz3d3XjTjaHN5bpLDxe0s6A9B+W8nTuanHz0sK308FaZ+cGJ9Z+HQEQ9yH7JkXDnf+tBUPvPbZ5zBob4k5niJP3d4chJFZUGE5zbs6HHcUyKOBzlF3NO3PzLtkN47EyYesS/7ajdDMockqSaikN/K0P/lObOZ31zKnKaSJEFbURBJKieXiW+c0Mr85lJqitIP2pOqCjzJkD6f4uP2dqW5r7whFl4PspmIzpwbjx81XuUde9ILZLfAMR6qz60c50x6iWXeusIdZnRhQlKkwcT/dmd3orf09WTcXG6J0ZwU4VmpvFf5OQG+vqaVf//Ly07ZqkPF3L/rN+8mGvIn1TTOFtce18KxU6s566YnPc8XRINJi8d0GI/m2FF5jBuV56nznkjA7+MTbda9Y6qmuPM7vv3hqbzy3q4uF0mDhXSeXzNu97CLdYvcFEmsT125olu/a40l3fcgm3Gpq8MnEkPV+oK8SLDL3aVDwSRLDoGiEEMOEcjd5C+fWdQt70Aix02rprY4x/EMhwI+Hr58KSG/L+W2t9nq7k1MoBvHg9zHMUmJmIVAX2679KWIySbpkiB7ivGYmi30rmJdu8OS8eW9DiGB+GcLJYRIGExscWJogImtNxUVIikmvEjQT1E0yLY9B1ndWkVNUZRFY0rt44Yzl+PK1NZMOAK5F4lTg4Wm0lwuXTmOla6aotfMjdA0YXLKMLH8SJD6kphz0mM2MN9Ne6dmbEms16FWXZGfRnT8+MyZGUPA3BiveTjg47Ijxnf7b3+ibTTnLWry7PbEwgHPAQ9DlQmV+Zwyu85z4l+2OJQFovGOdrdMmfluuvLUD+Hu7mASVvuqr41kRCB3k7EZSpN1xYx6r3cmk/g1CS/pkvS6i5Ok10eZs+mYUJnPTWcdllS3MZv0dYhFNnjm6hVZE1u1xVG27dnRqxqW6TjUjGpTmN+dZOeuT5xuK9R4jFMl6bmpKMhh2x6rbqwpQWV+t7vbve5t964wArmn4nsw4fOpJA95Q4GfRWPLnFrLbvoiachzWEyGfIts8eeLF3oWzO6DOLpif7tVoaEnYUlg3VdD+T7JhN+nuO743oXf9SVG+/U0BjnxFL5E+sOD3Nd0J7dF6B0ikAcZphbyIYdYBEySXv9v+aUqw5NNulPFYqDJ5sLkx2fO5IGXN6c8ubG3HKp4zwsH7NPg0niQ00xk5vln7FKHqYrngxVq9Nr7uzxeEROe0d3yWFevnsgVv3++W7F/diWmIVG8vjekDLHogwQ6t3Bs6qP4YzeZauZ2hdmarupGnWkhO1y1eiK13QyBcZMq7jsTHfaC15So7Op9hzJmJ/Ckmd07GU/oPiKQBxnzR5dywvSaQ95Gj5d5G36ry6HgQc4m5XkRTuzmsaBdcfPZs1ifwpvYU5RSFOYEEwSy24OcemIyC79NO/dzzJSqtOK1tignKZ7TfSpbd1g0towHL1varWtN7PxwmDBTkUoM94UHWSnlVBxoSHNK2GDh9Dn1lOSGWZ3m8BIh+/Q2dMN0+e4moplTHbs6vGc4LIgLokGev+bwLj+r0HPEooOMoliIf3edwtNbIkEfkaCvVwcADHaGw6CWiStXTWB0ed/EcC8cU8bCMWlOEeghhdGgZ6fDfdBCui1oc33I7+PSlelP3/rk0jGckLAoML+beNR0Nuh0BHLW35prjp6YdMx3fxPw+8gNBzwlIXtzUEV3MAK5P0IsDoWA3zdk67OONP7z5Gl8955Xur2oM6c6dpU3NFymknSHWgmHhgjkYcqps+vS1sQd6gyFEItD4ZyFTV1fNAi4+uhJHs9koItDTsAST9WFOZwwvTpj6ENZXjjpKOCw40HOvrDrdJW1yjYfnZ/9hKfeYI4j72uCPsUB+ifEQhgZLBlXzpIehO512h26q9rDw3XHSMgOIpCHKc3leUl1Loc6pjbncFn1D3VM8pyhu9VF7ru0rVeVSIwHubtHL/eEzmEeYgGWWHh7+96uLzxEAn4fhVFfvycIC4Lh44ub2N/ewSmz6zJeN5z7u3DoiEAWBCErdNf72tut/dxQgNWTK5mdpZq9bozHaTiUfUqH8aZ944RWZtT33e5S0J+dg08EobfkRYJcsarrA0iGe7iecGiIQBaGHLLoH5n4fIrvnTK9T96709mdGL43lxHIdcWxPt1dys8JMj7FyYyCMNgYxt1dyAIikIUhww9Onc4P73+N0pwdA90UYZjR6ZwAOXxnTCOQ+7qG700fnUV+jkwtwuBHPMhCJobxhqIw3GipLuB7p0wf1l4+YWAwArm7ZaSGIuZwl74+LbCuJCrxx8KQQOYSIRMikAVBGPF02geFDGeHkvEgD5Wj2gWhrxGBLGRCBLIgCCMep4rFMBaP8RALGfYFAYb3glg4dGSkFARBsBnOHqXRZbmEAj5KciX8QRBAYpCFzEgmhSAII55rj22hJDeUVNt5ODF3dAnPXn34sDxdUxB6w3BOyhUOHRHIgiBkjf/9xLxuHwc7mKgoiPD1NZMHuhl9johjQYgjHmQhEyKQBUHIGtOG6fHmgiAMP0QfC5mQGGRBEARBEEYcwznnQDh0RCALgiAIgjDikBALIRNZE8hKqWKl1N1KqVfs/5P2WpVSU5VSjyqlXlBKPaeU+nC2/r4gCIIgCEJ3EQ+ykIlsepAvB+7RWo8B7rEfJ7IHOENrPQk4Avi2Uqowi20QBEEQBEHoEikJLmQim7fHscDP7J9/BhyXeIHW+mWt9Sv2z+8A7wHDt66SIAiCIAiDEinzJmRCafsEqUN+I6W2a60L7Z8VsM08TnP9LCwhPUlr3Zni9fOA8wBGjRo14ze/+U1W2jmU2bVrF7m5uQPdjAFH7OBF7OFF7BFHbOFF7OFlpNrjo3fuBuAbC3MYFfONWDukY6TZY8mSJWu11jMTn+9RmTel1F+BihQvXeF+oLXWSqm0ylspVQncDJyZShzb73EjcCPAzJkzdVtbW0+aOiy57777EDuIHRIRe3gRe8QRW3gRe3gZsfa4808AzJ0zh7qS6Mi1QxrEHhY9Esha6+XpXlNKbVJKVWqtN9oC+L001+UDfwKu0Fo/1qPWCoIgCIIgZAGfxCALGcjm7fEH4Ez75zOB2xMvUEqFgP8Ffq61viWLf1sQBEEQBKHbSBULIRPZFMjXAyuUUq8Ay+3HKKVmKqV+bF/zIWAR8FGl1DP2v6lZbIMgCIIgCEKXSB1kIRNZO2paa70FWJbi+aeAc+yffwH8Ilt/UxAEQRAEoTeIA1nIhETgCIIgCIIw4vCLQhYyIAJZEARBEIQRh8QgC5kQgSwIgiAIwojDJzHIQgZEIAuCIAiCMOIQfSxkQgSyIAiCIAgjDqliIWRCBLIgCIIgCCMOiUEWMiECWRAEQRCEEYcIZCETIpAFQRAEQRhxSIiFkAkRyIIgCIIgjDhEHwuZEIEsCIIgCMKIQ0mIhZABEciCIAiCIAiC4EIEsiAIgiAIgiC4EIEsCIIgCIIgCC4CA90AQRAEQRCE/uLPFy/kqfVbB7oZwiBHBLIgCIIgCCOGCZX5TKjMH+hmCIMcCbEQBEEQBEEQBBcikAVBEARBEATBhdJaD3QbukQp9T7wxkC3YxBQCmwe6EYMAsQOXsQeXsQeccQWXsQeXsQeFmIHLyPNHvVa67LEJ4eEQBYslFJPaa1nDnQ7BhqxgxexhxexRxyxhRexhxexh4XYwYvYw0JCLARBEARBEATBhQhkQRAEQRAEQXAhAnloceNAN2CQIHbwIvbwIvaII7bwIvbwIvawEDt4EXsgMciCIAiCIAiC4EE8yIIgCIIgCILgQgSyIAiCIAiCILgQgSwIQwCllBroNgjCUED6iiB0jfSTrhGBLAxKlFLjlFJyf8YRWwgpkb6ShNhCSEL6SRJiiy4QAw0SlFLHKaW+MtDtGGiUUiuUUo8D5yD3J0qpVUqpPwJfUUrNH+j2DDTST+JIX/EifSWO9JM40k+8SD/pPlLFYgCxtzh8wFnA5UA9sFRr/eCANqyfse0QAK4CTgY+r7W+zf26HoE3qlJqBnADcA2QDywFHtFa36SU8mmtOweyff2F9JM40ldSI31F+okb6SepkX7SM0b8amog0RYdwKvANOATwIhb9dt2OAh0AreYgUwptVApFRzY1g0oy4EHtdZ3ALcD7wIXKaUKtNadIyWGTPpJHOkraRnxfUX6SRzpJ2kZ8f2kJ4hAHgCUUhcppX6klDrHfup+rfUHWusfATGl1Nn2dcP6+3HZ4Tz7qR8ClUqpnyqlngcuA34CfMy+flh3Xpc9zrWf+htwtFKqSGu9FzgI7AA+D9YkMEBN7Rekn8SRvuJF+koc6SdxpJ94kX5yaAz7DjPYUEp9FDgFuBU4XSn1BaDJdcnVwCX2DTxstzsS7HCqUupKYD/weyAEnAQcY7++RilVN5w7b4I9TlNKXQGsB+4CblZKPYh1n1wPFCqlYgPU1H5B+kkc6StepK/EkX4SR/qJF+knh44I5P5nGfANrfWdwGeBCHCqeVFr/Wfgn8B5Sqk8pdRJA9PMPifRDmHg41rr3wPnaa1fsgev54DtWCvd4Uyq++IMrfWnsLZKr9VanwXsA3K01rsHrqn9gvSTONJXvEhfiSP9JI70Ey/STw4REcj9hGt76+/AagCt9VPAo0B1Qjbp54GvA68AFf3Zzr4mgx0eBhqVUvMTOuqZQA6wrV8b2k90YY+xSqmFWus3tdZ329etAl7r/5b2D9JP4khf8SJ9JY70kzjST7xIP8keIpD7CKVUhf2/D8C1vfUw4FNKLbIf/wPYCFTZ1zcDP8DaFpqutf5uf7Y72xyCHU5QSj2LtQV0gdZ6X782vI/ooT3ewZ7QlFKLlFL3A2Ow4uqGBUqpSUqpiHk8UvsJHJIthmtf6Yk9hnVfUUrNV0qNNo9HeD/prS2Gaz/piT2GdT/JNiKQs4xSappS6h7s7GFzs7pWda8ALwAfVkr5tdYbgFFAg/36DuCTWus1Wut3+rXxWeQQ7NBov/4ycL7W+gyt9ab+bX32yYI91gOf0Fofr7Xe3K+N7wOUUpOVUg8BXwVKXM+PqH4Ch2SL4dpXDtUe6xkmfUUpNV0p9RfgXqDA9fxI7Ce9tcVw7SeHao/1DJN+0leIQM4SyuI/gJ8DP9Nan+t6zV1f8APgQaz4qG8qq+RMEbAFQGv9vtb6lf5tffbIgh02A2itn9daP9q/rc8+WbTHm1rrF/q39X3KlVjll47XWr8NYA/iI6KfJNBbWwyrvuLiUO0x5PuKUiqolPov4EbgO1iJVW32ayOqn2TBFsOqn2TRHkO+n/Q1IpCzhB38nwf8XWv9cwCl1Gi3CFLWyUa/wlrVX4V1sz5oP/7ZgDQ8y4gdvIg9vCilfEqpJmCX1vrb9nMrlFKFgLIff5URYA+xhRexh4cw8ACwUGv9R+A2YIJSKqCtWscopb6M2GKk2QLEHv1GYKAbMJRRSs0BtmqtX7afugR4Uil1NbAS2ATsUkp9G9gFjAa+oLV+1f79jwExrfUH/d/67CF28CL28OK2h7aK0W8GFiqlVmMd/5qDZZN/KqV+jRUjOCztIbbwIvaIkzBu7NZa/9L1sh/o0Fq3K6UU0IoVO3q51vo1+/fFFsPQFiD2GDC01vKvh/+AQuBPWFsYV2LdeOa1i4BngUVYK71vYGUQl7mu8Q30ZxA7iD0G2B5fBJ4GjrEfL8I62WnucLSH2ELs0VNbYHnNffbPzVgLhSLzmthieNtC7DHw/yTEonfEsOJ+PmX/bLJE0Vp/B2jTWj+gtTZFymcCeyAp7nSoI3bwIvbwktYewB+xEomK7cdPYR17ug+GpT3EFl7EHnFS2kJbdNpJV+vtaxab10BsYV6DYWkLEHsMKCKQu4lS6gyl1GKlVL62EkduBH6LNWjPVkpVmWu11u76ijOAt4AO+7UhfcOKHbyIPbx0wx7VAFrr54BLgQuVUqXAaVhbgya5aMjbQ2zhRewRp7vjhlJK2Z83bP+qWSQoEFuY52F42ALEHoMJEcgZUBaVSqm/YRUXPxW4QSlVqrXep7XeA/wVKwB+qev3wkqpNqXUU1gxp9frIVxzUezgRezhpbf20Fr/BPg1cA1wAnCO1vrNfv8AWURs4UXsEac3ttBaa2VVJtiNNV/PMc8PzKfIDmILL2KPwYkI5DTYN56pQPC21noZcAGwFWtFB4DW+mGsLY7xSqkCpVSOvYV+APiq1vpoHU/WGnKIHbyIPbz0wh7jbHvk2c9/C/iM1nql1vrFfv8AWURs4UXsEecQxo2otisTAB/TWl/Tvy3PPmILL2KPwYuSxYYXpZQf6zAHP3AHkA+cqLU+037dh3UazYe11vfbz+ViFbWfD9QB0/TQL8oudnAh9vByiPaYB9QzTOwhtvAi9ogjtogjtvAi9hj8iAfZhVJqMbAWaxvjVayb9yCwRCk1C5y4nmvsf4ZVwCeAZ4DWoX7Dih28iD28ZMEezzJM7CG28CL2iCO2iCO28CL2GBpIHWQvncC/a61vBlBKTQMagauBG4AZ9qru98BSpVSD1no9VnD8cq31AwPT7KwjdvAi9vAi9ogjtvAi9ogjtogjtvAi9hgCiAfZy1rgt/bWB8DDQJ3W+ibAr5T6lL2qq8EqzL0eQGt9+zC7YcUOXsQeXsQeccQWXsQeccQWccQWXsQeQwARyC601nu01vtdge8rgPftn8/COs7xj1jZ1U9DvKTKcELs4EXs4UXsEUds4UXsEUdsEUds4UXsMTSQEIsU2Ks6DYwC/mA//QHWCU8twDpt1Scc1iVVxA5exB5exB5xxBZexB5xxBZxxBZexB6DG/Egp6YTCAKbgcn2Su4qoFNr/ZC5YUcAYgcvYg8vYo84YgsvYo84Yos4YgsvYo9BjJR5S4NSag7wiP3vp9oqXD/iEDt4EXt4EXvEEVt4EXvEEVvEEVt4EXsMXkQgp0EpVQOcDnxLWwc8jEjEDl7EHl7EHnHEFl7EHnHEFnHEFl7EHoMXEciCIAiCIAiC4EJikAVBEARBEATBhQhkQRAEQRAEQXAhAlkQBEEQBEEQXIhAFgRBEARBEAQXIpAFQRAEQRAEwYUIZEEQhEGOUqpDKfWMUuoFpdSzSqnPKqUyjt9KqQal1Cn91UZBEIThhAhkQRCEwc9erfVUrfUkYAVwJPClLn6nARCBLAiC0AukDrIgCMIgRym1S2ud63rcBDwJlAL1wM1AzH75k1rrR5RSjwETgHXAz4DvANcDbUAY+L7W+r/67UMIgiAMIUQgC4IgDHISBbL93HZgHPAB0Km13qeUGgP8Wms9UynVBnxOa73avv48oFxr/VWlVBh4GDhJa72uXz+MIAjCECAw0A0QBEEQDokg8D2l1FSgAxib5rrDgclKqRPtxwXAGCwPsyAIguBCBLIgCMIQww6x6ADew4pF3gRMwcor2Zfu14BPaa3v6pdGCoIgDGEkSU8QBGEIoZQqA34IfE9bMXIFwEatdSdwOuC3L/0AyHP96l3ABUqpoP0+Y5VSMQRBEIQkxIMsCIIw+MlRSj2DFU7RjpWU9y37tR8AtyqlzgDuBHbbzz8HdCilngVuAv4Tq7LF00opBbwPHNdfH0AQBGEoIUl6giAIgiAIguBCQiwEQRAEQRAEwYUIZEEQBEEQBEFwIQJZEARBEARBEFyIQBYEQRAEQRAEFyKQBUEQBEEQBMGFCGRBEARBEARBcCECWRAEQRAEQRBc/H9mMA2pAAAABElEQVQ71LGereAk8QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light", "tags": [] }, "output_type": "display_data" } ], "source": [ "symbol = 'X'\n", "\n", "end = datetime.datetime(2017, 10, 24)\n", "start = end-datetime.timedelta(3*365)\n", "\n", "# get stock price data\n", "S = pdr.data.DataReader(symbol, \"yahoo\", start, end)['Adj Close']\n", "rlin = S/S.shift(1) - 1\n", "rlog = np.log(S/S.shift(1))\n", "\n", "print('Three year return :', 100*(S[-1]-S[0])/S[0], '%')\n", "\n", "# plot data\n", "plt.figure(figsize=(10,5))\n", "plt.subplot(2,1,1)\n", "S.plot(title=symbol)\n", "plt.ylabel('Adjusted Close')\n", "plt.grid()\n", "\n", "plt.subplot(2,1,2)\n", "rlog.plot()\n", "plt.title('Mean Log Returns (annualized) = {0:.2f}%'.format(100*252*rlog.mean()))\n", "plt.grid()\n", "plt.tight_layout()" ] }, { "cell_type": "markdown", "metadata": { "id": "dKKZx3H4Ke44", "nbpages": { "level": 3, "link": "[7.1.4.3 Compounded Log Returns](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.4.3-Compounded-Log-Returns)", "section": "7.1.4.3 Compounded Log Returns" }, "pycharm": {} }, "source": [ "### 7.1.4.3 Compounded Log Returns\n", "\n", "Compounded, or log returns, are defined as\n", "\n", "$$r^{log}_{t} = \\log R_t = \\log \\frac{S_{t}}{S_{t-1}}$$\n", "\n", "The log returns have a very useful compounding property for aggregating price changes across time\n", "\n", "$$ \\log \\frac{S_{t+k}}{S_{t}} = r^{log}_{t+1} + r^{log}_{t+2} + \\cdots + r^{log}_{t+k}$$\n", "\n", "If the compounded returns are statistically independent and identically distributed, then this property provides a means to aggregate returns and develop statistical price projections." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 369 }, "executionInfo": { "elapsed": 1296, "status": "ok", "timestamp": 1604417405485, "user": { "displayName": "Jeffrey Kantor", "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64", "userId": "09038942003589296665" }, "user_tz": 300 }, "id": "Hc9VS82WKe44", "nbpages": { "level": 3, "link": "[7.1.4.3 Compounded Log Returns](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.4.3-Compounded-Log-Returns)", "section": "7.1.4.3 Compounded Log Returns" }, "outputId": "1fc9c295-9a91-4e45-99c4-6e39eed4aa02", "pycharm": {} }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAFgCAYAAACmDI9oAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hc9ZX/8fcZ9S7ZkuXe5IILNtimmWaC6bBAEkICgdTNJuwSEtJJsskvZZNs2iabhATCQgoJKRBICIHQTLHBxr33Ksm2JKv3Muf3xx1LIxdZttX1eT2PHs3cuXfmzNFo7pnvfIu5OyIiIiIiEgj1dgAiIiIiIn2JCmQRERERkSgqkEVEREREoqhAFhERERGJogJZRERERCSKCmQRERERkSgqkEVEREREoqhAFhHpw8ysOuonbGZ1UddvN7NMM/s/MztgZlVmttXMPh91vJvZpA7uPzVyX//omWckItL3xfZ2ACIicnzunnr4spntBj7s7i9EbXsYSAGmARXAFGDmSTzEO4AG4AozG+7uB7oibhGR/kwtyCIi/ds5wO/cvczdw+6+2d3/fBLHvw/4ObAWeG+3RCgi0s+oQBYR6d/eBL5pZh8ws8knc6CZjQMWAI9Gfu7s+vBERPofFcgiIv3b3QTF7X8AG81su5ld08lj7wDWuvtG4DFghpmd3U1xioj0GyqQRUT6MXevc/f/cve5wFDgj8CfzGxIJw6/k6C4xt0LgFcIulyIiAxqKpBFRAYId68E/otg0N6EjvY1s/nAZOALkRkwDgDnAbeZmQZwi8igpgJZRKQfM7Mvm9k5ZhZvZonAPUA5sCVqt3gzS4z6iSFoKX4emA6cFfmZCSQBne2iISIyIKmVQESkf3PgYWAs0EwwG8V17l4dtc+GI465G3gXcOeR07qZ2W8Iiue/dVvEIiJ9nLl7b8cgIiIiItJnqIuFiIiIiEgUFcgiIiIiIlFUIIuIiIiIRFGBLCIiIiISpV/PYpGdne3jx4/v7TB6VE1NDSkpKb0dRq9SDtpTPtooF8rBkZSPNspFQHloo1zAihUrStw958jt/bpAHj9+PMuXL+/tMHrUokWLWLBgQW+H0auUg/aUjzbKhXJwJOWjjXIRUB7aKBdgZnuOtV1dLEREREREoqhAFhERERGJogJZREREZBCprG/ixp+8zu6Klt4Opc/q132QRUREROTkrC+oYE1+BdNS4ns7lD5LLcgiIiIig8jO4hoASuvDvRxJ36UCWURERGQQ2VFcDUBpvfdyJH2XCmQRERGRQaStBVkF8vGoQBYREREZRNSCfGIqkEVEREQGifqmFgrK64iPDVHR4DS1qB/ysahAFhERERkkdpXU4A7njM/CgaKqhi5/jJaw89HfrOCNHYe6/L57igpkERERkUHicP/jCydlA7C/vK7LH2N7UTXPbjjABx95q8vvu6eoQBYREREZBMJh58XNBwGYnxcUyIUV9cfc99Gle1i5twyAN3ce4uXNRUftsza/nJbw0f2Y1xdUAFDX1H8XIjlhgWxmyWb2ZTN7MHJ9spld3/2hiYiIiEhXeWb9fp5YWQDAhOwUAA5UHN2C7O588S/refvPlvDQ67u47cE3+ezja9vts2JPKf/yk8U8+NrOo45/bVtx6+WCbmih7gmdaUF+GGgALohcLwC+0W0RiYiIiEiX21BYCcCMkemkJ8YSY1BW23TUflUNza2Xv/70RtIS4yiuaqChua1FePOBKgC2Haxud+zDi3fx5OpCFk7LBeCp1QVd/jx6QmcK5Dx3/2+gCcDdawHr1qhEREREpEvtKq4hOzWexz5yPmZGShyUH6NALj5i4N6/XToRgIMVbdsPVTcCkJYY27rtkcW7+H9/28jVM4bzs9vncPHkbL7/z608u/5AdzydbtWZArnRzJIABzCzPIIWZRERERHpJ7YVVTF3XBZpiXEApMQZFXWNR+13ZIF85qgMAAqjumPsLgkG+9U1tuDuNDS38P3nt3Lx5Gx+ctvZxMeGuP+9c5k1OoO7f7+SXSU1hI/RX7mv6kyB/BXgWWCMmT0KvAh8tlujEhEREZEu4+4UlNcxdkhy67bUODtmC/KRU7+NzEwCoDDSn7imoZklkSncNh+o5OL/fpmpX3qWqvpmPnTRBGJjgvIyNSGW+2+fS1OLc9n3FvGOny+huqGZTzy2ir+tKQSguSXMt57ZxKrIgMC+IvZEO7j782a2EjifoGvFPe5e0u2RiYiIiEiXqKhror4pzPCMpNZtKXHGkh2H2FBYwYyRGa3biyqDmS2uO3MEZ47OIDs1AYDSmkbqm1q46DsvtfZdXpNf0XrcVTNyuXRKTrvHHZ6RyAUTh/LGzkOs2lvOzK88B8CKvWXcMHsk+yvq+cWrO5mQncLZY7O658mfgs7MYnEhUO/ufwcygfvMbFxnH8DMYsxslZk9Hbk+wcyWmtl2M/uDmcVHtidErm+P3D7+lJ6RiIiIiLRTWB4UvSMzElu3He7w8N5fLm23747iGjKS4vjJbWfz0UvzSEuIxSwosn/28nbKapsYNzSZy88Y1u64j1wyEbOjh6n98n3zWP6lhdx/+xw+c9VUAJqanfqmFvaV1QIwJqpluy84YQsycD8w28xmA/cCDwG/Bi7t5GPcA2wC0iPXvwP80N0fM7OfAx+KPMaHgDJ3n2Rm747sd2unn4mIiIiItPOjF7bxt7WFvH3OKCBo0T0svypYZrq2sf18xZv2VzJtRFprsRsKGemJcazaW87SXYe46ayR/M+7z2Z7UTXvOXcs47NTeHTpHmaPzjxmDCkJsaQkxHLNmSOAoI/zI0t2c9ejK7l65nAARmclHfPY3tKZPsjN7u7AjcBP3f2nQFpn7tzMRgPXAb+MXDfgbcCfI7v8CrgpcvnGyHUit19ux/oYIiIiIiIn5O784a29bC+q5r+f3QK09ScGuGZCMFhvSEp867aWsLPlQBXTRqS3u6+MpDhe315Cc9i577ppAEwalsrC6blMGpbKV26Y0dr3+EQOD/p7aXMR+aW1hKx9XH1BZ1qQq8zsC8AdwMVmFgLiOnn//0MwoO9wQT0UKHf3wxPs5QOjIpdHAfsA3L3ZzCoi+6u/s4iIiMhJ2lVSQ2FFPfdcPpl1BRXMGZtJbnpbC/LCcXFkDB/Dz1/ZSXNLmNiYEHsO1VDX1HJUgZyeFJSMIzOSGJaWyOm4+exRPL22kBV7ynhtewmjs5KJ62Rx3VM6UyDfCtwGfNDdD5jZWOC7JzoostpekbuvMLMFpxdmu/v9CPARgNzcXBYtWtRVd90vVFdXD7rnfCTloD3lo41yoRwcSfloo1wEBlMe1hUH7ZGp1fu4c3wMUMOiRW0Ld1RXV1Nbvo+WsPOX5xaRkxxi2YHgmNqCrSyq3tG6b7g+mMEiM6ahS/KX441U1jezam85/3pmfJ/7m3RmFosDkendzokUvcvc/deduO8LgX8xs2uBRII+yD8CMs0sNtKKPJpgZT4iv8cA+WYWC2QAh44RzwPAAwDz5s3zBQsWdCKUgWPRokUMtud8JOWgPeWjjXKhHBxJ+WijXAQGUx72L9sLK9Zx7WXzGXWMLgyLFi3iijNm8vD6pYyaMov5k7JZ/twWYkI7ePe1C0iMi2nd97F9K9h46ABzJo9hwYKZpx1b9ZBC/rh1FVfPGM59t8055uC+3tSZWSzeBSwDbgHeBSw1s3ee6Dh3/4K7j3b38cC7gZfc/XbgZeDw8e8Dnopc/mvkOpHbX4r0fRYRERGRk7S/vI6QQW5awnH3OTx7xOHZJDbtryQvJ6VdcQzBfMcAc8d1zVRsF0/K4f3zx/Nfbz+zzxXH0LlBel8EznH397n7ncC5wJdP4zE/B9xrZtsJ+hg/FNn+EDA0sv1e4POn8RgiIiIig1ZRVT0/fmk7Ztbh4LkRGYnEhIx9pUEXik37KzljePpR+109c0Tk9/AuiS8jOY6v/suMdgME+5LO9EEOuXtR1PVDdK6wbuXui4BFkcs7CYrsI/epJ2ilFhEREZHT8Nz6AwDMzxva4X6xMSFGZiayt7SWZ9fvp7Ci/qgBegCfvWoq91w++aiW5YGqMwXys2b2HPD7yPVbgWe6LyQREREROR1Ld5UyIiORX3/wqDbJo4zJSmbT/kpe3VZMXk4Kt8wbfdQ+oZCRFD84imPo3CC9z5jZOwgG3QE84O5/6d6wRERERORUuDvLdpVyQd7QTvXvHZOVzJIdwbwIP7z1rNalpQezzrQg4+6PA493cywiIiIicpr2HKqlqKqBcycM6dT+Y4a0zXAxPP305jgeKI5bIJtZFW3LdLe7CXB3P7qDioiIiIj0qmW7SgE4r9MFcnLr5b46aK6nHbdAdvdOLSctIiIiIn3H0l2lDEmJJy8ntVP7RxfImcmdXSx5YDvubBRmdo6ZXXOM7deY2dzuDUtERERETsWy3Yc4d/yQTs8vPCarrUBOiB08A/E60tF0bd8BNh5j+0Y6sdS0iIiIiPSswvI69pXWdbr/MUB2qrpVHKmjAjnN3fccuTGyLbv7QhIREREZ3Nydp9cWUtfYclLHvbkzmI3iZArkvriSXW/raBaLjtYSTO7gNhERERE5Da9sLeY/freKf7t0Il+4Zlqnj/vtm3sYlZl0zMU+OvK9W2YTUp3cqqMW5BfM7JsW9bHCAl8DXur+0EREREQGp8XbSwD4xSs7OVhZ36ljiirrWbm3nDsuGEfMSVa775w7mrfPOXqBkMGqowL5U8BEYLuZPW5mjwPbgCnAvT0RnIiIiMhg9OKmotbL3//nlk4ds2pfOQDnjO+oE4B0RkfTvNUA7zGzicCMyOYN7r6zRyITERERGQRe2VrMyj1l3HP5ZH74wlaS42PZWVLD9BHpbNxfSXFVA3WNLTy5uoB3zRtz3NbhdfkVxIaMGSMzevgZDDydWWp6J6CiWERERKQb/PGtffx93X4Wby9h+Z6y1u0P3DmX7zy7hZV7yvj2Pzbxqzf2kJ2awBXTc495Pwcr68lOTSAxTlO1na6OuliIiIiISDcrqqonJmTtiuO8nBRGZyVzxvA0CsrreG7DQQD+9dfLeXJVAaU1jfzytZ384PmtvLEjmLmirLaRLK2E1yVO2IIsIiIiIt2nuKqBq2cO58xRGcwencna/HLOnzgUgInZKQAciBqo9+Un1zNxWCprIn2On1pdwKJPL6C0ppGhKpC7xHELZDPrcAI9dy/t+nBEREREBpeiqgYuT0/ko5fmAXBB3tDW2ybkBAWyGTzygXNZsr2EX7y6kzX7yvnJbWdTUdfEF/+ynq/+dQMHKxuYM04z8XaFjlqQVwAOGDAWKItczgT2AhO6PToRERGRAaymoZnaxhZy0hKOefv4oSmYwXkThnDplBym5Kbyf4t38dFL87h+1khaws7O4hoeen0XAAunDevJ8AesjmaxmABgZg8Cf3H3ZyLXrwFu6pnwRERERAamncXV3PXoSgByUo9dICfGxfCZq6Zy7vjgi/0RGUksu28hmclxAMSEjC9fP52YkPHAqztpbAn3TPADXGcG6Z1/uDgGcPd/APO7LyQRERGRge8Tf1jN5gNVAFw4Kfu4+921YBLzxrf1fM1KiT9qeegbzxoJQG56YjdEOvh0ZpBeoZl9Cfht5PrtQGH3hSQiIiIysO0srmZtfgXz84Zy23ljGZ5xeoXtjJEZ/OOei5kY6bMsp6czBfJ7gK8AfyHok/xqZJuIiIiInIK/rinEDH5461ld1uo7bUR6l9yPdG6hkFLgHjNLiayuJyIiIiKnyN356+pCLpg4VF0i+qgT9kE2s/lmthHYFLk+28x+1u2RiYiIiAxA6wsq2VlSw7/MHtnbochxdGaQ3g+Bq4BDAO6+BrikO4MSERERGaieWl1AXIxxzcwRvR2KHEenlpp2931HbGrphlhEREREBjR3529rC1kwdRgZkanapO/pzCC9fWY2H3AziwPuIdLdQkREREQ670BlPQcrG7h48vGndZPe15kW5I8C/w6MAgqAs4C7ujMoERERkYFoe1E1AJOGpfZyJNKRzrQgT3X326M3mNmFwOLuCUlERERkYDpcIE8eltbLkUhHOtOC/L+d3CYiIiIiHXhrdynZqQlkp8b3dijSgeO2IJvZBQRLSueY2b1RN6UDMd0dmIiIiMhAUtPQzAubirjt3LFHLRUtfUtHLcjxQCpBEZ0W9VMJvPNEd2xmY8zsZTPbaGYbzOyeyPYhZva8mW2L/M6KbDcz+7GZbTeztWY253SfnIiIiEhfsTa/gsbmMJdOzentUOQEjtuC7O6vAK+Y2SPuvgfAzEJAqrtXduK+m4FPuftKM0sDVpjZ88D7gRfd/dtm9nng88DngGuAyZGf84D7I79FRERE+qTmljCf+MNqPnDheOaOG9LhvusKygGYNSqjJ0KT09CZQXrfMrOPEsx9/BaQbmY/cvfvdnSQu+8H9kcuV5nZJoKZMG4EFkR2+xWwiKBAvhH4tbs78KaZZZrZiMj9iIiIiPQ5uw/V8PTa/Ty/8SDLvriQ/3t9F69tK2brwWryclJoaA5zxfRc3nPuWB5fUcDYIckMTU3o7bDlBCyoRzvYwWy1u59lZrcDcwhafFe4+6xOP4jZeOBVYCaw190zI9sNKHP3TDN7Gvi2u78eue1F4HPuvvyI+/oI8BGA3NzcuY899lhnwxgQqqurSU0d3FPDKAftKR9tlAvl4EjKRxvlItDVeXjrQDM/Xd0AwKycGNYWtxAfgvNHxlJcG2ZTabh1XwPunZvAmTmdaZ/sfnpNwGWXXbbC3ecdub0zf6G4yAIhNwE/cfcmM+u4qo5iZqnA48An3L0yulO6u/vJ3FfkmAeABwDmzZvnCxYsOJnD+71FixYx2J7zkZSD9pSPNsqFcnAk5aONchHoyjzsLqnh/c8uar2+triFD144gffPH8/YockAPLEyn3v/uAaAb9w8k9vPG9clj90V9Jo4vs4UyL8AdgNrgFfNbBzBQL0TihTWjwOPuvsTkc0HD3edMLMRQFFkewEwJurw0ZFtIiIi0g/sLK7modd38akrpzIkZWBPYxYOO5/981oAFk4bxuYDVczPG8qXr5/WboaKm88excLpubhDRpKWlu4vTlggu/uPgR9HbdpjZped6LhI94mHgE3u/oOom/4KvA/4duT3U1Hb/8PMHiMYnFeh/sciIiJ9x9aDVeSX1fK2M3KPefuv39jDo0v38ujSvfz5oxcwb3zHg9b6m4q6Ju78v2WckZvGkNR4lu0u5Xu3zOadc0fT2BwmPvboycHMjPREFcb9zQkLZDP7z+Pc9LUTHHohcAewzsxWR7bdR1AY/9HMPgTsAd4Vue0Z4FpgO1ALfOBEsYmIiEjPufKHrwKw+9vXHfP2tfnBLA1JcTF87vG1PHPPxSTEDpylE772t42s2VfOmn3B83zbGcN4x5xRAMcsjqX/6kwXi5qoy4nA9cCmEx0UGWx3vFmwLz/G/g78eyfiERERkV7U1BImLqZ9QfjQ67tYubece6+YwqzRGbz/4bf46cs7uPeKKb0U5enZWVzNiIwkkuKDAv+FjQd5fGU+/3HZJGaOyuDPK/bxzZvP1IIfA1Rnulh8P/q6mX0PeK7bIhIREZE+7VB1I8MzEgEoKK/j/kXb+e2be7lm5nA+tiCPuJgQ180awYOv7uRDF03o9b63tY3N1DS0tFveubSmkXfcv4SkuBimDk/j8mnDSIiNYfH2ErYXVbN4RwlJcTEkx8dQWd9MY3OYScNS+fjlk4mPDXH1zOG9+Iyku53KPCPJBAPoREREZJCoqGtqvVxc1cDwjET2HqrlfQ8vY1dJDVdMz+VH7z67tWX5Y5fm8fe1+3ng1R185qozeitsVuwp5R33vwHAdbNGcMtIqKpv4n3/F8R94aShvLDpIH9ZFcwLEB8TIjUxlhkj05mUk0pKQiwNzWGeW3+A+649Q10pBonO9EFeBxyeii0GyOHE/Y9FRERkAFmXX9F6+c8r9vG9f27hla3FALz97FH89ztnERvV7WLmqAyunzWChxfv5lNXTCXsztaD1QxNjSc3PbFbYlxfUMHG/ZVMHpbKrNGZGPDVv25svf3va/dzTkoiX/vpYnYW13Du+CE8+uHz2VVSw6Nv7mHe+CwumpxDasLR5dF33jGLmJC6UwwWnWlBvj7qcjNw0N2buykeERER6YP+vq5tYqlfvbGHjKQ4PrFwMsnxMbz3/HHtiuPDzp84lKfX7qewoo57HlvNij1ljMpM4p+fvISUYxShp+PlzUV86FdvEY406Y0ZksT5E4ayrqCCj18+mcq6Jh5Zspvvr6gnFBPHwx84hwVTcgCYkJ3Cl66f3uH9qzgeXI776jSzdHevBKqOuCk9srhHpbu3dGt0IiIi0uuaW8I8t+EA1545nJAZc8dl8fY5o0/Yt3hCdgoA331uCyv2lHHH+eP4zZt7+NGL27jv2mldFt/+ijo+/vtVTBuRznfeMYuP/Ho5+0rr2Feaz9xxWXxy4WQKyut4ZMluqhrhl3fO5rKpw7rs8WXg6ejj2+8IWo9XEHSxOPKjU6qZPeju93VXcCIiItL7lu4qpbSmkRtmjeSaM0d0+rjxkQL5qdWFzBuXxddunEF9UwuPLN7Nv148kZy0hC6J7/mNB6lqaOZH7z6LScPSGDMkmcKKekIG379lNmbGqMwkxg5JZlpaIwunH3seZ5HDjtvT3N2vj/ye4O4TI79bf4DhwM09FaiIiIj0PHfnT8v3kRQXw4KTbHUdkZ7IiMhsF1++fjpmxl2XTaIpHObhxbvYevDIL6lPzdKdpYzMSCQvJxWA775zNp+5airbv3lta5FuZrz86QW8Z1rXFOUysHXUxWJORwe6+0qg674fERERkT7n5S1FPLm6kFvnjWmdE7izQiHj2U9cwr7SWmaOygCCbhcLp+Xys0U7+NmiHXzjppm89/xxpxzf6n3lPLfhAO86Z0zrnMRjhybz75dNOmpf9SOWzuqoi8Xh+Y8TgXnAGoJuFrOA5cAF3RuaiIiI9LaXNxeTGBfiazfNOKXjM5LiyIgUx4f968UTeX7jQQCeWbf/lAvkyvom7v79SnLTE/lcL04lJwNPR10sLnP3y4D9wBx3n+fuc4GzgYKeClBERER6zo7iah56fRcbCyspr23k5S1FnDN+SJcuGX3O+Cw+e/VUZo/JZH1BBcFiuifvvifWUVhez4/fczYZyb27GIkMLJ2ZY2Wqu687fMXd15uZulaIiIgMAGU1jWQmx2FmFJbX8e4H3qS4qqH19pDBV284tdbj4zEz7lowicykeO77yzqe23DwmCvTFZbXMSIj8ajlnN2dH7+4nafX7ufTV05h7risLo1PpDMF8loz+yXw28j124G13ReSiIiI9ISnVhfwyT+s5o7zxzEhO4Xv/XMrLWHnF3fMpbaxmT2Harl4ck63FaA3zB7BI0t28c1nNnLF9Nx2fYRf21bMHQ8t4x1zRvOl66bx2Fv7OHfCEOaOy+LFTUX88IWtzB6dwUcuyeuW2GRw60yB/AHgY8A9keuvAPd3W0QiIiLSbaobmnl9WzHucO8f1xD2YOEPgIsnZ/PNm85k7NDkHoklLTGOey6fwr//biWLthRx+bS26dd+88YeEuNCPL4ynydW5eMOIzMS+d4ts7n3j6sZNzSZP39sfuvS1iJd6YQFsrvXAz+M/GBmFwM/AP69e0MTERGRrvaFJ9bxtzWFAJw9NpPffOg89pXWUlbbyAUThx7VnaG7XTkjl+HpiTyyZHdrgezuLNtdyo2zR3HHBeN4fuNBfvTiNgor6rntl0uZkpvKQ+87R8WxdJtOrfNoZmcD7wHeBewCnujOoEREROTUhcNOZX0TGUlB3+K6xhYe39bIzza/wbLdpUwbkc4V03P50EUTSE2IZdqI9F6LNS4mxO3njeX7z29l84FKzhiezuYDVZTXNjFrTAYzRwU/t54zhvnffgmAP39sPumJGpQn3aejeZCnEBTF7wFKgD8AFpnZQkRERPqQ8tpG3txZysubi3hpSxHFVQ1MyE7h/IlDeWVLEYUVTcwa3cLdb5vEJxZO6VNzAt923lgeXrKbq//nNZLiYqhragHg7DFtfZ9HZibxuw+fx9DUBBXH0u06akHeDLwGXO/u2wHM7JM9EpXIINPcEsZBXxceg7v3+Fe+Iv3JgYp6Hnh1Jw8v2YU7pCXGcsmUHGaMTOfVrcX8eUUwuO29U+Cud1zU2+Ee09DUBP7tkol86x+bqWtq4UvXTWPGyAymj2zfsj1/UnYvRSiDTUcF8tuBdwMvm9mzwGMEC4VIH+fu1DW1UN8UJisydQ9AY3OYhuYW0k7ik3dtYzN7S2tpbA5z5qiMAV+ohMNBv7cVe8p4c+chRmcl87FL87p9wMpnH1/LCxsP8p83zGBiTgop8bFMHZ7WrY/ZXcJhp8W9tdgPh519ZbUADEtLPGolLnenpLqRbUVV7C6ppa6phcS4ELuKa1iTX05heT2fvXoqV88c3qXzsIr0BfVNLbhDYUUdlXVN5A1L7VTraH1TC4u2FPHPDQd5YlWwNMGNZ43k3eeMZd74rNb/v7sWTGr9kLlo0aLufCqnbdboTACykuP48MUTezkaGeyOWyC7+5PAk2aWAtwIfAIYZmb3A39x93/2UIwDVmV9E/cv2kF5bRMHKuoYkpLA3HFZ5OWkMGNUBqkJx//8cqCinuc3HiAUMqrqm6moa+JQdQMr9pSRX1ZHQ3MYgCm5qWQlx7OzpIbiqgZiQ8aFk7K5IG8oew7VMG1EOndeMB6Aitom/rF+P40tYRJiQ2worOSxt/bRGLmvM0dlcO2ZIxiSEseQlAQS40KEzHjsrX3UNDTzqSunMGNkxvFC7tPCYee17SX84J9bWJNf0e62Z9fv5wvXTqOwvI6/r91PfXMLF0/O4fyJQ7lh1ohT/tDw8pYiPvmH1QxLS2DrwWoAPv2nNa23XzE9l08snNwnc1pYXsfa/HLKa5vYVVLDK1uLSYiLISMpjtV7y6hpbOGqGblMyU3jT8vzKSivAyA1IZaPXjqR6SPT+c0be9hXVseBinqqG5qPeoyE2BBDU+IpqmrgnsdWk52awOevOYO3nz2KUOSr4drGZnuP4JQAACAASURBVBZtKaapJdyap6aWMIu2FLM2v5xXtxaDGXk5KWw9WEXIjEc/fN5JfUgUORktYWdvafCBcHRWUrtvhUqqG3hyVQHrCipYubeMitomqhuaCUetkTFuaDIfvmgCcTEhRmclExMyiqrqOVTdyNDUePLL6sgvq+Op1QXUNrYQHxvi/fPHs2BqDpdOyTnm+1F/adiYOSpoLf7Ewim9HIlI52axqAF+B/zOzLKAW4DPAYOyQC6uamDj/koSYkOU1zaxZEcJKQmxVNU3EXZIjI3hQGUd8TEhquqbqW9uYeyQFOaOy2JIShzusGxXKduKqnl9ewmNzWFS4mPIzUhkQ2Elj6/MB4KJ2UdmJjExJ5Wc1ATiYoydxTXsP1THxJ3LWLKjhKaWtnfV2JCRkRRHXk4qF+QNZXRWMi1h5/GV+VQ3NHPplBxizAiFYOmuUl75R3HrsTuLa9geiedI180awTUzh1Ne28T3/7mF7zy7+ah90hJjaQk71/34dcYOSWbmqHTSE+PITU/kqhnDCbszY2R6uzfpiromCsvrOGN4GuW1TdQ0NjM0UnSbWYdfq1c3OuGw48De0loKyupITYzljOFpJMadXAvj75ft5YmV+eSX1bG/op7h6Yl85qqp3DJ3NKGQ8eSqAn7x6k4+++dg6u9zxmcRF5PA02sK+d3SvazcU8bwjETW5pezem85mcnxpCTEkJueyNJdpYTDzg2zR7JwWi5J8SGKKhtYOD2XuJgQf3xrH+GwM35oChlJcXzyiikUVzWQkRTH2vwKfvD8VlbvK+czV07l0aV7OFBZT0JsDAmxIaYOT+O2c8cyKTe1U8+zqSVMY3OYppYwFXVNvLHjEPPGZxETCrFmXzk3zB7Z6f6I24uqufmni6mKFLVmcGFeNqGQUVzVwCVTcshOTeCJlfk8s+4AF03K5q7L8kiIjeHZ9Qf43j+3ApCTlsAZw9MYmhLPgqnDmDkqnQnZKYTMCLszMiOJUMgIh53Xt5fwzb9v4tN/WsM3/76RTyycQkF5HQ+8urM1rrgYY0qm8ZnFL1Fc1YBZ8KEuxuAvqwrIy0lle1E1T64q4LpZI8lMimsttOsaW3h2w352FtdQVd/MmvxyslMTuPbM4ewrraM57OTlpOAeLJubmRzHlNw0UhJicXd++PxWVuwt46e3zSEzOb7Trz8ZeH70wlZ+/NJ2ICiQzx0/hFDIqKhr4q3dpZTXNpGbnsCcsVmkJcYyPCOJpLgYmlrCHKys57G39vHlpzZ0+Bgp8TFcOiWHW88Zw6zRmQxJGRivubTEOHZ969reDkMECAbd9XYMp2zevHm+fPnyHn3Mm366mNX7yluvhwzCDumJsYRCRnltE4lxIbIjgwhCIdhQWMmRaR4zJImF03K56axRzB4TfK3k7qzJr2B/eR2b9leyp7SWdfkVFFcHLb+ThqVSV11JY0wS8/Oyefe5Y4I17pPiSIqLOalWgpLqBvLL6vj471dxoLKe0ZlJnDdxKDeeNZLJw1JbW6BHZia1HlNZ30RpdSOxMcbuklocp6ahmUum5FBS1cgz6/ezem85G/dXtragHPahiybw5eunA0FXj1t+voQ1+RVkpyZQUt22YlNOWgLTR6SzfHcp47NTOHfCEMZkJbO3tJZXtxbT2BImvyxojUyOj6G2saX12LgYY/rIDOaMzSQvJ5W0xFgq6poYMyQZg9bWzrX55ZTVNpFfVtf62FfPGM7VM4dz5YxckuPbf26sa2zhQGU9sSFjzJCgq0VL2LnjoaUs2XEIgFGZSZw9NpOKuibqGlvYcrCKMVnJjM9O5oWNRTS2hFvvLzM5juzUBLYXVXPL3NF895bZx/wbLdlRwm0PLgWCDyFXTM/FPYhn8faS1gJ1aKJxybSRXDNzOOeMH8KTqwtYvqeMPYdqKKlqpKaxmar6o1toR2Um0dAcpqS6gXnjsvjhrWe1Pr/D3J0DlcEHBzPjhY0H+fCvl5OeGMvDHziH9MQ4EmJjjtkFpaYh+GYj+jUEsKGwgn2ltVx2xrCT6jIRDjvffnYzz6zb3/oaAPjKDdOZn5fNd5/bzAubijhjeBqfuWoqF03Obr3/huYW4kIhLvj2ixysbGjNaUJsDJV1Ta1/n5BBSnwsWSnxlNY0trZsH/4/jxYTMoakxFNV30R9U3D81Nw0Lp2aw1UzctlyoJp1BRUcqm4gLjbErFEZvP/C8STExlBR10R6YixmRnNLmC0Hq9hQUMma/HJKaxqZPSaTm88eRXJ8DA3NYdIT44iPDeHurR+M42OP3V990aJFLFiwoNN5Heh6Mh81Dc2c+80XmDMui7edMYynVhdSXNVA2J2MpDjGDknmU1dO7bD7VFlNI03hMAVlddRFul8MS0tgSErQejx+aMopL6ms10ZAeWijXICZrXD3eUdtV4F8ct7YcQiz4GQdFxti9uhMmlrCJMfHtE6lc2Qfy7KaRsrrmiivbaS2sSVoNUtNOKXH7+oX8+G/f1d/BefubCuqZuvBKp7feJCnVheSl5PClTOGs6Gwkle3FrNw2jBSEmIpq21iam4qZkEL5PqCCoalJ1Ba08SeQzXUNrYQMrh4cg7pSXGUlRSxvsy4esZw5ozLIjs1nsbmMGvyK3h5cxFbD1YdVcxEiw0Z00emMyU3jcq6Jr5w7TQmZKec0nNsaA7T0BwmIynuqNsO57S2sZmlO0vZc6iGzOR43thxiD2lNZwzfgh3XDCOYWmJx32MHcXVGDAiI6nd66qirolVe8vYXlTNP1dsZVOZtRbMh80ek8nU3FS2FVVT19jCjWeNIjEuREJsDOsKKvj9sr1kJcfxsQV5/O9L28lJTeD9F45n76FahqUnUN3Qwq6SGv62ppCpuWlckDeUFzYdJL+sju/dMpt3zh190jnrCu7Oi5uK2FVSw4cumtDaCuzu/OhPL/KB6y89bgGx7WAVa/KDovUf6w8wKiuJsZEPULPHZDI/b2hr94uq+ib2V9QzOiuJkBmbD1SRHB9DdUMzBWV1PLNuP+mJcaQnxTJ5WFDw/HH5Ptbkl7cWsVnJcYQ9WJihJdy2ray2iUnDUpk9OpO3dpe2fqBMTYg9ZneTjKQ4hqUlUN3QzP6KemJCxsTsFMZnp5CXk8q/X5bXGvdzL75Mc84Z1De1BI8R+QDeF7gH3Q92H6qlJvJcQgalNY0crKznGzededzC/1Qd6z2zobmF+JhQ6//oyQ4EPVTdwJaDVWw9UMXuQ7XkpCUwOiuJFzYV8bc1hfz+X8/ngryhXfk0uoSKoYDy0Ea5UIE8YPTHF3NFXRM3/O/rNEZaK5vDzr9dOpEvXDPthMe6O4dqGokxIyvyNeKiRYu49NJLj3tCc3dW7ysnMS5oYa5tbCY5PobM5HiyUxJOufWlr1q0aBHzLriIH72wlYLyOj588UQmZqd0+FV/ZX0T/++vG/nAheOZOSqDJTtKuPt3qzhU09huv7gYY+rwNGJCIXYUVZMYF+IbN83k6pkjuvtpnZK+8P+xv6KONfvKyU1P5OyxwRRV4bDzz40H2XygkvyyOoamxLNsdykHKurJTU/kzgvGMWt0JhOzU6hqaOZ/XtjKuCHJNIedusYW9pTWUtsYFNl5OamYwZZIcbazuJpxQ1MYnp5IQ3MLhYcqOFDT9r6enRrPjJEZzM8bSkuk68r1s0YQexozphRV1rOntJbMyDdYtY0t5KQl0NgcpqC8jtKaxtZvatISY0mOj2HV3nLe2l3W7hujI9189iiGpSfw6tYSMpPimDUmgzFZyZRUN7B5fxVjhiSRk5ZAU4vzkUsmUlTVwJ5DNQxLS2B0VnJrF6tw2Nm4v5KG5jBrVq0kb/osymsbKSyvZ9GWIpbuKiUuxkhLjKOxOUx9UwsTslOIjQkxbkgyW4uqcIewO1X1zVx35ggcZ9vBarYVVVMa9X8SPSUZQG56Aos/97bTym936Qv/H32B8tBGuTh+gdyphUJETkdGUhyvfGZBawv7wcp6xnVyVggzI/sYre0dtfaYWWthMlikJsTyxeumd3r/9MQ4vv+utq4d8/OyeeuLC9m4v5KslHhqGpoZk5V81LchcmIjMpIYkdG+W0koZFw9M+jGcyIZSXF85YYZnX68JTtK+NrfNlLf3BKMMwAevHMeE3NSWLK9hLX5wYCwb0WNO/jDW/uYPSaTaSPSuHL68GP+nd2dN3YcYtW+crYerGJDYSVJcTGU1Ta26+LSkfiYUGv3lbTEWObnDeWyqcOYmJNKcnwM2akJxMeGCBnc+NPF/GVVAXExxpmjMthXVsuKPWU0toQxC7oEvbSlqHXQ8A+e39raKg9Bl6tZozOobWyhsLy+fSH+5rLWi9mpCbx//niS4mOoqm8iNhSiqSVMUVUDu0pqeHbDASZkpzBzVAbhcDAj0G+X7iEtIZbJuWlcOT2XScNSmTo8jam5aeSkJVBZ10xxdQPg5KQm9sniWEROjgpk6RGHC9qk+BjGn0J3Bul+oZAxc1TfmzFDOjY/L5tnP3FJ6/VFixaxYHqwXG9eTtsgzoLyOpLiYnj0zT089tY+lu0ubS0wxwxJIjUhjrSEWFITYxmekcibOw+xs7gGCFpFJ2anUl7XxFljMnn//PFMzk1jz6EazIzkuBj2V9SRGBfD6KwkMpPjSU2IZeaoDJpbwtQ0trR27zmep+++iOKqBsYMSW43ReCBynpSE2NJT4wjHHZKqhtYvKOE5bvLmDYiGNi5q6SGFzcdpKKuiazkePJyUrl4cjZDUxNYuXoNY/PO4IwRaYwZktzhFGpV9U2s2FPG/Lzsdl09mlrCxIbsuB/MM5LjBtw3UyKDnQpkEZFBYFRksOTdl0/m7ssnEw47T60pYPOBKooqG6iqb6a6oYkDFfUs311K2OFL103j7XNGdzBLQs4JHzc2JkRG0olbVNMS446afi8UsnaDPEMhY1h6IjefPZqbz27rA3/hpGzee/64Y96vF8ayoJP95dMS41gwddhR27WAj8jgowJZRGQQCoWsXZEZzd0JO31qKWIRkZ6kAllERNoxM2JUG4vIIKbvjUREREREoqhAFhERERGJ0q/nQTazYmBPb8fRw7KBo9eEHlyUg/aUjzbKhXJwJOWjjXIRUB7aKBcwzt2PGnHcrwvkwcjMlh9rQuvBRDloT/loo1woB0dSPtooFwHloY1ycXzqYiEiIiIiEkUFsoiIiIhIFBXI/c8DvR1AH6ActKd8tFEulIMjKR9tlIuA8tBGuTgO9UEWEREREYmiFmQRERERkSgqkEX6ATPTumYix6D/DZGO6X/k1KhA7oPMbND/XcxsVG/HINJXmdlUvU+0Uh6i6HUR0DlETpf+kfoIM/sXM7u3t+PobWa20MxWAB/t7Vj6AjO7wcx+D3zezMb1djy9xcxuMrOv93Ycvc3MrjCzpcCHGeTv32Z2nZk9DXzdzC7s7Xh6k84fbXQOaaPzx+nRIL1eZmaxwKeAjwFjgTnuvtrMYty9pXej6xmRr3/igP8B5gNfdfcno2/3QfhCNbOFwH8B/wmcA2QAL7v7380s5O7hXg2wm0VeFyHgA8DngXHA29z9tV4NrIdF8hALfBl4D/A5d38i+vbB9v9hZnOB+4GvAunA24Al7v7IYPjfOEznj4DOIUcb7OePrjCoWyD6AndvBrYAZwD3Ar+IbB80b24eaASSgSfd/UkzC5nZ7MO3926EvWYh8LS7P0vwukgDPmhmKYPhzS3yumgBtgNnA3cBg64VOZKHJiAM/PlwcWxmF5tZXO9G12sWAq+5+zPAU8AB4ONmluHu4cHS51Lnj4DOIcc0qM8fXUEFci8ws4+b2bfN7F2RTX9393p3/x9gmJndFtlvQJ/8ovJwa2TT14GLzex7wErgG2b2gJld1XtR9pxjvC6WABeaWaK7FwH1QAzwwV4LsgdE8vCgmX04sukVd69y9weBFDP7UGS/Af3+FZWHj0Q2/RwYYWYPm9k64LPAQ0ReDwO5KIzKxb9GNr0M3GBmWe5eBzQBFcDnYGAXRDp/tNE5pI3OH11vQJ9g+hoLfBK4FVgO/D8zez+QFbXbvcB3ASKtRgPOMfLwVTP7kLvvAJ4kaA25FbgNWA/cbGbZvRZwNzvO6+J9wGagEPijmb1M8FXyU0DaQC0OI/8PtwGPA3eY2ReAiVG7/Cdwb6QwGrCtIEfk4XYz+xLQQPD/EQ/cAvxL5Pa3m9nYgVoUHpGL95rZF4HdwHPAb8zsNYLXyLeBTDNL6aVQu5XOH210Dmmj80f3ie3tAAYTd3czuwz4kru/bGbVwJVAC/CbyD5/iXwS/LS7f8/MFrr7C70Zd1c7Th6uNbN3ufv/mtnD7l4NYGargfOB2t6MuTsdIx81BK+LWoLBWLOAkZG+Y7cDEwZwcXg58B13f9bMSoAbgNuBrwG4+z8iLcgfMbOfAVe7+596L9xuc2QebgT+zd2/bWbPu3sNgJmtBcoJWlAHqmPl4k53v9vMxgJT3f15M7sUSDqcm4FG5482Ooe00fmj++hTRDc58uvOqE9sy4GLASJ9g7YBM8xsatTuHwP+28wOAP16qpqTyMMmYK6ZTT38xhZxBcE/en0PhNvtOpmPfwBbCQZWTHL3Ve7+98h+c4GlPRRuj4nKwyrgegB3Xw68AYyy9rMUfA74FsH/zvCejLO7dZCHxcAEM7vwiALwfUASUNajgfaAE+Riipld7O573f35yH7XATt6PtLuN1jPH8cy2M8h0XT+6F4qkLtPUvSVqE9s2wm+4jgzcv0VgtGlaQBmdhbwIMHXiXPc/Vc9E263OZk8pNOWh3eb2XqCmQvuG0CfeE8mH2m05eNaM1tGkI/HeyjWbmNmMZHfBu3ysBgImdklkevrgf3AyMj+k4CfEXyNOsfd/7cn4+5qp5GHd5jZGoKuBR9z935/8j/JXBQS+XBkZpeY2SvAZIJ+2v1eB7kYbOePk83FgD6HnGQuBuz5o6eoQO5iZna+mT0O/NTMrox6QR/uzrIMaAauNLNYd99I8Cl/XuT2Q8Bd7n6Luxf2dPxdpQvysIfgxH9nZIBBv3Ya+Tgncvs24KPu/g5377ethWZ2gZk9CHzSzNIO95uNysM2YANwqwVTVeUDucD4yO0VwH+4+9v7+f/HqeZhQuT2rQSvhzvd/WBPx9+VuiAXuwneM29295IeDr9LmdmFZvYr4EtmNiQqF4cH3A2K8wd0SS4GzDnkNHIxoM4fPU0FchcyswUErVtPEEy9814gy4I5B5sB3H07wdcheQRzu0Iw+GZP5PZ97r6uh0PvUl2Uhzd8gMx3e5r52B25fZu7r+zZyLuWBX1EfwK8RNASep+ZXQmt01UBVAGvAQnA9yIngCyCEz/uXuzu23o69q50mnkoiey3zt3f6OnYu1oX5WKvu2/o6di7mplNJHifeJmgpe/rZnYttA24GwznD+iyXAyIc8hp5mJ35PZ+f/7oDSqQu9Ys4C13fxT4LcHE5dWHvwYxs2+Y2UPACuDHwLkWrPhTSjAie6BQHtpTPgJzgcXu/nvgGwStgO8xs1wI8gD8jqCV+MsERdBrkev9/qviKMpDG+WizbnAJnd/BPg0sJpgKrsRMKjeJ0C5iKZc9BLNYnEazOx8oNTdt0Y2vUow3UwhwaIGm4CfmdlzwD6C/oL/6e67I8ffBsS6e3mPB9+FlIf2lI/AMfKwBTjLzEa6e6EFI8+HAjdZMA3RRODzHkzVhJl9EEhx96reiL+rKA9tlIs2ZnYDQYvgcnd/k+Br8rstmLJvr5ktJmgRfLeZvcUAfZ8A5SKactF3qAX5FJhZppn9HXgeeJeZpQK4+2rgaoIX913uvoBggMlCoMbdb3P37RYZeeru1f35Raw8tKd8BI6XB4J+s5XAIxb0xx5D0BqS5u5bI3nYEZWHcH8uhJSHNspFGzMbYWZ/I1joJQt42MyucvedBLO23BLZdQtB3+t0YN1Ae58A5SKactH3qEA+NSkEX13cHbl88eEb3H0ZkEOkHxRB37pMItMw2cBaA115aE/5CByZh0sg6AdHsJDBt4A/ufvNBG/0Cw4fqDwEBlgeQLmINo9gmeyL3f3rwI+Aw6slvgacaWbnebBcdAFwibtXgHKBcjFYctEnqEDuJDO708wuNbN0dy8AHgD+SDC34nlmdnj6pQSCJR7vihx6OTAksh/9/UWsPLSnfAROkIdzD+fB3Rvd/WV3fyxy6Bzg2cP3ozwE+nseQLmIFsnFgsj7wItEFvaIOETQkg7BHLWrgB9EWtlnAHvMLBmUC5SLAZuLvsh8YK5O2iXMzAjm2vwdECaYhD4FuMcj0wlZsIDBuwj6C/0msm0G8JXIsU0E01Jt6vln0DWUh/aUj8BJ5uEtd/9t1LEXEbSQlBCsELe7Z6PvOspDG+WizYlyYWZx7t5kZh8Hprv7R6OO/QEwmqBb1p3uvqXnn0HXUS7aKBf9iLvr5xg/QEzk9xTgt4e3Af8LPHHEvp8kGIGdSbDUKQQLQkzs7eehPCgffSgPGQQDrCCY0uva3n4eyoNy0Vu5iNrnb8DCyOVhkd+xBP2we/25KBfKxWD9UReLI5hZjJn9F/BfFszROZVgrXs86PtzDzA/ctthDwKpBANQdpvZKHev86Bzfb+kPLSnfAS6IA87zWy0uxe6+zM9HH6XUR7aKBdtTiYX7t5iZvFAMbDVzL4JPG9mWe7e7P1/MKJyEaFc9E8qkKNEXrgrCEaQbge+TvBV+GVmdi609vX5auTnsOsI+pauBs70oL9dv6U8tKd8BLogD2sI8pDfc1F3PeWhjXLR5iRz8f8ihyUC7yfof5pG0GLY71c6Uy7aKBf9l+ZBbi8MfN/b+oyeTbCc6X8C9wNzLZhK5UngbWY23oN+cvUEL+BXeyfsLqc8tKd8BJSHgPLQRrloc7K5GE3QreS3wA88mA5yoFAu2igX/ZRakNtbAfzRzGIi1xcDYz1YwSbGzO6OfNIbDbRE3uhx96cG2Bu98tCe8hFQHgLKQxvlos3J5CLs7vnuvszd7xyARZBy0Ua56KdUIEdx91p3b4j0CQK4gqAfEMAHgGlm9jTwe2AltI5IHVCUh/aUj4DyEFAe2igXbU4yFytAuUC5GFS56G/UxeIYIp/0HMgF/hrZXAXcB8wEdh3uT+ruA3aePOWhPeUjoDwElIc2ykUb5aKNctFGueh/1IJ8bGEgjmA+zlmRT3dfJvj643Xv54OtToLy0J7yEVAeAspDG+WijXLRRrloo1z0M1oo5DjM7HyClc+WAA+7+0O9HFKvUB7aUz4CykNAeWijXLRRLtooF22Ui/5FBfJxREaS3kEwirSht+PpLcpDe8pHQHkIKA9tlIs2ykUb5aKNctG/qEAWEREREYmiPsgiIiIiIlFUIIuIiIiIRFGBLCIiIiISRQWyiIiIiEgUFcgiIiIiIlFUIIuI9CNm1mJmq81sg5mtMbNPmVmH7+VmNt7MbuupGEVE+jsVyCIi/Uudu5/l7jOAK4BrgK+c4JjxgApkEZFO0jzIIiL9iJlVu3tq1PWJwFtANjAO+A2QErn5P9x9iZm9CUwDdgG/An4MfBtYACQAP3X3X/TYkxAR6eNUIIuI9CNHFsiRbeXAVKAKCLt7vZlNBn7v7vPMbAHwaXe/PrL/R4Bh7v4NM0sAFgO3uPuuHn0yIiJ9VGxvByAiIl0mDviJmZ0FtABTjrPflcAsM3tn5HoGMJmghVlEZNBTgSwi0o9Fuli0AEUEfZEPArMJxpjUH+8w4G53f65HghQR6Wc0SE9EpJ8ysxzg58BPPOgvlwHsd/cwcAcQE9m1CkiLOvQ54GNmFhe5nylmloKIiABqQRYR6W+SzGw1QXeKZoJBeT+I3PYz4HEzuxN4FqiJbF8LtJjZGuAR4EcEM1usNDMDioGbeuoJiIj0dRqkJyIiIiISRV0sRERERESiqEAWEREREYmiAllEREREJIoKZBERERGRKCqQRURERESiqEAWEREREYmiAllEREREJIoKZBERERGRKCqQRURERESiqEAWEREREYmiAllEREREJIoKZBERERGRKCqQRUSk08zsKjN7soPbF5nZhzt5XxvMbEHk8lfN7LedOCbBzDabWU6ngxb5/+xdZ3gdxdk9c6t01WXZcrfcezfG2NiWsQkmISQBQicEkkASCOEjCYEQCBBICARTYmogdDC9GBt3y73I3ZKtavXedXvZne/H7uzO3iJd2bLksud5/Fj33i2zs7szZ86c9x0dOroInSDr0KHjvAYhpJQQsuQ0nyOLEOIhhDgIIY2EkC8IIQOi3PdtQsgTp7N8XcSTAJ7qjgNRSidSSrO6uI8XwP8APNAdZdChQ4eOcNAJsg4dOnT0DO6mlMYDGAUgHsC/e+KkhBBTNx7rAgBJlNLd3XXMk8SHAG4lhFh7uRw6dOg4R6ETZB06dOgIA3kq/3lCSLX873mekBFC7ieE1Mi//ZIQQgkhozo7LqW0FcBXAKZxxxpHCFlPCGkmhOQTQq6Vv78DwE0A7pfV55Xy95pz8SozISSTEFJJCPkzIaQWwFuyfeETQsi7hBC7bG2Yxe3/Z0JIlfxbPiFkcYTiXw5gS1A9XSpbHtoIIcsBEO63kYSQTYSQJlk5/4AQksz9Hla9J4SsIoT8Lui7I4SQn8h1WAmgBcCcjupahw4dOk4WOkHWoUOHjvB4CBIBmwZgKoDZAP4KAISQpQDuA7AEkiKcGe1BCSF9AFwFoEj+HAdgPSRVtB+A6wG8TAiZQCl9HcAHAJ6mlMZTSn8Y5Wn6A0gFMAzAHfJ3VwJYASAZwDcAlsvnHwvgbgAXUEoTAFwGoDTCcScDyOeuJQ3AF5DqJQ1AMYB5/OUC+CeAgQDGAxgC4NEoyv8OgJu580wFMAjAKm6b45Duiw4dOnR0O3SCrEOHDh3hcROAxyml9ZTSBgCPAbhF/u1aAG9RSnMppS5ER/peJIS0AWiERCaZQnoFpLQudAAAIABJREFUgFJK6VuU0gCl9CCAzwH89BTKLgL4G6XUSyl1y99tp5SuppQKAN6DSi4FAFYAEwghZkppKaW0OMJxkwHYuc/fB5BLKf2MUuoH8DyAWvYjpbSIUrpeLkcDgGUAFkZR/m8AjCGEjJY/3wLgY0qpj9vGLpdHhw4dOrodOkHWoUOHjvAYCKCM+1wmf8d+q+B+4/+OhHsopUkApgBIATBY/n4YgAsJIa3sHyRy3v8Uyt5AKfUEfVfL/e0CEEMIMVFKiwDcC4nk1xNCVhBCBiI8WgAkcJ819UAppfxnQki6fLwqQkg7gPchDQ46hFz2jwHcTAgxALgBEqnnkQCgtbNj6dChQ8fJQCfIOnTo0BEe1ZDIK8NQ+TsAqIFKcAHJOhAVKKVHATwB4CVCCIFEKLdQSpO5f/GU0t+wXcIcxgXAxn0OJtPh9umoTB9SSi+GdL0UwL8ibHoEwBjucw24a5evh6+Lf8jHm0wpTYRkmyCIDu9AGigsBuCilO4K+n08gMNRHkuHDh06ugSdIOvQoUMHYCaExHD/TAA+AvBXQkhf2Wv7CCQFFAA+AXAbIWQ8IcQG4OEunu8dAOmQfMHfQrIT3EIIMcv/LiCEjJe3rQMwImj/QwBuJIQYZT90NLaFsCCEjCWEXCIHIHoAuCFZNMJhddC5VgGYSAi5Sq6ze6Al6wkAHADaCCGDAPwp2nLJhFgE8CyC1GP5WKkAejubhg4dOs5R6ARZhw4dOiTi5+b+PQpJ5d0HSTU9CuCA/B0opd8BeBHAZkjBdoyoeaM5meylfQHAw5RSO4DvQQrOq4ZkhfgXJF8wALwJyR/cyi3Q8XsAP4RkMbgJUlaMk4UVUl7jRvnc/QA8GKHcByCR3Qvlz42QvNJPAWgCMBrADm6XxwDMANAGiUx/0cWyvQspMDB4AZEbAbwj50TWoUOHjm4HkSxjOnTo0KHjZCGrvTkArJTSQG+X53SCEPI9AL+llP64B871MwB3yPYP9p0VkrViAaW0/nSXQYcOHecndIKsQ4cOHScBOSfvakhe4HcAiD1BGs8XyNaVTQBeppS+29vl0aFDx/kF3WKhQ4cOHSeHOwHUQ8r9KwD4Tceb64gWhJDLADRA8l9/2MvF0aFDx3kIXUHWoUOHDh06dOjQoYODriDr0KFDhw4dOnTo0MHB1NsFOBWkpaXRjIyM3i5Gj8HpdCIuLq63i9Hr0OtBhV4XKvS6kKDXgwq9LlTodaFCrwsVel0A+/fvb6SU9g3+vscIspyr8wUARgBvUEqfCvr9PgC/BBCA5D27nVJaFnIgDhkZGdi3b99pKvGZh6ysLGRmZvZ2MXodej2o0OtChV4XEvR6UKHXhQq9LlTodaFCrwuAEBKWa/aIxYIQYgTwEoDLAUwAcAMhZELQZgcBzKKUTgHwGYCne6JsOnTo0KFDhw4dOnTw6CkP8mwARZTSE3KC/BUAfsRvQCndTCl1yR93Q7uMqw4dOnTo0KGjF0EpxdHKtt4uhg4dPYIeyWJBCLkGwFJK6S/lz7cAuJBSeneE7ZcDqKWUPhHmtzsA3AEA6enpM1esWHH6Cn6GweFwID4+vreL0evQ60GFXhcq9LqQoNeDCr0uVHRHXWwo8+P94z78cVYMJqUZu6lkPQ/9uVCh1wWwaNGi/ZTSWcHfn3FBeoSQmwHMArAw3O+U0tcBvA4As2bNoueTd0b3CknQ60GFXhcq9LqQoNeDCr0uVHRHXaz94giACiQPHoXMOcO6pVy9Af25UKHXRWT0FEGuAjCE+zxY/k4DQsgSAA8BWEgp9fZQ2XTo0KFDhw4dUYKQ3i6BDh2nHz3lQc4GMJoQMpwQYgFwPYBv+A0IIdMBvAbgSkppfQ+VS4cOHTp06NDRBZxOZ+ad7+1DxgOrTt8JdOiIEj1CkCmlAQB3A1gL4DiATyiluYSQxwkhV8qbPQMgHsCnhJBDhJBvIhxOhw4dOnToOOMgihQr9pbDFxB7uyhnLdbm1vV2EXToANCDHmRK6WoAq4O+e4T7e0lPlUWHDh0S/v7tMcwd2QeLx6f3dlF06Djr8fXhKjzwxVHUtntw75IxvV2c04aeCO7XoaO3oS81rUPHeYxPsiuQld/Q28XQoeOcgMMTAAA02M/tEBq3X+jtIujQcdqhE2QdOnoJ1a1uNDl6tyP1CiIEXQ3SoaNbYDRIXWpAODffKdZUuHw9Q5C3FTaguMHRI+fSoSMYZ1yaNx06zhfMfWoTAKD0qR/0yvkppfALIkTx3OzMdejoaZiMUnqHwDn6Tnllb3VPKci3vLkXQO+1kTrOb+gKsg4d5ykEkYJS6X8dOnScOkwGiSAL4rkZpOeWlWN3DynIOnT0JnSCrEPHeQq/PA2sE2QdOroHRsO5rSC7ZOW4pywWOnT0JnSCrEPHeQqfIKlcugdZh47ugdkodann6qDT7ZOCEPUgPR3nA3SCrEPHeQqWq/Vc7cx16OhpyAKyMjtzroERY91ioeN8gE6Qdeg4T+GXFWRRV5B16OgWyK/UOetBZtYKl6wkn050NXh4+aZC7CxqPE2lOX3YV9qMsiZnbxdDRxjoBFmHjvMUjCDrCrIOHd2DgEyMz1UPskcmyD3B/7tSh6JI8cLGQnxzuPo0lqj7QSnFHe/tx0ubi7rtmNmlzXhrR0m3He98hk6Qdeg4T6ES5Oj3eWxlLj7JrjhNJdKh4+wGG2yeq3mQWZBeT8w6+bvQMDU5ffALFHbP6Ve2uxO17R40O31w+7tvxPHTV3fhsZXHOt2OUoovDlTCF+FZrWlzY9WRmm4r19kInSDr0HGewqt4kKNvnN/aUYr7Pz9yuoqkQ8dZDUaQz9VZGWax6AmCzNqnaFDb5gEA2L1nF0E+XtMOAPB34Vq7C/l1dtz3yWEcaQjvJ7/utd2468MDXRqonGvQCbIOHecplDRv52ZfrkNHj4MRY/856EEWRKoE9vYE//cGog8ErGlzAwAcHv/pKs5pwfEaOwDVmtOTaHP55XOH/7282QXg/E7ppxNkHTrOUyhBeueo2qVDR0+DpUw8FxVkPrXbySrIj688hi0FDVFt6+2C7aCGKchnmcXimKwgR7I5nAoCgogtBQ3IrW4L+7tDVts7S/PpPMtU+e6ETpB16OgF8KS03eNHxgOr8L/tPRtY4dfTvOnQ0a04lz3IfGq3kyHIlFK8s6sUm/Pqo9q+KxYLRpAdZxmZYxaLgCBiZ1Ejvj3SfUGGPkHEQ18exStZxWF/Z3XFN/+ljU5kPLAKBXV25bueyFhypkInyDp09AL4UXt9u9S4f7CnrEfL4D3LFwp5fWsx3tvds3WmQ0dHYMS4N6bMTycqml14Z2ep8vlkLs/tFyCINGpPa1csFrWKxSIymStucER9vJ6A2yegtFFK7xYQKN7aWYpl6wu67fi+gIgmhw+eCIu6tHuYgqx+tya3FgDw2f5K5TunV7dY6NBxXiK7tLlXRshngsJ0tivI/1idh4e/yuntYujQoYApq2dTmrecqrZOyeNPX92F5VwqspNRkJn9IXqCfBIKsi8Q1jJ2qKIVi5/dgpyq8HaD3kB+nR0iBQiR1F5vQOyQ4HcVbW4/3H4hYj2yc/HVZZJXuuHvkVNXkHXoOP9Qb/fgp6/uwn0fH+7xc/MKU28JuEqQXpSdOT1LlWYdOnoKgbPQYnH/Z0fw9Jq8Drept3uUv60mw0m1WXY5gC7aVQZ5D3JncRKMIFMantCVNEoDgGanL6pz9wSYvWJU33gERBFevxBiEbF7/Ljj3X1Klo6ugNVJRILsle5HOILM9wkuXUHWoeP8A/PU5db0vKrAN0C91ZV2dSU9vmNb/GzW6SiSDh1nNdh7fTZF/jc6vJ0Gt/EtRLzVdFIKcnuXFWS1Dn0d7EMpRW2bB0mxZgDhA/Xq2r0ATt9sWUAQ8bevc1DV6o56n+M17Yi3mjA8LQ4BgcIniHD5BE0Zc6vbse5YHQ5VtHa5TLWdEeQwFguTUaKEfFuvK8g6dOjoUfBTsKxBJISc8nGrW914M8pgP18XLRa86l3coC+NqkNHMNi71H6WpBujlKLV5Y/oU1W3U/+2WY09brHoKKNFs9MHnyBiZN84AOEHJ3VynAc7d6VdxL0rDiLQTTl+95Y2451dZfjzZ9HniD9e045x/RNgNhkki4V8jbyK3CIr3uy52l/WgtlPbkCbu/PnS1GQI9xbexiLhdlIQvY5mwZ73Q2dIOs4b9GbjgF+Cpb9fer0GFh5uBp///YYWl2dTyX6urjUdLRTozrOfnj8AjIeWIWPs8t7uyhnFdjA1xcQNVkfzlS4fAJ8gtilldziLKaesVhwCrJXiFyXjAgOT4sHgLBknxFkdn9ePezBV4eqUVjfPYF7TDuIduBAKUVejR3jByTCYjQoCjKgJchNMkFm4kRebTvq7V402Du3XLDAxUjquz1MmjeTQaKEzVz/oad506HjPARrdHqDKPNqbHcuKsAa146mJJXzdpkgn1uR+Toig3XMz28o7OWSnF3gvbItUQxSexusjJ0pyDziOrFYRMo+0WUFmSPtvjA2gZWHq7Emp1YhyCM6VJC9mnOzoxlOYtZOFCmWrS9QMlAAKjGO9njNTh/s3gBG9I2DyUDgF0Sl3vhAPaYgMxGFkdVoBhmqgtyFID1ZQea92rqCrENHD+L5DQVY9O+sXg/66k1FlCel3RnQo3ZCnR/T38U0b8Hl7O37p+P0QY7VOauyMZwJ4OvrTAoIi4RWeTU1niDvL2vBz/63NyKRlQhy+OM5vAGM/esaPPVdaNAfU5DDkd1w4C0Wwfu4fAH85YujWL65UFFKmcXCHYbsMz+u0u7K/52MVeREoxMvbizEumNSSrSKZhd+9r+9AKSMFNHgq0NSvuOkWDNMRgP8grpKIQueA0IVZIccMBdNn1Hb3lmQXrgsFhIlbHLoCjKgE2QdvYDnNxSipNF5UoEH3YneVEQDGoLcfeVQFIYoOiFl2dgOSNDxmnYcLG+RjhlUzq6kYepu6OT89CLQxQwnOiTwhKsnFeTiBsdJrYjJCDJPKjfn1WNrQUPEzAnxVmPE54Kpqq9uCV2couse5MhBequO1MDuDaCsyYXqNg9MBoLBKTbpWjjF8/3dZSiqtytZONhzzY52Mm0YW5mOtZ/7y1qU36JRkLcXNuLv3x4DACTEmGExEgREUTkeH2TIBln+YAU5ilnH6lbVg/zBnjJlENQme87VlfTUfZiCzD+7XZldONegE+SzFMs3FeLlrKLONzzDwDesfMPSG2ANda9YLLhWyd+NJIRFHEfTCbHlTTtSkC9/YRt+8vLOsMdsjyJQJBKc3gAe/OIo2lwndwzdD316we51dw7ezhbUtXuwr7T5pPbl3+ueUpDLm1xYsmxL1Es482BEiCeVFS0uACp5Dkas2RRxgFrR7FL+DibsrL3gxYG82nbNohQ8OrJYrMiuACCRyfxaO9ITYxBnNUnX4lcJ5l+/ysGSZVuV9sIfZKs7GfKXW92uKVMR52M2EGnw3tG9L21SrRmJMSZJQQ6IClnXBOm5tEF6jCB3pCCz2Z9Gh2QrsXsDeOjLHLywUbJLTX18HW56Y4+i6Ifj2rytIhq73rkKnSCfpfjiQBU2Ho9uyc7TCUopvj1SHXVHWtmiNqC9qUACvUuyeA9yd47Q2RRcNHWr+PGivA3B0+3RRFJHwsHyVny0txz7y0+OiPCNNj8T8cKGQtz/2WEckzuxnoAvIOLlrKIurfx1pqOrObLPJVz2/FZc8+quk9pX4F6mlh4iyCcaHaAUaJAJUVfQKr/D3oCoENpymeQ2R1DATQYS0WJRzhHkYGLFlFGe7C59fhv++Gn4PPT8/vw+hXV27C9rwQUZKQCAPSeaMCApBrFmIwDA7YscW8G+Y7+cioLMViLlF1kxEIJ1x+ow558bI95//vuEGDNMRgK/yFksOAWZWR38QQF8HfW3zCYRjDpuRmB/WYuaxYLbJnjgYyA90097/AJufzs76mXIewo6QT4LIYgUlS3uM2LqY19ZC+7+8CB2FDdFtT0/lef1C3D5Avjf9pKTmh48VfSmxYJvvNl97IYsb1wQRxQEWW74ol0WN0RBPoVUVs1KcNDJ3QO+w7zvk0PK358fqMQn+yrx/Re39dgMxUd7y/H0mny8sS269HpnAxQF+TwkyJGU02ggUIpkmxmEAM2ncJyuoLaTdF4doZUja4wIVTRLnt5ImXAMhsje3YoOBJCu50EOT5D3lEiD6tvnDQcAOH0CBiTHKgSZrYwarl1jAz9eQS5rij5lJaUUOVWRFWRCgJJGJ3wBMeIAg6+jhBgTLEYDfAFRedfCKciBIAW5I1U3Aj+GTxA1/aw3jMUu+HVPi7eGqPe+gIjqLuR7jgYNdi825dWf1CDvdEInyGchats98AniGUGQy5qklz3aJTL9Ae4FFUT8e20BHv/2GNbKa8D3JIKnqU52uv+kzs03VCdJEsPBESZI7/Wtxch4YFWIOqBmsVC/+yS7Aj95eUfYYwfXV337yTdmTEU52VRYvFpb2exWGnlfQMTkQUkA0O2NeCSwQV80qfXOFrBnwxsQkV9rD/l9c149yptcId/zOF7T3isD387wq3f34cEvjna6XbTBZDwEkcJsNCA51txjCnK1TJC7Mth8cWMhLntuK1q4Ns8tCxZsaj5S+QkJVZC/OFCJzfn1CrkGQuuvozRv4RRRnvB7w6jJ/ZNilO8GJMUg1iIRZNYvhrMhsPOw8udWtWHhM1nYfSI6gaeq1a3MnPkCIgKCqLFMEEI6zQxS2aLWUWKsOUTxZcoupVQJ0lMtFp0H6RkjKC2+gAhPmFku/lD8wMdAgBSbJWSgsyK7HJnPZGnsNKcKRoz7xlu77ZjdAZ0gnwJEsWOvUUfw+AXc9cEBZbqmK2Ad08mqb92JKvllj5as8yNfr19Eq1uqP3svRMryZfn6UBWmPr4OebXdMzUvirTDaTC+gQvXaPEoqnfgj58ejsrG4gijIP9jtRRRHtzQ+ZTOQi3L/Z8fwcHy8MGTwcoPWyr1ZKB0IidpS+A7X58gos7OIrYFpCdKjayrh1aAYsuzngm+6IAg4plsN25+Y8+pHYdjQFcu3w6HN6DUpy8g4s739uN/OyIr5hXNLlz+wjZsPMOmTAFg/bE6fLS38/zO4bIhdAZBpDAZCFLiLBEVxO5GTWvX2mAAWLa+APl1dqX9BaTr5clbJAWc+Wx53PfJYdz2VraGNEWyWIRTkD1hBiOeIA8ypRSPfpOLo1VSn5lisyi/90+MgdlIYDQQ5b6Fm/1ocfk1ZS+Ty1tQFzoIDAemHrMylTe7NO+9gagDi0j3o96uCgvxVpMSGMfA2nCnT1DauRCLRQezfkaDery0eLWO/EL43NwiDf93YqwZVrMBxfUO/OTlHUqgY3mTCz5BxJvbS1DR7ELGA6tO2rPP0CjXSZpOkM8dfLi3HAue3nxSSu6+0hasOlqDO97d3+V9y5ulEWt3K8hNDq9yTFGkeOq7vE6nn5inONrOhG8cfYKojHZ7IytBQJluo1h9tAaA5O0+WnnqS0/f9eEBjHroO+WzIFK8ub1EVTe64EG++8MD+Gx/JQrqOk9qz4L0bnpjjzJ4YwQuOF2PLxDZZxquEwsmgDmn4PM9VQU5WJ1iypUvICJZ7jiZHzsaFNTZsSbn5GYxLCapGY3WqnI6UdzgRG6TiO1FjaeUnonPguINiJjy6FosfCYLgOR59QlihxYbpkIyT2qL04d/fne8V2xNdo8fGQ+swvu7y7q0X2fPZpvbj6agKeGASGE0EKTaLD2mILN0XhuO10V1z/nZFz6dl9snaAhuRIsFIREtFpUtbmWAGmz5sHuZgtyxWhyunL6AiLp2L97eWYovD1YBAJJtZuX3PvEWEEJgMxuVADNeUGDbvrqlGCuyKxQPMmsj+YFBRzhW3QajgSA90QqfIGrsFYBUN81Oljov/LNe3656gY0GAotRS8PYLCD//Ch5kH3aGcKKZhdWHanR7M/aIwAYkBSr/O0XaNicxnzzz/fDCTEmWE0GnGh04mB5K9YfqwOg1tmK7HJ8sk8KlvzmcHXYa40WjfJzmJZg6WTLnoVOkE8B2aXNcHgDGs9QZ/AGBAQEEXvlEVd1W9engVmncyoE2RcQ8dXBKs0LMfOJDYryVN7swqtbinHnex0T+Koo1YviBgeanT5N4+j1i8potyszsYJM3rcXNka/UxjwZWGN2etbT+CHy7fj2yPVuHL59qiJe/B238lki33PVrh7UY4k5kkpCyrprJzR5OzkO8g98rQhUyicQYRRDdILPW7w/aSUhhDAnKqTH0g0h8m/2hUEq+GsY/cJIlLkztDVhffye89txa/f7/pgFVDv5anmsxZFivd2lZ6St5tXzaNVxcIhWP0TqeQTBIC8Gum4HdmqGLlk+/zzu+N4bcsJbJDV23+uPh5x3ze3l2BXlDENQOfPEFsk4s3tJV0KOuxs0H/PRwfxm/cPaL4TZIKcEmfpsSwWzEp0uLINt72djTaXHy9uLIw441TGWWPqOLLm8QtK35IYY9LYL3gYwlgsGKQln+OVv3mEC9JjCBcI5g0apAUT68QYlSCzQXGMxag8D/y95oniutxapfzsHkVrF8irtWN4WhwSY8zwBUQUNYQS5HCZQRg8fkHxYjMEK8hsINHEE+TgLBZyW/yTl3fgrg8PBD3X6vF4G4ovIIZ9piNZLBJjzBqyva2gUSlXWrwFHr+I/2ySMmn1Swiv/G4vbIwqmJsNqPvE6QryOQMWKc9eBEopnlmbh5LGyKrr2L+uwdWv7FTIC6XRpVISRYoVeT7k1bYrDZxHnnY6GSxbX4B7Pz6ETfIUKDvOPjmwiTVOte0dL2nJRt6dqS23v52NZ9bmhyjIRFaQO+q4KKX47Qf7sTlfKmuNk+LVLcW4+c09uP+z8BHQgNToNQYpPEcqW5VOgW/Ag32Wq47U4Ehlm0a1bXX5wtZ3QBAx/MHVCvnlwYg3G7kzxYaP9u7MZhDcOEaCNyBoVF6WPo553Jj6kFfbjt0nmjpcKMTj1wZ0BESqIYBDUmNRb/dq1JCuQJ2GFFHb5olIcorq7WGJRnDnW9Higkgp/AJFnNUEi8kAJ/dMvrChEO/uKu20XOz+doXcsHvL1z2lFCeiyE3r8AawLrcWgkixu6QJD3+diw3H6uDxC13OIOHxC5rOKJx3OFpEIvuUUhyXbUjODiwsziCCzD4/t6EAD35xNKKa6/EL+Pu3x3DDf3dH1ba9se0Epj++PmRQsb2wUSE97DgipZ121nydB1t0vAFBuZ5mpw/bixoVgYDfX1GQgxRYQaR48IsjEQf2jQ5v1JlQfAERZU1OUEqVFdMAYG9JMz47UIll6wtwMCjP/KH6AO764AD2larBqzVtHiTFSkTT4xdQ0exGrNmIkf3iFQU5+D4QohKprw9VYd5TmzS/j+oXr5SRgVKqEORw1ofOCLIviCCbjQQGzkrAriGWU5D59Jn9E1XiJVI1i0VLFxXkNrcfqXEWWExSYF1xvVNRzAGpbpS2Lcy9ZM/PEz+ehJzHLgMAmIzhPchaBVlrsWBtDVNe7dzzz2dSGcgTZEGMqCAfr2lHu8evyWiUGGPWqNs7ihsREEQ0O32YNCgJEwcmKr+lysS2we5V+qkGuxc3v7kHf/gkch/N0OjwIilWS8jPBJxZpTmL4PELOCETYTYqq2h246XNxbjj3X0d7nu4sg0HK1qVfIXRKNAF9XasKfVjXW6d0vALIo3a9yiIFP9em69MCbKpIb9AIYoU9358SLM9e+HsHahEgkhRIyvgnZG8drcfJY0OTXm9fkGpA37k6hdEjTpZ2eLG6qO1uO2tbABqAzusjw2f7KuM2Knc/nY2/rlaXdHJL4i4cvkOXPiPjXhvd5lCApqcvpCBwAF5cYzLnt+KimYX6ts9mPb4ery65UTIeY7LitrzGwpCfmMeP9bOMDL60Jc5yjZKFguED65g5ezoXgChih5rKFUFWfp96fPbcP3ru5UOLFyH9Yt3svHSZjXPti8gakjplMHJAKRnOdJUMqVU8a0FgxHQNrcfS5ZtweJnt2BdmEDNJcu24srl20O+Dw5srGh2g/WnFpMBcRajhuA8t6EAj3ydG7YsPFw+AV8fqsKMv6/HkUqJYBTU2Tv0M7PBIU/ydxY34ZJnt+DS57aEBKA2OrxKvazYW4473tuPp9fkYUeRRJza3X5877mteCVMnvPpj6/Dv9aErlIGAOMeXoOfy+8IAOQHKciNDm/Uqn8kK0RlizsqBZnVV3BUekGdA0mxZjh9QthzHON87XzAF4+7PjyAK5dvR2GdHU+vzYfbL2hSWFFKcfObezD/6c0A1PZZ7CQ/LaBNXRg8aPvdhwdxwZMbIIoUG47XQQgTgyKIFEYiKcgtTq3ftarFjY/2VuDmN/fA7ROw+miN5vdZT2zAXR9oFelIeHRlLhY+k4WKZncI6dleKOVDDs5J/NoRL1YdrcFjK9X3oM3txwCZRLllBXlIaixSbKoCHjwYNRCiZIFYk1MbMkhgBJknuG55wGeUl1VmYPavcANkTZxBQNBYFsxBpJIR5LR4iyJQCVxfw3tbKdRZsyaFIEenILt8AuLlAbhPkBRkppgDssUigoI85x8bcc+KgwCAQSmxiJfzNlsieJCDFeSAICp1EDyA5TOv8O35wGRVOfcFxLDtmEAprn11F97aXqpVkGNNGsJq9wRwuLINzU4fUuMsGg+4SClue2svLnhyA374H6m9ZkIUs4R2hEaHV+OXPlOgE+STREGdXVEb2IvApj0irV3ON4a+gIjF49MBdE58AEkZAKTOs6zZpaQE44npk6uO4b1dpSH7ljY6cdvb2Vi+uQiPfJMrn1N6oRJiTDhY0YqvD2k9RKxMHalY9XaPQnh5m4BfEPFxdrlGPfMLFFWtbqVxjLMYJQ+y3EC+tLkID3x+BABw7Wu7cMV/tiuI/qi5AAAgAElEQVQkgu/U39h2AlkVUtnG95dGsOHSMvkFEScanWh2qh10LueZffirHPx3m0R2WUM+Ii1O+b2Oy9BQb/cqBPqz/RUh58qW7TLpiTEhv7EOl62wFN7OIJ0/Upq34ACNSAi2UPxzdR7sHr/qQQ56Ln0dWCyOVLYp9QNIdcQ3ykw9ePirHEz/+3rFB/fpvgo8Ia8S9c3hasx+cmPYAA6mTtXbPXB4A2hyevHr9/crjeqB8haFoIdTd8IpyKz/tBgNsFlMKKp3KKQzHNw+ASsPV2veS7snoOQXL6xzoNXlwxUvbsc7OyP7V9n7zquYbPDc5g7gzvf245Ns9bmZ9cQGzH5yo/y7tM/uE03YXiTNKj268hjKm13YnK9d+EEUKVpcfrySFbpKWTBsFmOIgnzVyztxxX9CBxvhEGnxmvlPb1YWpOjoeQy2WPBYOrE/AGmQxMrIBqG8/58fXO0+0YSfvyUtf8xmd/702RGFRPF2AJ7kUqr6LkURio8yEvhZmuB2fJ2878oj1VgrW6jcfkFD7hQFOc4MnyBq3rlGri363UcH8dsPDiBbVnNZfW2IMrc9O/+1r4Xma94mK9T8AON4bTvcAWDeqD4hai0jyB6/iMoWF4am2pBisyjtavBzZCDSvd9S0KCUn4EQYLjcjvIEl/UnKTYL/AJV3jnW/odXkLWLVfB9ncmgbSwZQV46qT+OVLahpNGpWW2OLSICSM+EV2TnUJ8f/nludfnCDqacvgBsFqOSmq2uzYNBHAmlUJ+/4MDD2naPEgDNWxL4LBaxZiMcngDWH6vDoQqpbi0mAwKi9lkKtru1unkFWX13efJe2+4JIe0JMdKy4XZvAC0un2bRrMQYM6wmo2b7bYUNaHJ60SfOotQ5ID0PrL060ejEq1uK8cQqqR/gt4uEBrv3jAvQA3SCfNLgI/hZQxqJGAdvx7B4XD8AUtohvgMNB5b7saLFhVaXH0PkZTVZ4+z2CfjvthI8/HWuRvl7OasIS5ZtwVa5U2MvCN8YbDge2mnwnf11r+3CruImUEo1L18VR1x4b9OrWcX48+dHNcZ9nyCiptWjkME4qwlev6gQx7p2Sd2glCqNCEu7xqtKT6w6jqxKqezMX/XTV3eF+NqqW90QRIodxU0KQfucW7HJaCAhVpg5I/uE1IMEVSkqbnAqSy8zMIIczlvHOhll4QVKQ7brLH8pUwTsnXhTgwlLvd2Lj7MrFLUl2KLBVNhIK+nxXjlvQNA0ygkxZoxIi1MGDt8clgJnVh6pwTu7SuHxC8pSp9e8uitEGWMqCyNQV0wZCJGqSfevenknnlmbH6ZMfhyvaQ+pw6oWVUG2mo2Isxqxs7gJN72xJ+IMw+PfHsPvPjqo2IwAYM4/Nyq2HIvJgF3FTfAJIipaJALHpwKklKK8yaVRfhka2j0gBLhkXF8AUnaQcM8HIw6HK9twOGhK/GhlGzx+AUcqW0E7sQcED2SnDUkOITbM1sM/BxXNLkUp5xHNUuXBz9ueE034xdvZOFLZigfkNGoNYWYQRvSVCNR7u8qw9IWt2JxXj/lPb8aNb+zBEY4g8wra9a/vRla+dvnjQxWt+P5kiWyzAdcza/Mw7fH16jXb1ch9b0DUqO/sflCqZpzhB15un4DXtxbj60NVmmfo9ysOYWNeveJ1560UigdZVtf42RV+gM7aXOa17izjxZqcGuwva8ab20tw3Wu7FEIUzgLH2ot9Zc3KgJOd59mfTsONFw7VbN9f9ue6fAFUNLswOMWGFJtZua4t+Q2awTtrs2/9394QC1v/xBhFGdUSZKm8feKkemHtIZvCD9cG8n2KLyDCw/WfwVPxiTHSOZdOHCCXuV7zTrAUcIB0j8J11ZUtLry0uQg7ixtxx3v7cc9HB/HhnnLNNbq8AuIsqoLs8AaQwHmhm51eNcdyB3ygX4IqpvAe5P5JMSisd+BX7+7D+7vLYTEakBRrxvu7yzULkjzx7XEN2eXbBl5BZu+aVDafxn8OSMGL7DAuX0DTFyQGWR7G9U/A5vwGePwiEmPMSIxVBx3BKT+f+i4Pu09I/WJSbOfKcKPDh7QIPubeRI8RZELIUkJIPiGkiBDyQJjfrYSQj+Xf9xBCMnqqbF3BsnX5eGZtnmalrrp2yUPJOjuPX8COosYQZY4f5Y1Jj8fQVInk5tXa8aGcdkgUtST0D58cxqPf5CJbJsgszcyY9AQAQFZ+g3I+hmfW5isqzxvbSpQRPaDa95WACUFU/NAMlFKFHP1gygAcrWrDiuxyPPx1Dm56Q/IGZjywCr/7SJouIkTbwLEpN4c3AI9fQH27B35BSoTOSHW81RRCXOyegEYtZCNm3mPHgxHk8mYXTjQ6lLILIkWp3BD4AiKueXUXNuXV4T3O98gGJwwDkmIiBhpQqo32/gtnj6CUKgS5yekLIQ2s4WJTW4JIQ6a5mDIiiDRs7l6mINfbvR1O9YfzhH51qEppgB3egKbTapIVLUo7zyLi9YuafQmAiXK+YQCKV7u61Q2/QJFb3Y44q9oprTpagxNyA+/2qdOlB+TB0IQBkiK9rbCxQw//2ztKcfUrO0OmZGva3PDIWTmsRoOyaACgBpWxOmBgqzYFz57slMmEyxfAdvm9qm/34lfv7cft72QrdfXjl3diwTObFSsDPwVcb/eiT5xVE0hUHhQI5A0IHQbk+QQRz60vwJXLd+CLA1UawhiMYLVr2pBkNDl9IQSGlY1h/tObceXy0LzXwfYHvj4Bqf1yegXsOdGE/20vQVG9QyGOv+UGQ01OHwKCqImzyJDbo+Wbi0ApFG94Ub0DR6taMV5+Ftg7xw8cggcJo/tJ7SBrW1/arFXXVxb7FWEiuC5cvgAolbLLjHroO7Q4fZpn3O0X8I/Vefj9ikMacstw9YzBSrlZm+3yCTAZCFJlIsjuy/6yZjz8VU7IMVYdrUZOVahNSVotTmpX2lx+/Pr9A7j6lV3YUtCAPSXNnfrTZw9PxbbCRsWWtrO4Cf1tBP2TYvCPn0zGO7fPVrZlPtXqVg+cPkFSkOMscPkkdby4wYFBybG4bGI6nrtuqsb7G4whKTaFVPHtO+tPUhWCrLV/hVOQc6vbFXU7OMAs2GLBfLxD+9gwNNWGbYWNmmeYf34jCVmVzW48szYfN/53D/aWNGN7USP+8uVRzYyN0xeAzSopyB4/I8gqUeRnTJ5cfRx/klcJ5O+X0UCUgQIAWDkSyqvRAJASZ1aO+at3VOumTxCVpaMBbcYRQaT49cKROPTIpegb1KftDxJ34iwm+Lhnt6MgvXH9E5T+22wyIJFThoOtdLfNy1DPYdW2HQyf7qvAJc9m4dl1+Wi0e8+4HMhADxFkQogRwEsALgcwAcANhJAJQZv9AkALpXQUgOcA/KsnytZV5NXasS63Dsdq2pVR670fH8K4h9coNogmpw83vbEHt761F7VtHiVYh3+Ix6QnaEaeRypb0e7x4+m1+bjm1Z3K958fqMTbO0uVTo2Rz7H9pamT+z87ghc2FuLptVpf4gOfH0Fduwftbj/mjUpTvmdBcWxE7/AElLySDE6foPz+72umYnR6AlpcfhTVO7D7RDN2yYSaEdfBKbEho31AUgde3FiIy1/YpoyqWVL1+BgTfIIY0jAe4F5gloWg3u7FlMFJIY3HAC4AgTUiD35xFCP/sjokPd0fPz2Ccf0TMFdWiQfLCjzDhAGJIdN2/PU0cdOjg1PUcpQ0OtHo8GHOiFQAwCNf5eDtHSWKMsIUR9YoCyINIdFMyS2sd2DevzbhxY2FyuCKUqooBf/ZVITb385GJISb8s6palemWl3egKYh44lSuA6Xrw4vt9KT9BvBsFS1DkubnHD5AkpO1oPlLQqJfeqqySAE+FieJQmnlrEB3ytZxViybEvEa2x2+uDyCZqyA1KgSZ1Lfu5MBhQ3qPefV0hLuO/ZYCNSiqJ2d0AZeDbYPahodmF/WQt2FksBjocrWjFjaLKyPa8+1tu96Jdg1UztBgft1bZ5YPcEQjoxHq/LNpfqVrdGqXxSnr4sqnfAL4ghHdS0IVK5eBU5QS5LXYTAyvp2D55cdUwKiJLLefkkSaGdPDhJs+2sjFQ4vAFc9/puPP7tMSxZtkVRM/lBLqXSPeNtZDw5AICtXNBaUb0DmWMl1Z3FS/D3J9hOxUSGLw5UYlOedibshtlDsa9O0Mz4GAjw1x+MByC1c8+uK8ATq6SMGg0Or4ZU8WT8QJhVGS+RB9m3vLkXn8sLZew60YT8OjtSGEGW71mwRadvghWZY/uioM6BK/6zHe/tUn//99p8XPrcVlz9yi78/C3p2AyVzS5MH5qMK6YM0FjCeIzuF4+PfjUHt83LQEGdHd6AVAdjUlWiEsOnApPb1UJ5oDck1aakRWt1+dHo8KFvghWv3TILP5k+WNMuBE+fD0m1KdPy3jAWi1TZZ8pmChixDUeQKQXuWDACFpMBXs5/C4QSZB5LxqdjW2EjWpzq/dMS5PAiQ3FD+DSa7HqZXYcpyKw/5wlycLv06f5KiCLFpL+tVb5Li7doBhnJnJc3uI9L5bI6BA+Q+TUU2LPKBCKryYBkm0VR8xmCn2OTkSgKstsnaLKTuHwBpR+zGA2ItRgVXmAyEMRZIl93Rp843HrRMADaeJHHVx7DfR8fgssXwJ8+O4ITDU78Z1MR7N7Aee1Bng2giFJ6glLqA7ACwI+CtvkRgHfkvz8DsJiQ7lh8t3sxsl88ShqdyKlqx4xhKZrfPjug2iQSYkzYV9qCOf/ciEue3YJl6ws007Np8VbNiyVSILukGXtLmnC8pj2sotfPJlUHISqhAIA3t5WgoM6Bcf2l7y4elYaaNg+WPLsFAZFqUr2w95I1WPvLWkIC/X7/0UHk19phMhDEmA3SdJvTp3hcl61Tg9H6xFmQarNol5BWVuGSlG3+xWYEOc4iWSyCVWR+eWCXT0BliwtbCxrQL8GKC4enarblPb818nT+CpmEHQpa7KLZ6cPyG6crDWW/RC0pGT8gEdfMHKL5zOD2C0q0MKD1vzH1+MqpgwAAXxyswqMrj8Fqll4t1kEyddftF5R6XDhGIgK8t45SKcPIM+ske4HDG9AQ090nmpWOjEdRvT2sv5JPGv/oymMaDypPWsIF6mWOVVV2b0DQqJQGAg2xoxT45lC1ovofqmhVGsarZw7GpePT8dn+SvgCYtigPj6naTBZjzGrzRR7Xmq59IiMJNU4ZQXZZNAMFg5VqB3JP+T0YpRSOH1CyDPF41hNO0qbXDAZCKrbPMr1v7ixULEpsDgCQDtlX9LoRL9Eq6aDOtHo1CjGVS1uODwBZPSxIc5iVIKbeLBmICHGpJnF+O+2ErS6fFj6/FZ8ebAqZIqTEeQ8jiAzxSccQRZEiidWHcd/t5Vge1GDYrFg92XKIC1BTuCua3ZQHQ7rox181tu9musOJlX8/RYpcEFGChJiTFi+uQivbinWkOLgzBADkmJgMhDsPtGM29/WBkf/eelYxJqAN7aXKN9NHZKstIcubwCvbFHVwaJ6h0ZNP8ENpvaXtWBQciwKn7xc+W4QN1AurncoNjaPX0SqTHoa7V7sK23Gdzlqrtq+CVb8fG6Ghgx9vE/tO5ZzFrms/AYsW6+2tycanZg4MBHLb5yB9fctRDCsJgMuHp0Go4Fg2pBkBESK4nonWt1+JFvVtiCGI4xMaCiol56Voak2Jd1Wg90rB1Cp77qB65YvyNDe+yGpsYoi+tcvc5QBISNW8TKpeuALKd6koyC91DgLrr9gKKyy31erIEv7Lbt2Ku5dMlqz34+mDYRPEPHtEXVgFcNZLFj7+/iPJnL1YQg7SwAAzU4/9pY0Y8myLRBEKinIJoMiEPHveLh4mJzqNk3ZeXsFoB0w8s9U8G/BKOQyLD0iWyvZu8TqladQA5NiQmZjjQaDErvh8gka3pESZ1HupdVkgNVkVAYyZqNBMysUHGuQEGPCYz+ahKmDk5Rrb3H68L8dJfjiYJXGSsVwJnqQTZ1v0i0YBIA32VYCuDDSNpTSACGkDUAfAJooG0LIHQDuAID09HRkZWWdpiKHh7/JL0WUigL6UpWE9Y0lmqCIsUkUi4ea8a9s6eF4e3sR9uerDXVLXRWOHtAGZHycdQjHqwPwBIA1G7PA8QLEm4FhcSLqXQR9YwkqizgvnSBiej8jBtk8yAOQhjZclmHC2lKpE68tV4OtausbkZWVpRCi9Ue0ysb3h5uxobBeGVVu2bIFXrsHNS0imFVqH0diE00BeJx27KgW8Ze31+N7GWZU10ovYXZOAXKqtA1GYY1UZx5HK9ocIiqrtZaCrBz1Mdl36Cju+VB68Xz2ZqQFTfOWHlfTx+w4dBz9nGpn993RKs22QxMMqDy2H41NUtmqy7TZKAJNFcg7WIPXltjw3AEPpiZ6cFzu0/YfPoqj9QH0iSHoE0tQWl2vPHcf7vcgwQKYmrQZB9wygdpxpAjjaAWKSqTrqKxrwrbdewEAFq9Uj3WNan0aCTAy2YD1h0pwYUwt6l2hysq/v9yJG8ZZUe0QYQm4kJWVhZ+vCW9LmJBqwNFGtXHOiBNhSjBiX522Q9qyZSusJu14dIqtDd6BJuyoDmDX3v14P1dtBPML8mGTt+8TQyBQ4NnvpClkqxHYVVAL4miEgQA7tm3FpNgA1jl9eOGzTYg1hY57cw/txyNzYrC6xI99dQIsBmBMihE5TQIshCr1XVoh3b/DhepKaAlEjpZu9QIgyD+ei1smWFDQLKDVS7ErX30WahpbkJWVBZ8gKS2DTXbwa84ZCXD9OAs+OO7Dt7KvenKaAQfrpWsfHE+wp6QZL30pqdxNVeo7bXd5kJWVhezaAEoavZiZ4kNVmdoR5OQX4zu7+r5t2XsI1Y0Scfn3AisMEHHnBrUsBqLmB3905TGMTdHqGZ+t3YaASLFl/3H0i9PW6bEDuxFrAnYdKcDIgHROkyhdw46DuUhqLcRjO9V3b83GLJRWS79n7T0CjzxobmuQgsFM7SrZeGxuDLIr1ffU6mtHnBlw+oHUGILbx4r4mzoJhk07s1HdxHlxD0aeBQGA9rJc2AwC7AGK59flYXSKEYkWgnYfRfZhbSaSgtzDsJko2sO4Tw7t3YnMARTfVah1M8TsRHG+pL7f/fZ2mAgFexNeXqtNR/XNAfVerc+txcx0I3Zs24pxqQaMTTGi5Gg2/nxBDF457EFOUTkSOQKae1B6x//02ZGQcj05xwgzKlDUJLWNA+KIMrgLB4c3gB+ONGNlsTwb1VSDrKzweaL/NseKlJh6ZGU1wG6X2o4VG/aAUsAg+JT3qNKutivleVIZ8+RYj5KcfWhwS+VZvS0bVc1e9De5lX3Ly9TKThO1iqSzrgz790qKt90bwKffbUZ6nAH7KqSyjzZJgwirKL0rAZ/0zB3OyUVCizQQMBmAgAgsHkSxZ+c2gAZQWl4JoUV9Br1uqd1LBZBqArKy1N8opUi3EXzGDTrKi9VBRptTeu5rStU2O8lMNTMVA+MIquV7crSkGluPVyl1Ul1WgrpWtf3kjx0Oj3+6W/PZ4HNoeIvdp9775upSzbZ+R+jMBUOw//z59fkYLUrXXFZWgqwsbR/Y1+JHNSQu4ZC7Zae9XR6cENQ1tSC/QBok3TvDilFCOb5h/TcNoL5GPV5JcSHqXWq5a1q0/U9scyGysorgdblR4wSysrKQw/VDz30T2gbUlBYgyxWaJao30VMEudtAKX0dwOsAMGvWLJqZmdmj50+rasMbR7cjzmLEg9dl4tO/SwEh184ZofG/LZo2Cj+aPgj/ypZyRDr8wK5q9QGZN208ls4YBGySVlu7cHgqDjc54Q5IxGrctNmwWYzAOinafe7odAQcTQACmJrRD6PGDwb2SQsb2CxGLL99IT7YXQacKMbYUSMxNNWGtaWSF3D2tEl4O1f622hLwMKFc4E1qwEAVQ6KMenxuGbmYPxjdR5e+OUS1LZ5cP3ru6VpwMx52Go/hiON5bBZTZgzIk4x3wPA+KH94PQKyG9pwId5Ptx/7UJY8vcDaEalPw4C1Sq57MXMGNQfNcVNSExJAmpV5bOca7iHjRoD1xEp2Cc2qQ8euH4mJk+sUbzPi+bPxb3Wcjy/oRBI6IvMzOnot2MD6u1euINm0R768XRkTuyPd0r2Ag0NmD55PN49pnaIP8y8ABMHSirZZUuAfaXNWJEvRYiPGD0OWXUlmDDEAqvJiMoWFzIzF6C8yYXDazbj/5aMwZULR+D+rWuU48l2WLSTOGRmXoxvGw4D5ZUwWG0YO3ECsHsvFkwbi/Vluah2qR1rnNWEiRnp2FfWjMETZiHR4we27sQFGSnILm3B+AGJyG7wYOmFo/CXNYexcLAZ7/w4E1izCsG4/oIhSIo14+hWqdH56q55mDYkGScaHLjkWa2NYe7FFyMhxgyydpWiWi6YMxNzBYodr+2CPW4wapxFIERSNcePHYcRfePw0qFdMFusuGb6QLwmp8D7wdRB+OJAFeLTBiCmsgqZmZmYL1K8dHgNvPEDMWZwErBPm1Zw8cJ5SIu3wry7DPu+ysG0oan46I45uO3tbByrbgN7zz+q2AfU1EGwJgKQOo9Jwwcht6kCrX4jABEzp0/F/NGSOv/I1zka73mMLQ6ZmQuk6fv1GzBl/BhccbENlS1uPPxVDhaM6Ysnb52NbU9vRnmzC2nxVty4YCwOykTnT1dMxd+/PYZPiqRKmjV1EvoOdkkp/gwGZGZmImdTIYACPHnrYqzJqcXbudK1pvUfhJETBwDbpedq0PBRQFUJMgYl4/Il06UCblDv48SBSRr7U35L0MIL8UMAFMKa3A+paXFAjtpRZ2Zmou/ezShyAoMnzJSmzXN3o6y9FWJ8OjIzp+Ln3DMzecaFsJUcBhqaQZIGYFhiDJCfj8ljR2J1SR6uWXIhXj2yFQCwZMFc/NRmRtaTG+HwBjB2+BAcaqoA/AH84fKJuOnCYfjbTvXYtaZ0NHvKcfWMwfhNptQ23ZsltXtTBichp6pNGQjEW0348WWX4P0TO1FX1gKPABS1AZMGJSO7tAXJ/YcCx1Ris+jiOfjwxD60B60yee+S0cjMHIMm9yZ8V6EOBG5aPBNxVhOe2789pD6PN6ufL5uYLmdokMhggAJLLxiLzHnDwXc5mQDW1GyH0WaBKdYMoBp3LxqF7y8ZA+Pm7xRFb1z/BHz4qzlwegMYIs945IiFQFEBrpw5HEcq2xTrWjAGJcfinz9bgJXyNP2cqeOROUua7fpJ3SH0S7DiNfkdv/GKS5T9AoKIJ/euQ4MhFUAtkuOsyntU1uQEdmQBAC6/5GL8bfdG+AIi0uKtWLpkEdw+AQ/vWANr36FwHCnElLHDkZk5BgBwKFAAFEv+10dvvgTbl21RbDU/XjRbUsazpH5x9OTpmDE0BQVbi4HcPFy3dAF2tBxEg8OLzMz5SNifhQa3E8NHjUHmhdKUfNyWdZg3qg+evnEGCCGI37URaf3SMLR/AnBMmgFKSUpEZubFYesLAK4LFGjy0k+fMgk4KvWBPmoAIGLm1Mm4p08rbFYTnl2nDQi+cd5o/FueKS1oEUGIpFr7BYqpE8fhxMEqANL9unDmVLx8eG/YcoxJj8e+oGdzfMZAZGZOUT6LIsXvNkn98cwpE/F27kHltwkjh2BPbWnE6wSAbfcvwvynN2PCwCTMu3gOsH4txowaicwFIwEAadvXw2ggmD9pCA5vLkL/lHglzWtqcjJaalsAUJhibBg5cihw/Bhuu2Ihkmxm5KEQKC6A1WLF6BFDgRKpTieMH4cLrSasLpHq1MPpLW/9/AIsku1H75Zmo97uQWbmfNRnVwD7pHZ0T23ojMGii2YpM19nCnrKYlEFYAj3ebD8XdhtCCEmAElgT+AZhEmDkvD5by7CzgcXa6YKLx7VN2Q7Pk/gxIGJeONns7DpDwvx2JUTcfXMwTAbDXjvF7Ox96HFWDCmrya1WKPDqwkqmT08VZkiWzS2H2ZnpGJsegK+/O1cbLhvIQYlx+KX80fgR9MG4sYLh2psFXygUIvTF7KazqyMVNyxYCRKn/oBzEYDhqTasP3Pi/DJnRcBAFJsUt7SFqcPkwZqp1pvmD1U4+/afaKJS9UVGh3PEGeV0rwFp+viwQdTTBqYBIOBYOpg9QWyGA24d8kYXD1jMDYdr4fHL4RNNH7vktG4TE4txca8vH8K0KbDAaBJb9Pm9qOgzo5Jg5KQbDMrfi+2CuKsjBTNlCWPgjoHAoKaf7LJ4VOm52cMS8GlE9I112mzmJAWb0FFsxtLlm3Bc/L06oPfH4/sh5bgz0vHotnpw+MrJRXscIMQMcDuqaunKF7IH04dqDQ+fEQ3A0tQYeSm5BLlpUYB4I3tJ5BsM+P7k6UocXAWC29AwFXTpYClGLMBi2RrRn5tu7K/0UAwOj0e+XV2xWLx+W8uUs7Fpin7y7aZGcNSYDQQjE2PV+pnc1491uZKg6kaLpjRYpIivVs82sh4QLIi8dXDZk5mPiFJtXFWExaN7Ydb5gzDl7+di+U3zpCuXY7QHpEWp7GaDE6x4f7LxinPQJzVhN9kjsTPLhqmPMuNDh8SrCZYTUbN9KvTG9B441tdftg92iAfHtdeMASPXKGGarxz+2y894vZuGiE5KNngbg1bZ4QDyAgvbelTS4sWbYV9318WAmkzasNnUo+0ehArhwAvKekWbGL/GDyANxzySiMSFPfD5vZCJvFpGSQSIw1K3YdFjTHMDsjFR/ukdT+Wy4ahlH94mExGVD05OXY+cAlWHHHHM00PZs6T+Wmlt1+AX0TrIizGFEZFMSaEGPWeDgB4N3bZ+P3i6Vp99QY9Xnum2DF9KEpmDgwEdvuX4THrpSm2H88bSAArdXj7kWjsfOBS/Cvqycr343oG2qBYcdtsHtR2eLC3JF98MfLxirLHgPAz+dm4OM7LkJqnEUhx4BqXxmQFINnr50a9tgzhiZjx23zBagAACAASURBVAOXIN5qwhLZzjObq6/nrpuGB78/HqvvmY/Xbpmp2ddkNGDy4CTFR8/P3PBtdlKsWbnfN8kZLmItRvRPjMGn+ypBKdCX84cyi8X0ocmIMRvxm0yJiH191zxMHJikaYPZQkJ2TwCESO1uUqzahjIrAO9TFSlFemKMYg+wmAzwBkRN1gazMXQWiscVUwZoPvPXy6411mLEfd8bi18vHKmJ03nuuqm4c+FI3LVopJKS8NaLMrB0knRMo4FobErxVpMSj8TONSApBgvG9MV3v1+AV2+eoSlLcDA470eOD2oLOrMd2CxGDE6JxVUzBqHR4VPaNyOXOm7Xg4ux48+XKLZBPouN0UDCBukReXf+XvJ9nNlIcPnkAdh2/yKNPY6ViYFfuIVfNXh4WhwmB9m2OorF6C30FEHOBjCaEDKcEGIBcD2Ab4K2+QbArfLf1wDYRE92mbjTjJnDUpEUa9b4O2cMS9a8hBMHJmqIyLu3z8aSCekY0Tcet87NUPadP7ov+iXE4KKgFGMNdq/Gc3jZxP743jAzvr5rHm68cChS4ixY+38LMH1oipIMPDXOgheun46kWLMmgC0p1oxNf1iI+aPTUNrkwts7SzXnmhXkpQYk7xJ7ORjJCogU8TEmhcRk/TET80f31QwUnt9QGBKtHwyzkUh+Jr+gyX7BjsPqxuEJwGQg+MHkAUojzNcp8/lePXMQ7N4AvjlcrQmsYeSEf7HZE8Xfuw9+eWEIweUbhkMVrQiIFFMGJSE51qz4zFiQBmsg3rrtAqy5dz6myAFNEwcmwu0XkFPdrq6k5/QpOVvjrSb8eek4TVlsFqOmoWCe7FSbBX0TrJg3Kg1Wk0E5RquXaoJLrEEDBOaF5Jdd5vNuMrD0Pry/MN5qVurY4xdxzYzByvENhCjlnD08FWP7J2DqkGRMGZysDDYK6hyaeh2bnoj8WjuaXX4QAs1ghx13VL94GAgwf7TUYcVaTFLDLVLcxgUo8tOLBiI9+y1e2YPMnZP58gE5n6igTZYfxz1P04emKEF1zIPZL9Eq1zsL7ozF1TMHc3VkVI7t5xae6SMTCj5Iz+UTkFdrR4zZAJvFiHq7B3aPXxOsu/JuVRVLsZlx+8XDlc8j0uIwf3RffHTHHEwYkKgEH9a2e1Bv94R4e/ko83XHahX/YEGdI8Tz+dCXOfAKIm6YPQR5tXYlBmFoHxvu+95YTSfO3kH2rPDkYEy6dO/fuX02Xr15JlbcMQfLrp2K2+cNxyRu5S2T0YCBybGwWUx4/ZZZuP6CIcr3AJT6Y0iKtWBQSmzIKnQJMaaQQKRBKbEKueI9mFl/zITFZAAhBENSbbh1bgY2/zETT109BcGwmAyIMRsxc5hKRpMj5HNNi7civ7YdB8tbNcGMrPMa1z8BSbbQfW+YPRRPXTUZN88ZhoHJsZgaRj3jy//iDdOQ+9hlShYQHhMGJioiAI/pQ5OVDBJcVi7NO8KfYy7XD102MR2UUswenoq5HIFkjwK7/zddOAx5f1+qlJ8foDLRx+4JIN5qgsFAJILsYgRZbl+C4jD4dojlHOa36ShID9AukAEgrIDB9yX/uWG68vfUwckwGw3402Xj8L2J6ZgxNBn3Lx2r+IGbnT6N5z8hxoQdD1yCSYOk5zs1zoJdDy7Gu7fPhtFAsHTSAE1gY98w+fKVYwU9yx15kAEoA4m+8VY0OLyKL5iPkzEbDTAZDRg/QM744vLjzVtn4bNfXwSTkYA1BW6foPSPrP7ZvSREGwvC6n9Iqi2kP7Fx4lOsxagMbKpb3Ui2mXHl1IF48frpIZlxOrvW3kCPEGRKaQDA3QDWAjgO4BNKaS4h5HFCyJXyZm8C6EMIKQJwH4CQVHBnMqwmo5LJ4A+XjgkZ+XWWLHvKoCTEWyXFzmggeHZdvrIc6+4HF2NIqg0xJhK2EQ0HfpSaGGvCiL7xeOXmmRg/IFGyJHAIt8AFj4w+aoMcbzXh67vn4b8/m6U01Mlx6rXl1do1kbD8S8UIlclggNVkgCcgagLFWJlZIvbKFhcCIsUFGSlKx8mPTtnLe9GIPhjXPwH/3XpCczyWbcIYJtaTEHXFJ149YOCJJkuxN2lQElLjpYDEP316WFHImdq1aGw/jOufiBlDpQEHi3LfdLxOQ9xZGrM4qwmj+sXjzgUjlN9sVi1BZtfLZiPMRoNC+hbIQX6b89QFJYI7Dja44VPA8eoLq8P/yYFMfFUl28waJW/uqD5KsFZGHxtsFhNW3zMfz103TTrGrbPw8k0zkJEmqWQOb0BTj5MHJaLeLq3mlhRrhsloUPJ0sk56eFoc9v/1UuWesOsPXqmRf8YMBoIUm1mx1WgUZI4gJ1hN8AtUM/CMs4ZXbzPkQDMWUPPe7Rdi658WIT0xRjOgYftbjEYIcorGZqcXfeT3n69rpy+AvNp2jE1PQGqcBSsP18AvUMwZoZISnmAF30s+sHTGsGSlDmrbPKhr94YoMmxhlxF94+AXqJJDWFqmWDuIrWp14/7LxuL/Lh0Ds5Fg3bHaiCSE3VP2rJiMBjx/3TTMH52mqLkLx/TF0kn9YTAQXDVjMB754YSQJXUZkrjnzCzXLZvBYeQ72WbG/ZeN0yjlMWYDzEZDyD0cmKQlR2wAG+5eD0+LQ4zZiIQYk+a+svvGq2MptvAd+LA+cRApcOfCEfjj98Yq3zN9JzVCx28yGnD97KFKvfQNE8XPEyubxRTxeY2E6Vx/wSvIfLvMg297HvvRJOx8cDE+ufMizQybMvjg9uMJKH+fWXYVj19Q3uXEWDPs3gBEkapp3oIUZP66rWYDnL6AZjGqzpYkjgn6PdysGU/Q+EEq31dfNWMwvvjtPNgsJtw8ZyhizAZcOiEd116gToibjQYkxJiVtiJYUQW0gky4dKK/vHg47lk8OkRBTgl6doITLbHMD2nxVvgComJ/NAZvCKkfnzQoEcuunYrF49MxKyNVVpCl391+VUFmu7PnzRcQtfeYI8XBKwHydR1jloIZxz+8Bp/sq8SQFBtevGG61M5xuyXEmCLOwvYmeiwPMqV0NaV0DKV0JKX0Sfm7Ryil38h/eyilP6WUjqKUzqaUnllu7Qi4f+lYvPcLKafk3344ESvumIPfLR4dsl2kzoH/ffH4fpg/Og0v3zQDRgPBumN1mDuyj8YuES1MRoOSgoo10PFWE+5fOjZkwYJIjSXDvFF9lJc+3mpCemIMLp2gRu+zjuOScf1w1QwpmwNTmWcPVzt/RjrMRoK5I9MgiBTHatqVRvkqOa8opRJRZFPIQ7mo+NgwDTEhBLdfPByF9VqvF0vlxqtfbICRnhiDlXdfjAMPXxr2mq1cndS2e5BsM2NwSix+OnMIbpg9BF8frsbrsu8vuOOcLtf7oORYLBmfjje2lyC/1q5E9688XA2LyaBMrd+/dBx+vVBSyG1mk2bA0u4JwGggmml45q+9fV4G+tsIvj6supUIAR76/ni8K+c5ZYsZ8KvsaZ5FuWpY5DxrIH+9cCRizEZNxPW4/om4dW4G1v3fAsySp3knDExUFIM+8VakxVths6izDHyjx1SoTXn1irL91V3zsPVPizT1x3cKTOHtaBEeAyEaEsJ3nokxZiXPa0KMCQFR1GRViUQ40oIIrkFWU4PBrDrsnL6AiCaHT1FD+DmwNrcfh2SVkVl1BqfEYn6YARqgJfqA1vYzfYg66+P2Cyiqd6BfghXb7l+Ef1wsEUSW8eMS2SLi9gsKqQ3ONX3h8FTcPm84+iXE4MqpgyBS7QIGPFTFkcjXSPHj6YPw3i+C466jB1O82LPJFCw2s5YUa8aSCen44dSByj7MOvar+arKnmIzh5ChLX9chP9v78zj5Kqqff9dNfQ8pZNOZ57IHBIyEQKZScIQQIZLEBAhgCKiyAPxCigqFwUUHx8VR3iICFd5eh1wRFFBuYgXGQUfQgDjAArBAUiQkKTX++OcXefU6aququ4au9b388knXXVOVe361Tl7r7322mv993vTr7EoPe2NKQcHBL9n2GscdgSEOX3FFO66cC0XHz4n46Qim4Ec5WPHp4dZdDQleM+hs/N6bTYWTQquk7CB3BCPcdA+I9M8pwCjczhLIPhtYhkcD47b3rGC5mSc51/exS+e3M63Hno2pU1ncxJVz6vs+ptP/nQrV/upSvtU07zaSyd3c89TL6byZUP/SnpRouNt1FuZ6bkLNs5MtS8T00e387vLD2fyyFbef8QcfnLBGt62eloq3aVrU6bfO5eB/P4j53LBxpn9VkNaItdytL9y/aubPL/jKw/2+zxHLCZ879xVHD4/CD9JxCQ10f7X7r39VhLdWPTSv3ZHPMjB+0e1Dvdbj/gZhDbO7eVtq6dxwSEz+7ULqMocyGCV9IbMOWunpwyWKaNa07xBhXLNCQu57s1LOXTeGG4/bzW3nHkAV2/OHJuWD7eedSA/PG9V2ux47cyefoHw0XKSUUQkVVo400zcGWF7+pSPHDOfm89cxg/OW8UnT1zI5tBytPNEN/ipiNyy6rKp3fz+yk0cs8gb/NoaE7Qk47zwyi7WzephzcwgBjRbkvo3hAbOo/YbRzwmjOn0brrwOH/e+hl879yVzBvXSXNDPOvgFTVO5o/v9Jay2hu58rgF7Od7+pqSsX4z3+XTRtLWmGDyyFY+eNRc+vz8mWt9j+8Lr+zi45v3S9PdeQL29PWxfOpIzvFDSl7f00dXczLte5+3YQaPfugQ1s4azbxR8VTxGPA6xreunpbyLrtl9rAHOTy4hCdLfX3K7r3Ku9bP4KLDg4HZefHGdnrLeeEUg9lwXuSwB3nG6DYmdnvGm5twdTQlMxqeDmd8DxS2kwhVLot+JsAs34vc3pRkz15N5deF7EnsnScnmgKx33mN6Qby8y+/xu/++koqRGC/iV2csHQC+/S08uifX2Ln63tZOb2HLr+61EnLJmW9pp1BEc617IimmNyxaw89HY1M7G5hXFt6btkVMwID3E1MnnohSP/W2hDn2pMXpdpxph/WEb0H+n/3ILxkqASGsffYffSCCV2ctXpaakJ+2Rvmpa4dN2lcMKGLy4/ZF+i/tA6ehzqa9zzKZ9+0mI+H+lr3ncKDf3T529GUjGcMe3BXTr4GcndrA6cs92KAWxriPPLBQ/ql0CuU3o6mVLhdOMRCRPjKW5enTTiAfgZaJmLp86OM7Dexi5m9bbzwyi5O/eJ97NrTl7qe3cTm9C/dR3gLymfufJq9fcqevZq2kvW2NdNYOaOHs1ZPSxmXuUIsomSKWY4an+9aP4NtVx2R05kFnn7TR7dx8aY5qfvGTSgzrTQ4j+vI1gZmDNB/tkT2xkTfK/r7OEN4w5xeLj1ybqoA1jNZcjpHCU9yVINKu+7pcKhmUyLzKkFU2+7QSsjZa/ZhbGcTV29ewMWb5qT2p0SpxhRvYAZyyTll+aRUPGUu4jFJ3WyxmLByxqh+icMLoSERS8vnC96N/YGj5qZVkstnacNV48uU59Etq/b1Kc0NcVbN6KG7tYGjF45PM0DcIOI6t/cdMYepo1oZ3+XFDI7paOJta6bxxS3709PRxMzeNj510qKMs+EoTck4N27Zn48cuy/XnrSIp6/YxCy/I5ocChGJx4R9I0vRmWiMaBJ9jZvJd2foDHs7mvjNBw/hwH1GMrG7hfPWe7PmNywcx7pZPXzhlCVpBr17DXge41hMeM+hs1IDUXSZzS3pAew7Kr2dUc+KG5xnhTrl8ODiCkFAUOgiamD++Pw1fPedK9O8Orlw10t4EiAinLvOW10ZaANnmAOmdRMT0nakO9qbEhy3eDznrJ2eZoREJ3EuzKKtMcHuvX3pIRYNmQ2C45dM4OiF4zh77bSMx1OvjxjI1/7M88Sv9ifNyXiMjx2/H/PGdbKnz1s6PnDaSDpbvD0M4QlkFDfwfP3sg9Ly74K3GjMispTbG8mv6q6x+eM76fU9TM64DE+qTth/YtpKwdxxHRy0z8icy/nvWj+Dc9buw7GLsn+HfHH3uLvGNs71rstVM0ZxyaY5qSX+7tYGPuwbw+GJv1tpyGQg58PsMR2MDYVmZJocFJqW33ko8zWQw68ZE9qkNlTcilam9IqDYSDPcZie9qa0fOXuenaT9gf/+M9+1WZXffRn/n0SfMbYzma+fMYy/v2w2anxLFngpCzTvoumDM6eoeA+I9Pv7brl75y7csBJSFdzkuMWjefLZyzj2pMWZR13op/Z2pjgzJVTuXrzfiye1JVajc3Z5ohx6/LHO/3Dq9fRTXrB314b3rJyKtuuOiLt+x2xYCz3Xrw+oxMu/Mmj2qsv/hhqMM1brfHhY+bnPqnMLJ40ghu27M+Ui7xUTLlCLADO3zCTv+14vZ/HAQIjI1M1toZ4cGNMjRjI7U1Jbv9fq0IbAYSLD/eqXN1w2lKak/GCYu7WRcpHn7J8MnPHdaRttMmXqJEYLZTgOoHoDnpH2Cv4ttXTWDl9FPMndHLj6csynu86opf9WGURocnfAZzJCHfM7k7veKKD16i2Rr7x9gOZPSaYKIUnHAsmeBvrPnr771Jx0lHjYExnU8FhPm61oDFybR23eDxX/PBx3rx8cl7vM2FECxvm9PLjDEVQulsbuOYEL/45PImILpEeMLWbG+/ZxtjOJh758z95MVQVMepFcrQ3JfnkiYsyHgNYO6uHu57YnjKMXRzeo8/+k9lj2tOWMSHwVM+f0EVnS5ItB01hzYyeAZe0nREQjwnxiLtORFg8aQT3PP1iqsJYtPjNWaun8ablk2lrTDBnbAfPv7zd90jtTEsfl2kr9CdPXNSvNPOpB05OK57R3pTk3w8bWgiAI1XYwH+8bGo32646IuO5Dan+I+gbnOdtKA6FtM8oglf85jMP4LZHns25/ySMM0IGE1aXjUPnjWHr8ztoSmTPGPSmAyZlzISSiZQTJ4ed3NvRyE8eD+5b1+9vnNvLlJEt7N6r7OlLb9Nzfpx8tvd2hlmu1Y0oozsaGd/VnKpEC5nDLoaCCxfJFIPsPK65sm/EYsI1/p6OTETHw7lj073R3a0NfPOcFXm1F9KzXUCQ4cKNI+FJaGOGTXrhv6OOnFyEu51q9SCbgWzk5UEe2dbI505ZkvFY4P3pfyw80LhUTeFOIlt4RzFuGBEZlHEM6Z7Y/SZ29QudcQZyPt6hWEz6leqNMiblQQ489I2JGK++vjdjh+toTnjZRlyoRCZv+0AaJONB/O42Py61GMZBJg8yeAPFQ5duLMg7tuWgKRkN5PAgGZ5ERJdfD57dy4OXbuTan231QyxeJxETvv2OFanNdIXy+VOWpP1WTrOnt+8MUuGFcAbcSj8bxv5TuvtVIYuSzOD1CnPpkXP568teznLoX6FLRFLX6ewxHdz1xPbUIBY2FDJNbHvaG/ulXfqPo/cdsD1DIZ9VIofTOpylw01AxhbJsAxfQ5NHtqRt/s2XueM6mDuuI/eJIZpCHuRicfTC8Ry9cPyARbU+cmz+jhz3U8lAMRb0vx6dpvGYsH5OL7fe98esE8RsXmrnMc0VgxzmVxevpykZ584L1/Lpn23lU/4qT6FhGrlw5e2jqQ4BLtk0h/d+4zcFTZYy0dYYZ9/xHUzoauHNB04esBJoPkR1dHtVovKunD4qskkvHIOcPbRkIMLZb8xANqqWoc6kl04ZweYlE3jnwdP7HQsbWw3xGONHNOe9RFdJwgbcbe/oPyNvTXmQh9bhOZz3L9yBesbl7pxG+H2XrOf+bf/gLV++v2BtGxOxVHjHDx/zqqaFU6MNlpSBnGF1otCl4wP3Gcms3naeeXFHWkxw+NrK5b1oa0yQjMXY3dfH33bsYlxXc16hNtloSsbTBgy3UrK3T5mRoWS0CwHIlDElG8kcS+JTRrWmxb5m2vzjcCmewmEZjX5+2b4qyKZZiLGSMpAzeJAHG2IRJWwA/DRDSedS4a6p3iJ6kItNapNejp+sN7KiEZ7QdjV7ufUzlZiG7H2EW1UpJMTCTb4aErG0SVWxedyvRLgggzPk+CUTOH6AcKqBOH3FFG68Zxvgrdb+51uWD7qNUaIrpS7EIqz/01dsIibw+F+CfQuZPMjdWTaxZuPK4xbwzHX38sz2nVVrIFsMsjHk9CrJeIyrN++XFuvraIjcSLPGdFRlQvBMbDloCjdu2T/jsWIbyI2JOFcfv4BbzwqKZzjjMlsYh6OrpSFlGOQatKIk44GBfNvDz9LemOi3AWwwTOxu8XJn5tgAmg8iwg1blvLFyG8RNpDz6ZwTcUEVtu/Y1S/P7lBpiGxGjDJ/Qhf7ju9gSQHa5ms0umIiAy3Lu022Ya/eDD9ncQYHctmJB27JnLhBPbz8u2BCJ+/eODOVWnGohA2EhJ9Hthw4Z0WxPOGlIG8PcsRADk/4XL8ZziiT6TOiuDSAhYRYpK1YJl0O77xfnjfHLfIyOLn0osXig0fNSxW+KWSlJR+ie5R27trTT5t4TPyQv2whFi4lYmF9ak97I+/1Q7RGFbk/LhbmQTaKftOFCXsQGxLClcfNz7ikWwijW4SXXi+9F/pDfqWtTLiBLFcGkELYvHRi2mNnCORj/KV23RdoIXsGsjeQ/ePV3Rw2b0xRlh6bknFWz+hJGWZDZcKIFiaMaOGq4+bT2pjg3K8+lDZI5rO8577X8y/vSsvtXQzSDOTe/gbyxrm9aakR83rPPH+HM1ZO5fQVUwb0zE8f3c6NW/Zn0siWVEq/maPbeezZl7NWYiwn0RjkgXDe+nBWiWQ8ljG9Zq3hjJBcuekrSVCEZeDzoiEW4b7JGVPRlKOOrCEW8cAbnC/h8S2VwzvvV+fP1Zv34yPHzi/a5sowzpB9LlJJcqgsimTI2bFrT1btw5ufExk26RWyGdUxcUQLiZikahJUG2YgGyUl6kHOJ41QLq5c2cyaNeVb9szEXn9zSbZcscXAefbzmZk7I6fQyU4y4f0mLQ3ehsA1s3pyvyhPbjoj84bEoXDisklsfd5b6gtnGsmnc3ZG2PMvvcaSSUP3kodx13kiJhlXUgZDIROVfAbldbNHp8p8AxyzaDzffOjZVJrKShLNYjEQmWKQhwsuBVqxvZDFJCb5/Vb9PMjx/h7k7J+R+XmXurAQj2P4PooWuSkm8ZhkTINaDOb6BnKuKrWFEo2X3vl6dgM5vEEwvD/CTXwGs5o6d1wHj112aFUWCQEzkI0SE45xKtamiHhMyrbkmY3X/VjYQndTF0LKg5yHgTytp42Tlk3kjBVTC/qMhrhXere3o4nfv7gzlT+5mnEb68LadzTlE2Lhnf/Krj0lCLHwBpWpo1qLdp3n2vE+GNwA3tGUYNWMUTx22aFFmbQOlUI062pJEpPq9rIOlrWzerhxy/4pg6gayTcaxpVrd4QNapcHPBvZjG+XorGQ3z7dg1y6EItSMrG7mTUze1I5yotF1KDfuWtv1slDOCVmOFzG9X2FbtJzVKtxDGYgGyWmoQQGcjXgPLbRTQ7FxHXmI/IIsYjHhCuPW1DwZ7jObXxXM8m4FC1NVinpavYMpLD2sZiwaHScU9dlz7QQNjgHm70iG27ZP1N4xWApNNdrPjQmYsQE9hndlpblotLECwix6O1o4sfnr2baqOpclh0KiXisX7rKaiOopDfwedHVrHAkTy5vYzYjzcUsR8M3BiK84dKFsNSYfYyIlGRFLsrOAUIswr9nOFzGy8ufGFbju6M6ekdj2JJuINdat5SdM1dO5U9/f5VTD5pSss9wBuBgZ+b54Dq1jxy775Bjw8tFLOalpotOTs5b3MTaAYpWhDv1Ym8Kcdf59Awpngb9niUYcJxR7ApvVAupGOQ8u4hi6hymtSHOzgHKmhvBbzSUWNvcIRaZ3/vvfg7zQvJEh9vpnA7DZyQqLrv29KUy7gxEeCyf3N3CnDHVu+IxFMxANkpKocvgtUJXSwOfGKCQRDFwGxzLYSAXK262XFx65FwmdQ9cPjhKOF48uvw7VEa3N9KcjA85L2mYUnlkPnHiwqrzvgYe5MqaLr+8aD2v7TEDeSAKSSX5wPs3cOuv/8TVP3oi7fm2xgTxmGSdlGfzTrvPHiiloWNSd0u/mF3Xp9ZaiEU5ieUhTjjE8YJDZlXFRt9SYAayUVIS8RhrZvZwxIKxed14RkBjIk5MSrsZqRhFQSrB0QvHF/ya8FJrsWOQR7Q28NvLDi3KNX7lcfP5xE+eLFl2mYNnF5ZNoxyUcrNrIXS2JOlk+EzkS4G7LvO5PEe2hQvOBEaUiNDVnMya5i3bROnmM5dx1xPb86qw+q1zDupvIJdwk16t05SM8druvrwmQNHV4FJk7qgGzECuYy57w7yyzKTLETs1HGlrTDCyrbGkafhKucmw2gh7PYptIEN+npd8OGnZJE5aNqko71UruPCXYTrODiuC3yi/H8v1MVEnY1dLdgNZyeyRnD66Pe/wmpFtjf32GqQ26eX1DvVFa0OC13a/npdNkKvK53DBDOQ65rQSxs8aQ+ecdftw7OLCPaWFMBw3VmQjGer588kMYpSPQkoHG5Ul3016jmyrVF76yp0Zj+3NnB55yKQ26dlMLMXlK5rpGzmN6+9+BnbmF0JTL6vB9TM6GkaNMbazmcVFztcbZThtnMyF8yCPaElWPE2gkU4pV0mM4hLkQc7vfDcJj/qEuwYIHStV+XPXFrvcAia2xzjtoCm0+JvzbPIQYKOEYdQxtRqDPBhcnOtgKj4ZpcX9NjY4Vz+pLBZ5hlhkm4t2DpDJolQZdVwM8uSO+un38qXZz3M80OQhXG66HrAQC8OoY+opBtnFzRU7B7IxdAotkW5UDufczfcnc4Z0NNPBQNl5SmUgd7U08H/PWs7fn/lNSd6/lmlJuiIq2S3kn1ywht+/mDksZjhivZJh1DH1FIPsvJTFzoFsDJ1CCoUYlcWFPxSakq8aQiwADpg2kuaEXWlRXIjFQB7kCSNaqqI0fbmon9HRMIx+lKJaW7Xi4q2LnQPZGDrOHrIIQoJ7fgAAExhJREFUi+onZbrm+1tlOW+gYiF7aqRo0XCi2WKQ+1E/o6NhGP2opxCLRCrEwjzI1YqNzdWPC5UopGCI97r0x51+iMUlm2Zz78UH094URHz2mYFcdlIe5PoZEnJiUhhGHVNPWSzcMr7FIFcf2fLeGtXLEB3IjPA9yE3JOGM7m2ltCAxk8yCXn5bUJr36GRNyYQayYdQx9bSc1tPeSCImTO+prjLLRijEwqKQq55Cw2GWTe1m2ZRuLtk0J+35rmbPg+wMspbGeOpYqTbpGdlpbsi9Sa/esCwWhmHUBb0dTTxw6UY6S1i62xgcjUkLf6kVgk16+dHSkOBrZx/Y73n3W7vUa2EPcik36RmZcVkszD4OMAPZMOqQ1TN7+MWT2yvdjLJjxnF1MntMB1ccO5/D9x1T6aYYOQg8yEOzpMZ1NfP5U5awcsYoIIiBBfMgVwLzIPfHDGTDqENuOG0pu/aUqJ6rYQyCkw+YVOkmGHngTNdi2FGHhSZEbY3mQa4kzXmkeas3zEA2jDokGY/VVQ5kwzCKw2DzIOeiJWQgmwe5/LSYB7kfNkIahmEYhpEfrpJeke2o1rQQi+K+t5Gb5qQ3Qamnjdu5MAPZMAzDMIy8SHmQi2xHtdgmvYqSTyW9esMMZMMwDMMw8iIVg1zkEIvWUJq3Cw+dVdT3NnJjIRb9MQPZMAzDMIy8cM7dYldccx7kG05byviu5uK+uZET26TXHzOQDcMwDMPIi+mjvUI7iyaOKOr7Og9y3Cy0iuAmKBaDHGBZLAzDMAzDyItlU7v5xXvWMbG7uF5eZ6BZdp3KYDHI/TED2TAMwzCMvJk0sqXo7+myWJgHuTJYoZD+lHyqJiLdInKHiGz1/++3LiMiC0XkXhH5rYj8RkTeWOp2GYZhGIZRHYzuaAKgq8WqXVYCV2raDOSAcqxlXAT8VFVnAD/1H0d5FThVVecBhwGfEJGuMrTNMAzDMIwKs3hSF3ecv5rZYzoq3ZS6JBGP0RCPFT19Xy1TDgP5aOAm/++bgGOiJ6jqk6q61f/7OeAFoKcMbTMMwzAMo8KICDN62yvdjLqmuSFuIS4hymEg96rqX/y//wr0DnSyiCwDGoCnS90wwzAMwzAMA5qTcQuxCCFahIo1IvITYEyGQ+8DblLVrtC5/1DVjPlhRGQscBdwmqr+Kss5ZwFnAfT29i659dZbh9j62mHHjh20tbVVuhkVx3QIMC0CTAsP0yHAtAgwLQJMi4CwFhf94lVGNce4cP+mCreqvKxbt+4BVV0afb4oWSxUdUO2YyLyvIiMVdW/+AbwC1nO6wC+D7wvm3Hsf9Z1wHUAS5cu1bVr1w6p7bXEXXfdRT1932yYDgGmRYBp4WE6BJgWAaZFgGkRENZi1KN3M7K1kbVrl1W2UVVCOdK8fQc4DbjK//+26Aki0gB8C/iyqv5XGdpkGIZhGIZh+Lxz3XSakvHcJ9YJ5YhBvgrYKCJbgQ3+Y0RkqYj8H/+cE4DVwBYRedj/t7AMbTMMwzAMw6h7Dtt3LGtnja50M6qGknuQVfVvwPoMz98PvMX/+xbgllK3xTAMwzAMwzByYTUdDcMwDMMwDCNEUbJYVAoR2Q78odLtKCOjgBcr3YgqwHQIMC0CTAsP0yHAtAgwLQJMiwDTAiarar/aGzVtINcbInJ/plQk9YbpEGBaBJgWHqZDgGkRYFoEmBYBpkV2LMTCMAzDMAzDMEKYgWwYhmEYhmEYIcxAri2uq3QDqgTTIcC0CDAtPEyHANMiwLQIMC0CTIssWAyyYRiGYRiGYYQwD7JhGIZhGIZhhDAD2TAMwzAMwzBCmIFsGFWOiEil22AY1YrdH4YxMHaPDA4zkKsQEan730VExle6DYZRrYjILOsnUpgOIey68LAxxBgqdiNVCSLyBhG5oNLtqDQiskFEHgDOrnRbKo2IHCUiXwUuEpHJlW5PJRGRY0Tk8kq3o9KIyEYR+R/gLdR5/y0iR4jI94DLRWRFpdtTSWz8CLAxJMDGkKFhWSwqjIgkgHcDbwcmAYtV9WERiavq3sq2rjz4yz9J4BPAQcCHVPXb4eNaZxeqiGwArgA+AOwPdAJ3qur3RSSmqn0VbWAZ8K+LGHA6cBEwGThYVe+uaMPKjK9DArgUOAl4r6p+M3y8Du+PJcDngA8BHcDBwC9V9Uv1cn+AjR8OG0P6Y2PI0KlrD0Q1oKp7gCeA2cAFwBf85+umc1OP14EW4Nuq+m0RiYnIfu54ZVtYETYA31PV2/GuiXbgDBFprZeOzb8u9gJPAYuAc4C68yL7OuwG+oD/csaxiKwSkWRlW1cxNgB3q+oPgNuAvwLvEpFOVe2rl5hLGz88bAzJSN2PIUPFDOQKICLvEpGrROQE/6nvq+prqvoJYLSInOyfN6wHv5AOb/SfuhxYJSIfBx4EPiwi14nIoZVrZXnIcE38ElghIk2q+gLwGhAHzqhYI8uEr8X1IvIW/6mfq+orqno90CoiZ/rnDev+K6TDWf5TnwfGisiNIvIo8O/ADfjXxHA2CkNavNV/6k7gKBEZoar/AnYDLwHvheFtENn4EWBjSICNIcVnWA8w1YZ4nA+8EbgfuExEtgAjQqddAFwN4HuNhh0ZdPiQiJypqk8D38bzhrwROBl4DDhWREZVrMElJMs1cRrwO+A54GsicifeMvJtQPtwNgz9++Fk4BvAm0XkYmBa6JQPABf4htGw9YJEdHiTiLwf2IV3fzQAm4E3+MePE5FJw9UojGhxioi8D9gG/Ai4WUTuxrtGrgK6RKS1Qk0tKTZ+BNgYEmBjSOlIVLoB9YSqqoisA96vqneKyA7gEGAvcLN/zrf8meCFqvpxEdmgqj+pZLuLTRYdNonICap6rYjcqKo7AETkYWA58Gol21wqMmixE++aeBVvI9YCYJwfN/YmYOpwNgyB9cBHVfV2EXkROAp4E/AfAKr6Q9+DfJaIfBY4TFW/XrnmloyoDkcDb1PVq0TkDlXdCSAivwH+iedBHa5k0uJUVT1XRCYBs1T1DhFZAzQ7bYYbNn4E2BgSYGNI6bBZRImILneGZmz3A6sA/NigrcA8EZkVOv3twMdE5K9ATaeqKUCHx4ElIjLLdWw+G/Fu9NfK0NySkqcWPwSexNtUMV1VH1LV7/vnLQH+p0zNLSshLR4CjgRQ1fuBe4Hxkp6l4L3AlXj3zphytrPUDKDDPcBUEVkRMQBPA5qBf5S1oWUghxYzRWSVqv5RVe/wzzsCeLr8LS099Tp+ZKKex5AoNoaUFjOQS0dz+EFoxvYU3hLHfP/xz/F2l7YDiMhC4Hq85cTFqnpTeZpbMgrRoYNAhxNF5DG8zAWXDJMZbyFatBNosUlE7sPT4htlamtJEZG4/79Amhb3ADERWe0/fgz4CzDOP3868Fm8ZdTFqnptOdtdbIagw7+JyCN4oQVvV9WaH/wL1OI5/MmRiKwWkZ8DM/DitGueAbSot/GjUC2G9RhSoBbDegwpB2YgFxkRWS4i3wA+IyKHhC5oF85yH7AHOEREEqr6//Bm+Uv9438DzlHVzar6XLnbXyyKoMMf8Ab+U/0NBjXLELTY3z++FThbVf9NVWvaUygiB4rI9cD5ItLu4mZDWmwFfgu8UbxUVX8GeoEp/vGXgHeq6nE1fn8MVoep/vEn8a6JU1X1+XK3v5gUQYtteH3msar6YpmbX1REZIWI3AS8X0S6Q1q4DXd1MX5AUbQYTmPIYLUYdmNIOTEDuYiIyFo879Y38VLvnAKMEC/n4B4AVX0KbzlkH7zcruBtvvmDf/xPqvpomZteVIqkw706DPLdDlGLbf7xrar6YHlbXnzEixH9NPAzPE/oJSJyCKTSVQG8AtwNNAIf9weAEXgDP6q6XVW3lrvtxWSIOrzon/eoqt5b7rYXmyJp8UdV/W25215sRGQaXl9xJ56n73IR2QTBhrt6GD+gaFoMlzFkKFps848PizGk3JiBXFwWAL9W1f8EbsFLXL7DLYOIyIdF5AbgAeBTwDLxKv78HW9H9nDBdAgwLQKWAPeo6leBD+N5AU8SkV7wtAC+guclvhTPCLrbf1zzS8UhTIcA0yJgGfC4qn4JuBB4GC+V3Viou77CtAgwLSqEZbEYAiKyHPi7qj7pP/ULvHQzz+EVNXgc+KyI/Aj4E1684AdUdZv/+pOBhKr+s+yNLyKmQ4BpEZBBiyeAhSIyTlWfE2/n+UjgGPHSEE0DLlIvVRMicgbQqqqvVKL9xcJ0CDAtAkTkKDyP4P2q+iu8ZfJzxUvZ90cRuQfPI3iiiPya4d1XmBY+pkX1YB7kQSAiXSLyfeAO4AQRaQNQ1YeBw/Au7nNUdS3eBpMNwE5VPVlVnxJ/56mq7qjli9h0CDAtArJpgRc3+zLwJfFisifieUPaVfVJX4unQ1r01bIhZDoEmBYBIjJWRL6LV+hlBHCjiByqqs/gZW3Z7J/6BF7sdQfw6DDtK0wLH9Oi+jADeXC04i1dnOv/vcodUNX7gB78OCi82Lou/DRMMrxqoJsOAaZFQFSL1eDFweEVMrgS+LqqHovX0a91LxxmWpgOAaZFwFK8MtmrVPVy4JOAq5Z4NzBfRA5Qr1z0s8BqVX0JTAtMi3rRoiowAzlPRORUEVkjIh2q+ixwHfA1vNyKB4iIS7/UiFfi8Rz/peuBbv88av0iNh0CTIuAHFosc1qo6uuqeqeq3uq/dDFwu3ufWtfCdAgwLQJ8Ldb6fcFP8Qt7+PwNz5MOXo7ah4BrfC/7POAPItICpgWmxbDVohoRHZ7VSYuCiAhers2vAH14SehbgfPUTyckXgGDE/DihW72n5sHfNB/7W68tFSPl/8bFAfTIcC0CChQi1+r6i2h167E85C8iFchblt5W188TIcA0yIglxYiklTV3SLyLmCuqp4deu01wAS80KxTVfWJ8n+D4mFaBJgWNYSq2r8M/4C4//9M4Bb3HHAt8M3Iuefj7cDuwit1Cl5RiGmV/h6mg2lRRVp04m2wAi+l16ZKfw/TwbSolBahc74LbPD/Hu3/n8CLw674dzEtTIt6/WchFhFEJC4iVwBXiJejcxZerXvUi/05DzjIP+a4HmjD24CyTUTGq+q/1Auur0lMhwDTIqAIWjwjIhNU9TlV/UGZm180TIcA0yKgEC1Uda+INADbgSdF5CPAHSIyQlX3aO1vRjQtfEyL2sQM5BD+hfsA3g7Sp4DL8ZbD14nIMkjF+nzI/+c4Ai++9GFgvnrxdjWL6RBgWgQUQYtH8LT4c/laXXxMhwDTIqBALS7zX9YEbMGLP23H8xjWfKUz0yLAtKhdLA9yOn3A/9YgbnQRXjnTDwCfA5aIl0rl28DBIjJFvTi51/Au4F9UptlFx3QIMC0CTAsP0yHAtAgoVIsJeGEltwDXqJcScrhgWgSYFjWKeZDTeQD4mojE/cf3AJPUq2ATF5Fz/ZneBGCv39GjqrcNs47edAgwLQJMCw/TIcC0CChEiz5V/bOq3qeqpw5DI8i0CDAtahQzkEOo6ququsuPCQLYiBcHBHA6MEdEvgd8FXgQUjtShxWmQ4BpEWBaeJgOAaZFQIFaPACmBaZFXWlRa1iIRQb8mZ4CvcB3/KdfAS4B9gV+72JKVXXY5skzHQJMiwDTwsN0CDAtAkyLANMiwLSoPcyDnJk+IImXj3OBP7u7FG/54791GGy4yhPTIcC0CDAtPEyHANMiwLQIMC0CTIsawwqFZEFEluNVP/slcKOq3lDhJlUE0yHAtAgwLTxMhwDTIsC0CDAtAkyL2sIM5Cz4O0nfjLeLdFel21MpTIcA0yLAtPAwHQJMiwDTIsC0CDAtagszkA3DMAzDMAwjhMUgG4ZhGIZhGEYIM5ANwzAMwzAMI4QZyIZhGIZhGIYRwgxkwzAMwzAMwwhhBrJhGIZhGIZhhDAD2TAMo4YQkb0i8rCI/FZEHhGRd4vIgH25iEwRkZPL1UbDMIxaxwxkwzCM2uJfqrpQVecBG4HDgQ/meM0UwAxkwzCMPLE8yIZhGDWEiOxQ1bbQ42nAr4FRwGTgZqDVP/xOVf2liPwKmAP8HrgJ+BRwFbAWaAQ+o6pfKNuXMAzDqHLMQDYMw6ghogay/9w/gVnAK0Cfqr4mIjOAr6rqUhFZC1yoqkf6558FjFbVD4tII3APsFlVf1/WL2MYhlGlJCrdAMMwDKNoJIFPi8hCYC8wM8t5hwALROR4/3EnMAPPw2wYhlH3mIFsGIZRw/ghFnuBF/BikZ8H9sPbY/JatpcB56rqj8rSSMMwjBrDNukZhmHUKCLSA3we+LR68XKdwF9UtQ94MxD3T30FaA+99EfA20Uk6b/PTBFpxTAMwwDMg2wYhlFrNIvIw3jhFHvwNuVd4x/7LPANETkVuB3Y6T//G2CviDwCfAn4JF5miwdFRIDtwDHl+gKGYRjVjm3SMwzDMAzDMIwQFmJhGIZhGIZhGCHMQDYMwzAMwzCMEGYgG4ZhGIZhGEYIM5ANwzAMwzAMI4QZyIZhGIZhGIYRwgxkwzAMwzAMwwhhBrJhGIZhGIZhhPj/JscrZKEO70MAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light", "tags": [] }, "output_type": "display_data" } ], "source": [ "symbol = 'TSLA'\n", "\n", "end = datetime.datetime.today().date()\n", "start = end - datetime.timedelta(3*365)\n", "\n", "# get stock price data\n", "S = pdr.data.DataReader(symbol, \"yahoo\", start, end)['Adj Close']\n", "rlog = np.log(S/S.shift(1))\n", "\n", "# plot data\n", "plt.figure(figsize=(10,5))\n", "plt.subplot(2,1,1)\n", "S.plot(title=symbol)\n", "plt.ylabel('Adjusted Close')\n", "plt.grid()\n", "\n", "plt.subplot(2,1,2)\n", "rlin.plot()\n", "plt.title('Log Returns (daily)')\n", "plt.grid()\n", "plt.tight_layout()" ] }, { "cell_type": "markdown", "metadata": { "id": "xXyW7dh3Ke47", "nbpages": { "level": 3, "link": "[7.1.4.4 Volatility Drag and the Relationship between Linear and Log Returns](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.4.4-Volatility-Drag-and-the-Relationship-between-Linear-and-Log-Returns)", "section": "7.1.4.4 Volatility Drag and the Relationship between Linear and Log Returns" }, "pycharm": {} }, "source": [ "### 7.1.4.4 Volatility Drag and the Relationship between Linear and Log Returns\n", "\n", "For long-term financial decision making, it's important to understand the relationship between $r_t^{log}$ and $r_t^{lin}$. Algebraically, the relationships are simple.\n", "\n", "$$r^{log}_t = \\log \\left(1+r^{lin}_t\\right)$$\n", "\n", "$$r^{lin}_t = e^{r^{log}_t} - 1$$\n", "\n", "The linear return $r_t^{lin}$ is the fraction of value that is earned from an asset in a single period. It is a direct measure of earnings. The average value $\\bar{r}^{lin}$ over many periods this gives the average fractional earnings per period. If you care about consuming the earnings from an asset and not about growth in value, then $\\bar{r}^{lin}$ is the quantity of interest to you.\n", "\n", "Log return $r_t^{log}$ is the rate of growth in value of an asset over a single period. When averaged over many periods, $\\bar{r}^{log}$ measures the compounded rate of growth of value. If you care about the growth in value of an asset, then $\\bar{r}^{log}$ is the quantity of interest to you.\n", "\n", "The compounded rate of growth $r_t^{log}$ is generally smaller than average linear return $\\bar{r}^{lin}$ due to the effects of volatility. To see this, consider an asset that has a linear return of -50% in period 1, and +100% in period 2. The average linear return is would be +25%, but the compounded growth in value would be 0%.\n", "\n", "A general formula for the relationship between $\\bar{r}^{log}$ and $\\bar{r}^{lin}$ is derived as follows:\n", "\n", "$$\\begin{align*}\n", "\\bar{r}^{log} & = \\frac{1}{T}\\sum_{t=1}^{T} r_t^{log} \\\\\n", "& = \\frac{1}{T}\\sum_{t=1}^{T} \\log\\left(1+r_t^{lin}\\right) \\\\\n", "& = \\frac{1}{T}\\sum_{t=1}^{T} \\left(\\log(1) + r_t^{lin} - \\frac{1}{2} (r_t^{lin})^2 + \\cdots\n", "\\right) \\\\\n", "& = \\frac{1}{T}\\sum_{t=1}^{T} r_t^{lin} - \\frac{1}{2}\\frac{1}{T}\\sum_{t=1}^{T} (r_t^{lin})^2 + \\cdots \\\\\n", "& = \\bar{r}^{lin} - \\frac{1}{2}\\left(\\frac{1}{T}\\sum_{t=1}^{T} (r_t^{lin})^2\\right) + \\cdots \\\\\n", "& = \\bar{r}^{lin} - \\frac{1}{2}\\left((\\bar{r}^{lin})^2 + \\frac{1}{T}\\sum_{t=1}^{T} (r_t^{lin}-\\bar{r}^{lin})^2\\right) + \\cdots\n", "\\end{align*}$$\n", "\n", "For typical values $\\bar{r}^{lin}$ of and long horizons $T$, this results in a formula\n", "\n", "$$\\begin{align*}\n", "\\bar{r}^{log} & \\approx \\bar{r}^{lin} - \\frac{1}{2} \\left(\\sigma^{lin}\\right)^2\n", "\\end{align*}$$\n", "\n", "where $\\sigma^{lin}$ is the standard deviation of linear returns, more commonly called the volatility.\n", "\n", "The difference $- \\frac{1}{2} \\left(\\sigma^{lin}\\right)^2$ is the _volatility drag_ imposed on the compounded growth in value of an asset due to volatility in linear returns. This can be significant and a source of confusion for many investors. \n", "\n", "It's indeed possible to have a positive average linear return, but negative compounded growth. To see this, consider a \\$100 investment which earns 20% on even-numbered years, and loses 18% on odd-numbered years. The average linear return is 1%, and the average log return is -0.81%.\n", "\n" ] }, { "cell_type": "code", "execution_count": 61, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 441 }, "executionInfo": { "elapsed": 1639, "status": "ok", "timestamp": 1604438428964, "user": { "displayName": "Jeffrey Kantor", "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64", "userId": "09038942003589296665" }, "user_tz": 300 }, "id": "4ciG0W-pKe48", "jupyter": { "outputs_hidden": true }, "nbpages": { "level": 3, "link": "[7.1.4.4 Volatility Drag and the Relationship between Linear and Log Returns](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.4.4-Volatility-Drag-and-the-Relationship-between-Linear-and-Log-Returns)", "section": "7.1.4.4 Volatility Drag and the Relationship between Linear and Log Returns" }, "outputId": "3973ed2e-fae1-48f9-aac9-b54f6d7d9d1e", "pycharm": {} }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAGoCAYAAABbtxOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd5icZdX48e+Ztr1nd7PpCSmkAkkgQAgkNGkiogICRpqIgqLoa3st+AK+tp8KoiigdEEUVF6lQ0IJBFJIICSkt03ZzfY6u1PO74/n2Z3Zze5mN9m+53Nde2XmaXPmZGaeM/fcz32LqmKMMcYYY4xxePo6AGOMMcYYY/oTK5CNMcYYY4yJYwWyMcYYY4wxcaxANsYYY4wxJo4VyMYYY4wxxsSxAtkYY4wxxpg4ViAbY4wxxhgTxwpkY4zpx0SkJu4vKiL1cfevEJFMEfmziOwXkWoR2SQi34nbX0VkYgfHT3WP9VzvPCNjjOn/fH0dgDHGmPapamrTbRHZAVynqi/HLXsASAGmApXAZGBGFx7iU0ADcJaIDFfV/d0RtzHGDGTWgmyMMQPb8cBfVLVcVaOq+pGq/r0L+38e+APwPnBlj0RojDEDjBXIxhgzsC0H7hCRq0VkUld2FJGxwELgMfdvcfeHZ4wxA48VyMYYM7B9Bae4vQlYLyJbROTcTu77OeB9VV0PPAFMF5HjeihOY4wZMKxANsaYAUxV61X1J6o6B8gBngT+JiLZndh9MU5xjaruAV7D6XJhjDFDmhXIxhgzSKhqFfATnIv2xne0rYicDEwCvuuOgLEfmAdcLiJ2AbcxZkizAtkYYwYwEfmBiBwvIgERSQRuBiqAjXGbBUQkMe7Pi9NS/BIwDTjW/ZsBJAGd7aJhjDGDkrUSGGPMwKbAA8AYIIwzGsX5qloTt82Hrfb5CnAJsLj1sG4i8ghO8fx/PRaxMcb0c6KqfR2DMcYYY4wx/YZ1sTDGGGOMMSbOIQtkEUl2+7jd596fJCIX9HxoxhhjjDHG9L7OtCA/gDMN6Unu/T3A7T0WkTHGGGOMMX2oMwXyUar6cyAEoKp1gPRoVMYYY4wxxvSRzoxi0SgiSThXSiMiR+G0KPe5YcOG6bhx4/o6jF5VW1tLSkpKX4fRpywHLVk+YiwXloPWLB8xlguH5SHGcgGrVq0qUdXc1ss7UyD/CHgeGC0ijwHzgau6N7zDM27cOFauXNnXYfSqpUuXsnDhwr4Oo09ZDlqyfMRYLiwHrVk+YiwXDstDjOUCRGRnW8sPWSCr6ksisho4Eadrxc2qWtLN8RljjDHGmF6gqjyzdi+JYRvqtz2dGcViPhBU1f8AmcD3RGRsj0dmjDHGGGO63ZrdFdz8xBqW7Q33dSj9Vmcu0rsHqBORY4BbgK3Awz0alTHGGGOM6RHvbi8DoLA62seR9F+dKZDD6ky39wngd6r6OyCtZ8MyxhhjjDE9YcUOt0CusQK5PZ25SK9aRL4LfA5YICIewN+zYRljjDHGmO4WjSordpQDTguyqiJio/e21pkW5EtxhnW7RlX3A6OAX/RoVMYYY4wxptttLq6hsj7ErFEZ1IVhf1Ww2x+jMRzlivuXs3Rjcbcfu7ccskB2i+LHgAx3iumgqlofZGOMMcaYAcQZvWIPAFfOc8Zb2Li/us1tl20pYXdZXfM26/ZUHrTNjpJanF64Lb27vYxlW0q56oEV3RV6r+vMKBaXAO8CnwEuAd4RkU/3dGDGGGOMMab7vPBhEb9bshWAs6blA7C5qOag7aJR5Yr732HBz5dwy1/XcM6dr3PtQy2L3TW7K1j4y6U89s6uFssr60L8fumW5vvbDhx8/IGgM10s/hs4XlU/r6qLgROAH/RsWMYYY4wxpju9sqEIgBtOO4rMZD+JXthbWX/QdkXVsW4XT7+3h6nD0ymqaqC0JjaR8rvbSwH4oDDWsvzqR0Wc8avXWL6tlG+cNZlEv4erH1zRPGrGQNKZAtmjqvGdSEo7uZ8xxhhjjOknVu0s58ypeXzn3KMREbIShf2VB/dB3l5S2+L+t86ZAsDGolh3jLVuYRxV5fl1+/n3+3u54dHVDEsN8MxNp/CVMybx0NUnEFXlsnvf5v43tvH6pgMAbCmuprI+BDjdPpZuLG5RfPcHnRnF4nkReQF43L1/KfBsZx9ARLzASmCPql4gIuOBJ4AcYBXwOVVtFJEEnPGV5+AU4Zeq6o5OPxNjjDHGGNOm+sYI20tr+cSxI5uXZScKz63bz5biGibmpTYvjy+Qs5L9TC1IB2BLcQ2zx2Rxw6OrWLrRKXb/8d4e/raqEAARuPvy45iY54wGPG9CDv/56gJO+/kSbv/PBgCOyk1h64FaLjxmBHd99jgOVDdw1QMr+NHHp3H1/PE9m4Qu6MxU0/8lIp8C5ruL7lXVf3ThMW4GNgDp7v2fAb9W1SdE5A/AtTiTkVwLlKvqRBG5zN3u0i48jjHGGGOMibNhXxXr9lQyITcVVZicHyuEw+4wyF94eCVLvrmwefmqHeVkJft55qZTSA54yUoO4PUIheX1fMktjsdkJzM2J5k3t5SQmuCjpiHM4184sbk4bpKe6OfexXN5b1c5W4prqKgLsfVALc+s3cun54wiEnUu8ptWkE5/0pkWZFT1KeCprh5cREYB5wN3ALeIM9De6cDl7iYPAbfiFMifcG8D/B24W0RE27o80hhjjDHGdEhV+fpf1/BR3EgVk4fHCtjcZA8by6OUVMe6N0SjyuubD3Dq5FxGZyfHtk1N4N7XtwFwxydncMW8sZTXNlJa20BOSgKvbz7AvPHZbcZx/Lhsjh8XW/eH17by0+c+4qa/rOaLpx0FwNQR/atAlvbqTxGpBtpaKYCq6iGfiYj8HfhfnJn3vglcBSxX1Ynu+tHAc6o6Q0TWAeeoaqG7biswT1VLWh3zeuB6gPz8/DlPPPFEZ57noFFTU0NqauqhNxzELActWT5iLBeWg9YsHzGWC8dQysOuqgg/fCvIotE+9tdGGZXm4fKjA80TgxyoqOEv23ysKY7whzOTSfAJOyoj3Pp2kC/MDDB/ZGxeuB+/Xc/2yih5ycLPT01u7yE7pS6kfOO1OkJRSPYJaQG445QjO+bhWrRo0SpVndt6ebstyKp6RNNJu2MmF6vqKhFZeCTHiqeq9wL3AsydO1cXLuy2Qw8IS5cuZag959YsBy1ZPmIsF5aD1iwfMZYLx1DKw1OrCoG1/Pdn5rfoY9xk6dKl3HjOVK57eCU5E49h7rhsfrdkC7CR6y88ldy0hOZtH96xgu2VxZwyZQQLFx57xLHVZO3mW39/n6TEAA9dN++grhl9rd0CWUSOB4ap6nOtlp+LW/ge4tjzgQtF5DwgEacP8p1Apoj4VDWMMyvfHnf7PcBooFBEfEAGzsV6xhhjjDGmCxrDUW595kMAxuW03zo7c1QGAB/sqWTuuGyWbixm5siMFsUxQE1DGIBzZgzvlvg+Nm0460+u4tpTxrfoytFfdDRc28+A9W0sX08npppW1e+q6ihVHQdcBryqqlcAS4CmiUY+D/zLvf2Mex93/avW/9gYY4wxpuv+vqqQ6oYwM0am4/O2X+7lpyeSm5bAB4WVPPbOTlbsKOe0ybkHbff986fyXx+b0jzByJHKSPZz64XT+2VxDB1fpJemqjtbL1TVnSIy7Age89vAEyJyO/Ae8Cd3+Z+AR0RkC1CGU1QbY4wxxpguemp1IdkpAR69dt4ht501MoNn1u7l6ff2MGdsFp8/edzB24zKZNaozB6ItH/qqEDO6mBdl8p9VV0KLHVvb8OZja/1NkGc6ayNMcYYY8xh2naghlU7y/nuuUeTmRw45PYzRmbwykfOnHA/vnD6Qd0rhqKOuli8LCJ3SNOljoA4/gd4tedDM8YYY4wxXfX06j14BD553MhDbwzMHJnRfHtUVlJPhTWgdNSC/A3gfmCLiKxxlx2DMyvedT0dmDHGGGOM6ZpIVHlqdSGnTs4lLz2xU/s0XagHkJHk72DLoaOjYd5qgc+KyARgurv4Q7eLhDHGGGOM6SGqykvrizh1ci6Jfm+n91u2pYR9lUG+d97UTu+TH1dIx3UcGNI6M9X0NsCKYmOMMcaYXvLCh/u54dHVXDN/PD+4YGqnCtdIVLn1mQ8pyEjs8mgTXz19IgldKMQHu05NNW2MMcYYY3qeqiIi3P/GdgD+vGw7E3JTuPLEsYfcd8WOMraV1HLnZcd2qdUZ4JazpxxWvINVRxfpGWOMMcaYHnb/G9u48O43Wb6tlIt+/xaX3fs2K3eWc/RwZ3a5v68qZMO+Ki7549scqG5o9zhLNhYT8Hq6bazioayjmfSyO9pRVcu6PxxjjDHGmKFlycZi3i+s5LJ7lzcvy0z2848vz+dXL23kwbd28MVHVrGrrI7j73iZX196DMeOzuLp1YWU1TZy5rR8Fk3JY1dpHaOzk0gOWAeBI9VRBlcBCggwBih3b2cCu4DxPR6dMcYYY8wgt/1ALWccnceorCSOLkjnw72VLJqSR1LAywnjc7jvje3sKqtr3v47T31AwOehtiGM3+vh/9bu5Z4r51BYXs/IrP45M91A09EoFuMBROQ+4B+q+qx7/1zgot4JzxhjjDFm8DpQ3cDeyiCXnTCGr54x6aD1c8Y687aNzk7imRtPYVNRNZfeu5wJuanct3gOjeEoV97/Dlfc/w4Anz1hTK/GP1h1pg3+RFX9QtMdVX1ORH7egzEZY4wxxgx6v3l5E795eTMAk/NT29wmOyXAN86azPHjs8lKCTBvQg7P3DSfSXlpJAWcC/Fe/eZCfvLsBh5+eyceG6WtW3SmQN4rIt8HHnXvXwHs7bmQjDHGGGMGt81F1dz5ilMcnzN9OGdObf/Cuq+0almeNSqzxf1Ev5fvnTeVxnCUq04e1+2xDkWdKZA/C/wI+AdOn+TX3WXGGGOMMeYw/Oz5j0gN+HjtW4vITgkc8fES/V5++qlZ3RCZgc5NFFIG3CwiKe7sesYYY4wx5jC9u72MlzcU818fm9ItxbHpfoccB1lEThaR9cAG9/4xIvL7Ho/MGGOMMWYQ+tnzHzE8PZFr5tuAYP1VZyYK+TXwMaAUQFXXAqf2ZFDGGGOMMYPR7rI6Vu0s57oF45svsjP9T6dm0lPV3a0WRXogFmOMMcaYQe2d7c48a6dMGtbHkZiOdKZA3i0iJwMqIn4R+SZud4uOiMhoEVkiIutF5EMRudldni0iL4nIZvffLHe5iMhdIrJFRN4XkdlH9MyMMcYYY/oRVeXJFbvJS0tgcl5aX4djOtCZAvkG4EZgJLAHOBb4cif2CwPfUNVpwInAjSIyDfgO8IqqTgJece8DnAtMcv+uB+7pwvMwxhhjjOkT4Ui0U9t9uLeKd3eUceOiiXhswOJ+rTPDvE1R1SviF4jIfGBZRzup6j5gn3u7WkQ24BTZnwAWups9BCwFvu0uf1hVFVguIpkiUuAexxhjjDGm36kOhph564t899yj+cKCCeworWXN7gq2HqhheHoi4agyb3wOU4an8fi7u/AIfPyYEX0dtjkEcerRDjYQWa2qsw+17BDHGIczfvIMYJeqZrrLBShX1UwR+TfwU1V90133CvBtVV3Z6ljX47Qwk5+fP+eJJ57obBiDQk1NDampbc+2M1RYDlqyfMRYLiwHrVk+YiwXju7Owws7Qjz+USMAx+R6WXvAuUxLcCaPaO3UUT6umZHQbY9/JOw1AYsWLVqlqnNbL2+3BVlETgJOBnJF5Ja4VelApy+7FJFU4Cnga6pa5dTEDlVVEem4Qm9FVe8F7gWYO3euLly4sCu7D3hLly5lqD3n1iwHLVk+YiwXloPWLB8xvZGLYCjCsi0lLJqS12+7EHRnHu59fSuPf/RR8/21ByJ8Zs4ozptVwKmTcimtbeD5dfv54b8+BOD750/l2lPGE18L9SV7f7Svoy4WASDV3Sa+J3kV8OnOHFxE/DjF8WOq+rS7uKip64SIFADF7vI9wOi43Ue5y4wxxhjTDyzfVsqW4hquPHFsm+vvfnULdy/ZQoLPwz1Xzub0o9ufPnkg2l1Wx5cfW82orCSqg2He3FLCzJEZfP2sSWwtruXogjQWTMpt3j4vLZHFJ41j8UnjUNV+UxibQ2u3QFbV14DXRORBVd0JICIeIFVVqw51YLf7xJ+ADar6q7hVzwCfB37q/vuvuOU3icgTwDyg0vofG2OMMf3HZfcuB+CKeWMOKvaWbyvl8Xd3ATAiM4kbHlnNvYvnsHBKXq/H2R1KahpIT/QT8HlQVbaV1HLFfe+wvyrIB3sqAbj4uJH8/NOz8Hk9nH50x8ez4nhg6cxFev8rIjfgjH28AkgXkTtV9ReH2G8+8DngAxFZ4y77Hk5h/KSIXAvsBC5x1z0LnAdsAeqAq7v0TIwxxhjTY+KvWSqubiA/PRGApRuLeXT5Ll7eUMTYnGQeuXYeIzITufy+d7jpL+/x/NcWMCorua/CJhyJ8u/391FW28gZU2PF+rYDNVx673I84hT0w9MTKchIYlNRNfsq69l6oJaAz4NHoCEcRRWGpQZ47uYFjMlOZvm20n7dlcQcmc4UyNPcvsNXAM/hDMu2CuiwQHYvtmvvVXNGG9srznByxhhjjOlnthTXNN/+28rdeD0eXv2oiBU7ygG4ev44/utjU0gOOKXFPVfO5vy73uTaB1fy/NcW0BCOsvVADSMzk8hMDvRIjJuKqtl2oIaCjCSmj0jH6xH++x/r+OtKZ76zX7ywkdtPDvCtv6/lyZWFBHweLjxmBOv2VPLcuv2IwNTh6eSlJbJgUi4i4Pd6EOC9XRV8+9wpTC1IB+CMqYOr+4hpqTMFst/tS3wRcLeqhrp6YZ0xxhhjBrbfLdnSfPuXL24C4OjhaZw0IYefXDyT8cNSWmw/NieFr505idv/s4EP9lRy8xNr2F5Sy7DUAE9cfxIT87pv9ARV5c5XNvOblze3WJ6e6KMqGGbCsBSCoQh7K4P88K16QrqXi48byUXHjeTUyblEokpheR1jspOtK4QBOlcg/xHYAawFXheRsTgX6hljjDFmCNhcVM2/1u7li6dNIDc1gdy0BE4Yn01BRlKH+80bnwPAhXcvI9Hv4baLZnDny5v4/J/f5bmvLSA90d8t8b3w4X5+8/JmLj5uJItPHseNj61mT0U9VcEwl88bwx0XzaAqGGbObS/hQfnbF0/imNGZzft7PcLYnJQOHsEMNYcskFX1LuCuuEU7RWRRz4VkjDHGmP6ioq6RW55cS7LfyxdPPYrslM53jzi6II0x2cnsLq/jrsuO4+zpw5k+Ip1P3/MWV9z3DnPGZnH9qRMYkdlxod2RYCjC/W9spyAjkV985hi8HuGuzx7LPUu3ctXJ45k/MQcRISPJz2PXzaNw49oWxbExbTlkgSwiP2xn1f90cyzGGGOM6Wfuf2M7H+yp5OefntWl4hic/rvP3ryA/ZXB5i4Vs8dkcdOiidz16hY+2FPJ/sogf/jcnMOKraKukS88vJKVO8v5+adm4XUvmJszNpv7P5990PbzJuRQv8tzWI9lhpbOdLGojbudCFwAbOiZcIwxxhjTVyJR5Tcvb+Kl9UVMGZ5GVnKAJ1fu5tTJuVwyd/ShD9CG1ATfQf2Nv3LGJMrrQry1tYQlG4sprgqS546KEa+jsYM3F1XzpcdWs6u0jrsvP44LZtn0zab7dKaLxf+Lvy8ivwRe6LGIjDHGGNPjVJW/rtjNL1/cxHkzhzMsNYG/rtjNnop6phWks3JHOQdqGjhudCY/vnB6tz623+v0R35vVzmX/PFtrnpgBf+6aT5+b6x1d+WOMq5+YAUXHDOCj03PZ8WOMs6Yms/sMVm8tL6IGx5dhd8rPHTNCZx0VE63xmdMZ1qQW0vGmeXOGGOMMQPMv9bs4YFlO/B6hFU7nSHaHn57JwDzJ+bww49P4+xp+b0ymsNxY7K467Lj+NJjq7n39W3cuGhi87o7nt1AdUOYx9/d1TwBye+WbOXUybm8vukAE/NSuW/x3INGzzCmO3SmD/IHQNOwbl4gF+t/bIwxxvRLdY1hNuxzJruYMCyVSfmprNtTyZ/XNfDbDW81F8U5KQFu/fg0Fp80jprGMHUNEYZnHNzNoaedO7OA82cWcOfLm5k2Ip0Er4e9lUHe21XBt86ZwuUnjGH93ire3FLC75du5fVNB/jWOVO4Zv54Ev3eXo/XDA2daUG+IO52GChS1XAPxWPMkBSNOt9BbUYmY0xXVQVDvLOtjKdWFbK5uJrtJbVE25itIOCF2WOFL542ga+fOblFcZme6O+2IdcOx48/MZ01uyu4+oEVzcsCXg/nzSggMznAyROHcfLEYRxdkE5+WgLzJliXCtOz2i2QRSRdVauA6lar0t2JQqpUNdKj0Q0B1cEQ4YhSVtdIaoKPYakJzVfhdoaqEo4qkahS0xBme0ktpTWN1DSECUWiTB+RTsDnoaiqgepgiPrGCFML0pmUn0pNMEyC30tqQtsvg6pgiKUbD7Cvop5wVFk0JY9pI9IP2m5fZT3BUHTA/8ylqmzYV82L6/ezo6SW7SW15KUn8qnZo/jY9HwawlHW7amkMRLl6OHpZCX7j+gnyGAowttbS0lL9PHnZdt5a2spn5o9iowkP8kBL+fOLGDkEQx91FtqG8J8tL8an0dIS/RRWF5PZX2I2WOzyEkJsHpXORv3V6MKI7OSWDBpGEl+LztK6yitaaCuMcKeinoOVDdQXB2kvjGKqrKzrI6dpbX4PB7Om1nAaVNyWTBxWKe/RDSGo2wvqSUUiTI2J5ktxTUEfB6mj8jo4YwY075IVDlQ3UBheR2V9SGqg2HCUaWirpGGcJR547OZO+7g0ReaRKPqFMTby9h6oIa3t5aybEsJUYW8tARmjcrkglkjmD4inVFZyWwsqmJLcQ2T89PwFm/igrNP6sVn23nDUhO49cLpfOHhlQC8+PVTKchIJK1V0X7hMXYhnukdHbUg/wWn9XgVTheL1melVBG5T1W/11PB9UfFVUF2l9fh93qoa4ywqaiaJL+XusYIUVWS/F5KaxtJ9HsJhiIEQ85PVmOzU0jwO3O6by6qYX9VkA8KK3ljcwmNkWjz8TOS/GSnBBibk0x+WiLD0gIMS01AFYqqg2zd3sB7oU2s2lnOu9vLiLoFclf5PEJUlXHDUrhm/niKq4KsLaxk1c5yGiNR/B6hIRxtcexfvLCRgM9DwOshPdGH1yt4RdhRWgfAnLFZTM5PY1RWEkl+L1kpfmaOzCAShUl5qS0Km2Aowv7KIGOyk6msDxGKRknwOcW61yMEQxECXs9BxZCqUtmghCNRFNhfGWR/VZDUBB9jspNJaafYb4uqsmZ3BS+uL6KkuoGVO8vZXuIM2jI8PRGfV1hbWMlL64tIT/TREI7SEI79X+WlJXDjoolkpwTY5RZzyQEfCT4Pw1IT2FRUTUSVaQXpTCtIJyXBR11jhLnjsvB5hF++sJH739zeIqY/xd2//T8bOGtaPpfPG8NbW0oorW3E7/Hg8wqjs5M5aUIO+emJRPXQ///BUKT5NdoYjrJhXxXHjs4kqrCjtJY5Y7I6XXiW1jTw7ac+YG1hBcHGCMFwhFCk7RgCXk+L1zdAgs9DbloCheX1B22flezH5/XgFWHcsGTOnJrPnop6Hn1nJ39etp1hqQHOnJrPWdPyqWkI89g7u9haXENUlUl5aYwJNPJM8RqWby1lb2WwzZgevPp4po1IJys5gEeEUCRKKBLlvV0VFFUFCYYi7C6vJyPJzzGjMqlpCFHbEKEgI5FQVEkOeEkOeBmXk0JKgo9QJMqzH+xjX2WQq04eZz/5DnFLNhbz21c2E1GYVpDGuJwUPCLUNUbYsK+KVz4qavf90iTg85Dg85CVHEAEqoNhqoMhMpL8lNY2Ev+WH5eTzBdPO4rJ+amcP3MEAV/LIcziGzWWLm05y1x/s2DSME4+KocbF01kcn5aX4djhjjRTpxc29xRxAusU9Wp3RtS582dO1dXrlzZq4/56XveYqXbf+tIiMBRuakcPy6biXmpZCT5CYYifFBYSXldI4Xl9ZTUNFBa20jELVIDXg8eogQjMDEvlQWThpHo95Lo8+LzCskBLyMzk8hPT2z+YF2+rZSAz8OIzCQ84rTwbSqq5sO9VazeWc4728uaYxqXk8zccdnkpAYIux/g584YztEF6TSEIjy9eg97KurxiFBS04ACDaEIJ4zPpqYhzCsbitlTUU9ZbeNBz3fRlFxuOn0iY3NSqKgLcf0jK9l2oJaAz0NjXNEZ8HkYkZFIYXl98xeFnJQESmoa2LCviqhCfSjSnMPWL9/ctASmFqSTnezH7/VQH4owLDWBqCq1DRFKaxvYVVZHTTBMeV1j84kqOyXAsaMzWTQll9On5jMyMwlVp1X+n+/tYUtxDV6PhxMnZOP1OF8K/vzmdvZU1Ld47LqGMKGI0hiJkhLwkpLgo7i6oUWMTS2t5XUhTpucyzWnjKe+McKZU/OoD0VI8nvZVxnk3te38chy58IZj0BBRhLhaJTGcJTyulAsZx6YXJDOrFGZjMlO5oPCSnaX17G3IkhlvfN/0dYJuSAjkbrGCJX1IcbmJPPNs6dw3swCSmsayEwOUNMQprSmgdc3lzA5P5UJuak8v24/t/17PQk+DxfMGkFywEvA5+Fk9wryqmCInJQEslMCvL21lKKqICcdlcOsUZn4vcL6fVW8+GEReyrqOXXSMEZmJdEYjjJ9RAb56YkHndybBEMRXlxfxAPLtvPerooW6+aNz2ZSfipLPjrAnop60hN9LJicy5T8NEZnJ5Hg87K5qIbxuSn88F/rqHBzl+T3EnG/MLTmEadVoKOPR4+AiDS/P8FpBZuUl8oxozPZV1nPjtI6go0Rktz35olH5ZCZ5Ke4uoGJeamMykpiX0WQt7eVUFhez66yOuoaImQk+Vl0dB7JAS9Jfi+J7r+RaJSSmkayUwJkJQdIS/SRn55IblpCcwxLly5l4cKF7QfejwRDEUSgriFCVTDUIzOZ9WQ+QpEoB6obSE30kRLwUVHXyGm/WEp2SoBRWUms2FHW4r2XkxLg48eMYGJeKgUZiWQk+clM9hPwevF6BY/A4+/upiEUodxtUavdkdAAACAASURBVFaF9CQfqQl+ymobyE1LIDMpwPSR6cwcmXFQC2tHBtJroydZHmIsFyAiq1R17kHL2yuQRWR2RwdU1dXdFNth64sCedmWEhrDUaKq+LweJualUt8YISvZ+ZAqrws1n6wS/U5r66aiGirrQzSGowRDEUZnJzMqK6lTrZ3RqFJR75zQs5L9LF26lFNOPa3FUDhHojro/MSXnRLotpavusYw1cEwheX1FJbXsamomt8t2dpim5yUAJfPG0NDOEptQ7h5FqWq+hC7yurIT0+ktLaRkuoGSmsbSPR7mT0mC69HKNtfSF1CNpPynAJoeEYS1UFnvw37qtlRUsveinp8XqEx7BSUfp+HlICPtEQfWckBhmckkp+eSDAUOexZnIKhCHvd7ifxPwWqKiU1jaQkeEkO+CipaWD93ioK3VbJD/dWcqC6gSnD07jk+NEd9vvbsK+KusYwIzOTW1w8s6einnV7KimubuDN9z6iXNJZtaucSFQZlur86jB9RAZ56QmU1TQiAkcPT8PjETwiFFc3cNcrmzluTCafPX4MD7y1gw37qvB6WhZ8bUnye/n9lbNZNCWvyznrDqFIlKUbD1BVH+ITx47A574XGsNR7n7qVa664NR2JzPYWVrLih3l1DeGeW9XhVNopgSav7BOzEslLdFHWoKfsrpGCsvqSE30kRzwUVheR5LfS33I+VKxckc5SQEvyX4vo7OTCfg8vPpRMev2VLKpqJrslASmFjitYLUNYdbvqyIYOrgYB+dLU356ImNzkimqCrL1QG2b27VFBM6fWUBWcoBwNMqO3Xt5r8Qp/EdkJjG1IJ3RWckcPTyNqCrDUhM4bUpulz9DIlHF6xHCkSjF1Q3srwri8wipCT78Xg8iUNMQJhxRQpEom4trKKttJMnvJcHnYVdZHVsP1DR/+a+sD7XIh0fglrMmk+DzUlheh8cjDE9PJCngxe/1UBMMoygZSX58Hg+Ljs6jvK6RyvoQfo+HgsxEhqUmEAxFKKttZF9lEI/A+rXvcdT0YyivbaS8LsTm4mreL6wk0e8hye8lFFEawhFGZCQhIkzITeGj/dU0hiOogkeEY8dkEo5E2V8VZH9lA0VVQfZVBimtbWjxJaqpx9VLXz+ViXlpRKNKfSj266Kvmz63D5cVQw7LQ4zl4vAK5CXuzURgLrAWp5vFLGClqvZ5R6a+KJD72kB9Mb/44X4aI1GKqxooq23kihPHUJBxeP1ru5KDptd3bwxX1Fea8lFcHeRAdQPTCtI79Xw3FVUzYVgKPq+HYCjCsx/sY/3eKhL8HsJRJTc1gQS/l9ljMimpaWRvRT2Jfg9nTxvepa4svak/vz9CkSjltY3NLcAbi6qpqGskPdHPCeOzW+R0V2kd2akBGsNR6kMR6hud7lqhSJT89EQq60OU1TZSHQyxelcFjy7fid/rwesRaoKNXDx7NDmpATYV1bCrtI5dZXXNv7yA8wV1RGYSo7KSmDkqg/y0ROfXKLdozEx2ug29tqmYrQdq2VdZzx73C15lfajNC8AOxesRRmYmMTEvlZyUAJnJflIT/Pi8gs8jPPz2zuZfZNISnC5NrbvnHEqi39Pul5AmHoFjR2c2d3vweZ0vjQeqG6ioa6TWbfDIS0ts7t7QFFdmsp/h6YkMz0hkeLrzJTsvPYHqYJiGkNNVZ2JeKhcdN7LrCeoF/fn90ZssDzGWi/YL5HbPcqq6yN3xaWC2qn7g3p8B3NpDcZpB6uzpw/vkcQdzYdxaXloieWmdH6Ipvo9fot/LxbNHcXGHvxuZI+H3eshLT2yeLayj4bTG5CQ7NxLaXh//i8c5Mwr47rlHN7/WX12yhNMXzWqxfSSq7CytbR739vVNB6ioD7FsSwnPrdvfbhyJfueixuNGZ3HejALKahvJT0+kIDORgoxEahoiRKNNFwpHSU3wE/B58HmE7JQAE/NSnWsxwlHSEn0d/lpyxYlj2VNez3C360EoEm3+1a0xEiU1wYcCZTWNbCmuYeuBGvLTnW2b+vc2hCNkpQTITg6Ql56AIKx4731mzZzBqKwkclID5KQktNuVp64xzPq9VcwYmdH8i5qqUlbbSEqCz/qXGzOEdKYZaEpTcQygqutEpM/6HRtjjGkp/ougp40vhV6PMCHXmep3bE4KF8925noKR6LUNkaoqGukPhQhGIpS3+j0f42qcva04e0Wk53V2V8bUhN8TBke+9Lm93rwez0H7Z+e6GfcsBTOJL/F8vNnFbR5XNnvY+GMzn1BTw74DhpBQkTISW3nm4oxZtDqzCfX+yJyP/Coe/8K4P2eC8kYY0xv8Hk9ZCR5yEjqu/FvjTGmP+pMgXw18CXgZvf+a8A9PRaRMcYYY4wxfajLw7yJyALgMlW9sWdC6lIsB4CdfR1HLxsGlPR1EH3MctCS5SPGcmE5aM3yEWO5cFgeYiwXMFZVc1sv7FTnMBE5DvgscAmwHXi6e2M7PG09ocFORFa2dbXlUGI5aMnyEWO5sBy0ZvmIsVw4LA8xlov2dTTV9GScovizON8u/orT4ryol2IzxhhjjDGm13XUgvwR8AZwgapuARCRr/dKVMYYY4wxxvSRjsbvuRjYBywRkftE5AyciUJM37q3rwPoBywHLVk+YiwXloPWLB8xlguH5SHGctGOQ16kJyIpwCdwulqcDjwM/ENVX+z58IwxxhhjjOldXRrFQkSygM8Al6rqGT0WlTHGGGOMMX2ky8O8GWN6n4iI2pvVmIPYe8OYjtl75PAc2RyipkeIyJD/fxGRkX0dgzH9lYhMsc+JZpaHOPa6cNg5xBwpeyP1EyJyoYjc0tdx9DUROVNEVgE39HUs/YGIfFxEHge+IyJj+zqeviIiF4nIbX0dR18TkbNE5B3gOob457eInC8i/wZuE5H5fR1PX7LzR4ydQ2Ls/HFkrItFHxMRH/ANnOm8xwCzVXWNiHhVNdK30fUOERHAD/wGOBm4VVX/Gb9+KP48JCJnAj8BfggcD2QAS1T1PyLiUdVonwbYw9zXhQdnuvvvAGOB01X1jT4NrJe5efABP8C5WPrbqvp0/Pqh9v4QkTnAPcCtQDrOBeRvqeqDQ+G90cTOHw47hxxsqJ8/usOQboHoD1Q1DGwEjgZuAf7oLh8yH27qaASSgX+q6j9FxCMixzSt79sI+8yZwL9V9Xmc10UacI2IpAyFDzf3dREBtgDHAV8GhlwrspuHEBAF/t5UHIvIAhHx9210feZM4A1VfRb4F7Af+KqIZKhq1C2YBj07fzjsHNKmIX3+6A5WIPcBEfmqiPxURC5xF/1HVYOq+hsgT0Qud7cb1Ce/uDxc6i66DVggIr8EVgO3i8i9IvKxvouy97TxungLmC8iiapaDAQBL3BNnwXZC9w83Cci17mLXlPValW9D0gRkWvd7Qb151dcHq53F/0BKBCRB0TkA+BbwJ9wXw+DuSiMy8UX3EVLgI+LSJaq1gMhoBL4NgzugsjOHzF2Domx80f3G9QnmP5GHF8HLgVWAj8WkauArLjNbgF+AeC2Gg06beThVhG5VlW3Av/EaQ25FLgcWAd8UkSG9VnAPayd18XncWaz3As8KSJLcH5K/heQNliLQ/f9cDnwFPA5EfkuMCFukx8Ct7iF0aBtBWmVhytE5PtAA877I4Az3OaF7vqLRWTMYC0KW+XiShH5b2AH8ALwiIi8gfMa+SmQKc7Y/YOOnT9i7BwSY+ePntPRVNOmm6mqisgi4PuqukREaoCzgQjwiLvNP9xvgt9U1V+KyJmq+nJfxt3d2snDeSJyiar+VkQeUNUaABFZA5wI1PVlzD2pjXzU4rwu6nAuxpoFjHD7jl0BjB/ExeEZwM9U9XkRKQE+DlwB/A+Aqj7ntiBfLyK/B85R1b/1Xbg9pnUePgF8UVV/KiIvqWotgIi8D1TgtKAOVm3lYrGqfkVExgBTVPUlETkNSGrKzWBj548YO4fE2Pmj59i3iB7S+ufOuG9sK4EFAG7foM3AdBGZErf5l4Cfi8h+YEAPVdOFPGwA5ojIlKYPNtdZOG/0YC+E2+M6mY/ngE04F1ZMVNX3VPU/7nZzgHd6KdxeE5eH94ALAFR1JfA2MFJajlLwbeB/cd47w3szzp7WQR6WAeNFZH6rAvDzQBJQ3quB9oJD5GKyiCxQ1V2q+pK73fnA1t6PtOcN1fNHW4b6OSSenT96lhXIPScp/k7cN7YtOD9xzHTvv4ZzdWkagIgcC9yH83PibFV9qHfC7TFdyUM6sTxcJiLrcEYu+N4g+sbblXykEcvHeSLyLk4+nuqlWHuMiHjdfwVa5GEZ4BGRU93764B9wAh3+4nA73F+Rp2tqr/tzbi72xHk4VMishana8GXVHXAn/y7mIu9uF+ORORUEXkNmITTT3vA6yAXQ+380dVcDOpzSBdzMWjPH73FCuRuJiInishTwO9E5Oy4F3RTd5Z3gTBwtoj4VHU9zrf8ue76UuDLqvoZVd3b2/F3l27Iw06cE/9i9wKDAe0I8nG8u34zcIOqfkpVB2xroYicJCL3AV8XkbSmfrNxedgMfAhcKs5QVYVAPjDOXV8J3KSqFw/w98fh5mG8u34TzuthsaoW9Xb83akbcrED5zPzk6pa0svhdysRmS8iDwHfF5HsuFw0XXA3JM4f0C25GDTnkCPIxaA6f/Q2K5C7kYgsxGndehpn6J0rgSxxxhwMA6jqFpyfQ47CGdsVnItvdrrrd6vqB70cerfqpjy8rYNkvNsjzMcOd/1mVV3du5F3L3H6iN4NvIrTEvo9ETkbmoerAqgG3gASgF+6J4AsnBM/qnpAVTf3duzd6QjzUOJu94Gqvt3bsXe3bsrFLlX9sLdj724iMgHnc2IJTkvfbSJyHsQuuBsK5w/otlwMinPIEeZih7t+wJ8/+oIVyN1rFrBCVR8DHsUZuLym6WcQEbldRP4ErALuAk4QZ8afMpwrsgcLy0NLlg/HHGCZqj4O3I7TCvhZEckHJw/AX3BaiX+AUwS94d4f8D8Vx7E8xFguYk4ANqjqg8A3gTU4Q9kVwJD6nADLRTzLRR+xUSyOgIicCJSp6iZ30es4w83sxZnUYAPwexF5AdiN01/wh6q6w93/csCnqhW9Hnw3sjy0ZPlwtJGHjcCxIjJCVfeKc+V5DnCROMMQTQC+o85QTYjINUCKqlb3RfzdxfIQY7mIEZGP47QIrlTV5Tg/k39FnCH7donIMpwWwctEZAWD9HMCLBfxLBf9h7UgHwYRyRSR/wAvAZeISCqAqq4BzsF5cX9ZVRfiXGByJlCrqper6hZxrzxV1ZqB/CK2PLRk+XC0lwecfrNVwIPi9McejdMakqaqm9w8bI3LQ3QgF0KWhxjLRYyIFIjI/+FM9JIFPCAiH1PVbTijtnzG3XQjTt/rdOCDwfY5AZaLeJaL/scK5MOTgvPTxVfc2wuaVqjqu0Aubj8onL51mbjDMMngmgPd8tCS5cPROg+ngtMPDmcig/8F/qaqn8T5oF/YtKPlwTHI8gCWi3hzcabJXqCqtwF3Ak2zJb4BzBSReepMF70HOFVVK8FygeViqOSiX7ACuZNEZLGInCYi6aq6B7gXeBJnbMV5ItI0/FICzhSPX3Z3PQPIdrdjoL+ILQ8tWT4ch8jDCU15UNVGVV2iqk+4u84Gnm86juXBMdDzAJaLeG4uFrqfA6/gTuzhKsVpSQdnjNr3gF+5rezTgZ0ikgyWCywXgzYX/ZHo4JydtFuIiOCMtfkXIIozCH0KcLO6wwmJM4HBJTj9hR5xl00HfuTuG8IZlmpD7z+D7mF5aMny4ehiHlao6qNx+56C00JSgjND3I7ejb77WB5iLBcxh8qFiPhVNSQiXwWmqeoNcfv+ChiF0y1rsapu7P1n0H0sFzGWiwFEVe2vjT/A6/47GXi0aRnwW+DpVtt+HecK7EycqU7BmRBiQl8/D8uD5aMf5SED5wIrcIb0Oq+vn4flwXLRV7mI2+b/gDPd23nuvz6cfth9/lwsF5aLofpnXSxaERGviPwE+Ik4Y3ROwZnrHnX6/twMnOyua3IfkIpzAcoOERmpqvXqdK4fkCwPLVk+HN2Qh20iMkpV96rqs70cfrexPMRYLmK6kgtVjYhIADgAbBKRO4CXRCRLVcM68C9GtFy4LBcDkxXIcdwX7iqcK0i3ALfh/BS+SEROgOa+Pre6f03Ox+lbugaYqU5/uwHL8tCS5cPRDXlYi5OHwt6LuvtZHmIsFzFdzMWP3d0Sgatw+p+m4bQYDviZziwXMZaLgcvGQW4pCvw/jfUZPQ5nOtMfAvcAc8QZSuWfwOkiMk6dfnJBnBfw630TdrezPLRk+XBYHhyWhxjLRUxXczEKp1vJo8Cv1BkOcrCwXMRYLgYoa0FuaRXwpIh43fvLgDHqzGDjFZGvuN/0RgER94MeVf3XIPugtzy0ZPlwWB4clocYy0VMV3IRVdVCVX1XVRcPwiLIchFjuRigrECOo6p1qtrg9gkCOAunHxDA1cBUEfk38DiwGpqvSB1ULA8tWT4clgeH5SHGchHTxVysAssFloshlYuBxrpYtMH9pqdAPvCMu7ga+B4wA9je1J9UVQftOHmWh5YsHw7Lg8PyEGO5iLFcxFguYiwXA4+1ILctCvhxxuOc5X67+wHOzx9v6gC/2KoLLA8tWT4clgeH5SHGchFjuYixXMRYLgYYmyikHSJyIs7MZ28BD6jqn/o4pD5heWjJ8uGwPDgsDzGWixjLRYzlIsZyMbBYgdwO90rSz+FcRdrQ1/H0FctDS5YPh+XBYXmIsVzEWC5iLBcxlouBxQpkY4wxxhhj4lgfZGOMMcYYY+JYgWyMMcYYY0wcK5CNMcYYY4yJYwWyMcYYY4wxcaxANsYYY4wxJo4VyMYYM4CISERE1ojIhyKyVkS+ISIdfpaLyDgRuby3YjTGmIHOCmRjjBlY6lX1WFWdDpwFnAv86BD7jAOsQDbGmE6ycZCNMWYAEZEaVU2Nuz8BWAEMA8YCjwAp7uqbVPUtEVkOTAW2Aw8BdwE/BRYCCcDvVPWPvfYkjDGmn7MC2RhjBpDWBbK7rAKYAlQDUVUNisgk4HFVnSsiC4FvquoF7vbXA3mqeruIJADLgM+o6vZefTLGGNNP+fo6AGOMMd3GD9wtIscCEWByO9udDcwSkU+79zOASTgtzMYYM+RZgWyMMQOY28UiAhTj9EUuAo7BucYk2N5uwFdU9YVeCdIYYwYYu0jPGGMGKBHJBf4A3K1Of7kMYJ+qRoHPAV5302ogLW7XF4AviYjfPc5kEUnBGGMMYC3Ixhgz0CSJyBqc7hRhnIvyfuWu+z3wlIgsBp4Hat3l7wMREVkLPAjciTOyxWoREeAAcFFvPQFjjOnv7CI9Y4wxxhhj4lgXC2OMMcYYY+JYgWyMMcYYY0wcK5CNMcYYY4yJYwWyMcYYY4wxcaxANsYYY4wxJo4VyMYYY4wxxsSxAtkYY4wxxpg4ViAbY4wxxhgTxwpkY4wxxhhj4liBbIwxxhhjTBwrkI0xxhhjjIljBbIxxhhjjDFxrEA2xgw5IrJARDb2dRyDjYjkishHIpLUzvpbReTRTh7rDyLyA/f2QhEp7OR+T4nIuZ2P2hhjDmYFsjFm0BKRHSJyZuvlqvqGqk7pi5hac4vGkIjUiEiFiLwlIid1ct+rROTNno6xC74DPKiq9Ud6IFW9QVVvO4xdfwbcfqSPb4wZ2qxANsaYXiIivnZW/VVVU4FhwBLgb30cz+EcKwH4PNCpFuKeoqrvAukiMrcv4zDGDGxWIBtjhpzWP9m7Lc3fFJH3RaRSRP4qIolx6y8QkTVxLbyz4tZ9R0S2iki1iKwXkU/GrbtKRJaJyK9FpBS4taO4VDUMPAaMFJFc9xgZIvInEdknIntE5HYR8YrIVOAPwElNrc/u9ktF5LpWMbwZd19F5EYR2QxsbsqFiHxDRIrdx7k6bvvz3OdV7T7+N9sJfx5QoarxeR0vIq+5+76E8wUg/v/hbyKy38356yIyPW7dgyJyUEuwiPyXiDzVatldInJn3KKlwPntxGmMMYdkBbIxxjguAc4BxgOzgKsAROQ44M/AF4Ec4I/AM26LKcBWYAGQAfwYeFRECuKOOw/YBuQDd3QUgIgEgMVAKVDuLn4QCAMTgeOAs4HrVHUDcAPwtqqmqmpmF57rRW5c09z7w934RwLXAr8TkSx33Z+AL6pqGjADeLWdY84EWvfr/guwCqcwvg2nhTnec8AkIA9YjfPl4FAeBc4RkUxobgW/DHg4bpsNwDGdOJYxxrTJCmRjjHHcpap7VbUM+D/gWHf59cAfVfUdVY2o6kNAA3AigKr+zd0vqqp/BTYDJ8Qdd6+q/lZVwx30zb3EbQGuB74AfFpVwyKSD5wHfE1Va1W1GPg1TkF4JP5XVcvi4gkB/6OqIVV9FqgBpsStmyYi6aparqqr2zlmJlDddEdExgDHAz9Q1QZVfR0nr81U9c+qWq2qDTit68eISEZHgavqPuB14DPuonOAElVdFbdZtRuPMcYcFiuQjTHGsT/udh2Q6t4eC3zD7V5R4Rayo4ERACKyOK77RQVOK2t8V4LdnXjsJ90W4HxgHTAn7rH9wL644/8Rp8X1SLSOqdTt3tEk/vl/CqdI3+l2l2jvAsJyIC3u/gigXFVr45btbLrhdhP5qds9pQrY4a5q0Q2jHQ8BV7q3rwQeabU+DajoxHGMMaZNViAbY0zHdgN3qGpm3F+yqj4uImOB+4CbgBy3yF0HSNz+2tkHUtUSnBbrW91uGrtxWquHxT12uqo29dVt69i1QHLc/eFtPVQXYlqhqp/AKcr/CTzZzqbvA5Pj7u8DskQkJW7ZmLjblwOfAM7E6d4xzl0en7v2/BOYJSIzgAs4uGvGVGBtJ45jjDFtsgLZGDPY+UUkMe6vqyM33AfcICLzxJEiIueLSBqQglNsHgBwL26bcSTBqupG4AXgW253gheB/yci6SLiEZGjROQ0d/MiYJTbd7nJGuBiEUkWkYk4fYoPi4gEROQKEclQ1RBQBUTb2fxdIFNERrrPYyewEvixe5xTgI/HbZ+GU/yX4hT0P+lsXKoaBP6O08f5XVXd1WqT03D6NxtjzGGxAtkYM9g9i9O3t+nv1q7srKorcfoF343TjWAL7gV8qroe+H/A2zjF6kxgWTfE/AvgehHJw7loLwCsdx//70DTRYCvAh8C+0WkxF32a6DRjechOnfhW0c+B+xwu0HcAFzR1kaq2ohzQeGVcYsvx7kYsAz4ES0vpHsYp8vFHpzntryLcT2Ek+8W3StE5Higxh3uzRhjDouodvqXNmOMMaZd7tB0bwDHdcdkIYd4rDHAR8BwVa2KW/4U8Cf3YkNjjDksViAbY4wZUETEA/wKSFfVa/o6HmPM4NNtsygZY4wxPc296K8Ip3vGOX0cjjFmkLIWZGOMMcYYY+L02kV6InKOiGwUkS0i8p021t/iTmf6voi84g6fZIwxxhhjTK/qlRZkEfECm4CzgEJgBfBZ9wrwpm0WAe+oap2IfAlYqKqXdnTcYcOG6bhx43ou8H6mtraWlJSUQ284yFkeYiwXMZYLh+UhxnIRY7mIsVzEWC5g1apVJaqa23p5b/VBPgHYoqrbAETkCZwB4psLZFVdErf9cloOFdSmcePGsXLlym4Otf9aunQpCxcu7Osw+pzlIcZyEWO5cFgeYiwXMZaLGMtFjOUCRGRnW8t7q4vFSFpObVroLmvPtdgg78YYY0y/8ebmEsZ95z9s3F/d16EY0+N6q4vFp4FzVPU69/7ngHmqelMb216JM23raara0Mb663GmYiU/P3/OE0880aOx9yc1NTWkpqb2dRh9zvIQY7mIsVw4LA8xlouY7sjFg+saWFoYZvG0AKeP8XdTZL3PXhcxlgtYtGjRKlWd23p5b3Wx2AOMjrs/yl3WgoicCfw37RTHAKr6/9m77vCoqvT93unphTQCafReQxcITbDr2kXFtq67uq6rv3VddW2La111BRsLil1sKEqVktCTkEAgIb33Nkkm09v9/XHvuWVKMoE04L7Pw0Nm5s6dM2fuPec97/d+39kAYAMAJCcn05dSaEAKhTCQ+oGH1Bc8pL5gIPUDD6kvePRGX+zWngFqqjB6zBikzO2bPPq1v57FoeIW7P7roj45PyBdF0JIfeEd/WWxyAQwmqKoJIqiVABuA7BNeABFUdMBfATgWpqmm/qpXRIkXNJILWxCVatxoJshQcJFgWqtEYlPbUdubcdAN+WCxcbD5ShslCwcEgYe/UKQaZq2g7FN7AaQD+BbmqbzKIp6iaKoa9nD3gAQCOA7iqJOURS1zcvpJEiQ0Et4bMspfHykfKCbIUHCRYEDhYy283VG1QC3pG9htjoGugkSJPQ5+m0nPZqmdwDY4fLcc4K/l/dXWyRIGAz4v+9yMDzMD48tHzNgbTBY7LDYnQP2+RIkXExQyRnNyea4OO8ph5P5XjqzrV8+L3ntb1gxIRqv/G5Kv3yeBAlC9NtGIRIkSBDj+6wavLO3eMA+3+5wwuagYb9IJ3MJEvobKgUzpVov0kVnp9kOANCZ+ocgt+it+DqjuvsDJUjoA0gEWYKESxRmdhK3O6Xt5iVI6A1wBPkiXXQS5bijnwiyBAkDCYkgS5BwicLE+ggv1nCwBAn9DTlFAbh4FWRCjHWsktyX6GkJ2voOEwyWvm9Xb8PhpHv8XSX0DySCLEHCJQqzjSHIdoc0OEuQ0Bsg0RjrRXpP6UwMAdX3A0F29CCyRdM0rlt/BO/uGzjL2rnid+8fwZt7CnvtfPn1OvySU9dr57uUIRFkCRIuUXAE2em72pW8di/+uuVUXzVJgoQLGiQaY7VfnFUeiMXC0Q+Kp7kHKnyjzoKmTguq2y6skpUVLQbk1HSgshdLbV7x30P489cnuz3OYLHjwc9OoNnouZ8PFTfjka+yL2l1WyLIEiRcHIzOoAAAIABJREFUojDZiMXC9wGwRW/B1pNue/xIkCABQoJ88VksnE6aS87ribp7rjD2wC5B6ia36K191Zw+QVpRMwAMSCWhgoZO7DnbiNIOz59916YM/Hq6HoZLuKSfRJAlSBgACFflNE3jkyPlaNKZ+7UNZhtJ0rv4JnMJEgYCZLF5MSbpGax2EF7sPEdV8Yr/HsJmH+uu94SYFbMEuVXvcQPeQYtUtm62xe5Eq96CunZTr53b5nDi+Z9z8fmxCo+vk74SLnYcThpbMqtElY3ajRfWoqM3IRFkCRIGAMJBqbLViBd/OYs/fZndr204FwV5MOHL9Er8kFUz0M2QIIEDUZBt9gvznvKGsmY91u0v4R6fS96Cxe5Afr0OJc16n47vScJdYQNLkA2eyZzTSWNPXgOcg6hij9nmwLGyVgCAxebA2u35eOiLrF47v9HqwNaTtThY3OLxddJXQvH6+6xq/P2HM9h4mF/EtBsv3YolEkGWcMnC5nDi5g+P4lhpa79/tlBhIpNqWz+v1EkVi/4Il/YFntmaiye+yxnoZkiQwIEQxwupMswrO/Kx6XDXqu4tHx3DhoNl3ONzUZCJ/YFErrqDkCB354MtamJId7vR5rHvj5S24MHPs5BV1eZrc/scGeVamG1OqBUymO1OtOgtqG0TK8g0TePnU7XnZNlp1JmhM9thtHpeaHAKsqBr9RZmTmjo4KOZ/T0vDSZIBFnCJYu6dhMyK9rw5A/9T7KEChP5i2JLRPUXLHZSxcK3wVc48dz9cUaftEmChAsZZOHbeQGVG/v5VB0OFDR1eYxQmQ3xU57TorqlkyFkJDm4OxgFFouuPLpOJ43ixk74q+QAAK0HFZkozKT6Bk3T6OzF3QBtDiee+DYHla0Gn9+TVtQMlUKG2UnhsNgcMFjs0Bqtor7NrmrHX745hUPFjFfZ4aSRW9vh0/nJdzZYPPc3WbAIu9ZTHW9JQZYgQUK/wuLgB63eLLO2J68BC17dz5HfrsDXQfbt84WT1EE2uUTCxQmaprF+fzGqtRdWVYCBBrmXW/WWCyIyY3c40dRp7pYsCgXc8ADVOVWxaNETguzbglwvWGSYuvAj17abYLQ6MCM+DIDnTUxKWVsHGcN+LbNh8gt7es2znFmuxQ/ZNXjqhzM+vye1sAlzksIR6q+C1e6E0eoATYs9v+T+I4uFXbkNuHrdYdR3dO9VJr5srwoysVgIfks1S5A7BKRY8iBLkNCPaNKZkVfn2yq4L0GI4UBUsRGGzHwhs74it06H2naTTztd9bTMm8VH5UfChY/6DjPe3FOEezdnDnRTLiiQKIuTBpo6+zfp9lzQ1GmBk+a3kAYY0lzWhU84zF/ZpZd379lGtHlQcQlB9nW8ExI7o4ex5/3UEnx6tAJFLBGcmcAQZE/bYJewFgyijB6rt7Nt6jn5szmcePzbUzhTw8xhNE3jSCnj85XLfIsCthutKG02YP7ICKgVMlhYggyI1fpaNmmPzBeEGPsyvhc1Mt/Z6GVxQRYHQgWZEOQaQbk8SUGWIKEfcd+nmbjqXd9WwX0JQhAHgiALVdveLPGjNbCTkA8qjYlUsehCQa5tN6G8hQkburbTV2uGhAsP5Iq4lNWjc4FNsNh09ZP2JWrajOdUr5aMwcKd8b7OqMLKdw56/e3D/FVet6evaTPigc9OYNHrB9xea+6hxUJoDTC5qKDZVW14fVchNh4u44hgciJLkAVq+OHiFjR1mnmCbOcXMMC5ecUzy7X4MbsWh0sYUnykpBXvHSgFAMh8IMj1HSZMe+k3AMDwMD/Gg2xzcES2RaBqE6JKiD2xj/gyvpOFg8FiR1pRMxfR6DDZYLE70MouDoRdoJIzlLBWUE2j/RLeVlwiyBconv85F2t/PTvQzegxzDYHcmt1AIAdZxoGtC29qdz2FEIFmUwYveFAbjMwg5nJh0mIq2LRhYK84NX9WPJmKgB3guzJ6+crWvQW3PLhsXNeJAn7T0gM6tpNKGvW93txe29hzAsVJFpwMdbz7Q5ZlVr8T5CQ1hMIcwtqe7FkV1eoaDFg0esHuJq6PUFdO6NyCy0WJyrbYHPQqNZ6bn9IFwryaVZV7bTY3Y7xlKS3v6ARz/7k2ZYgUpCtQkuaE89uzQUAVGtNSC9vxdAQDYaF+gHgd/ujaRp3bkrHircOoo1VQcn1TIaHc9maeh/r1yak/VgZXyVCTjEE9JuMKq9j0N6zjdzfEYFqaJRyVkFmziccV2vaxAoySZjrSlQhHL2MFTbajDas+TgDHx1kSPzUF/fgro0ZaDW4J+mRPBihst4fY5vTSeOzYxXcQmawQCLIFyBomsbPOXXIrBz4jNzKVgMmP7+bSwjoDkJPo95sh8XuwM+nagdktx5fVuF9BaFy4S0Edi4gg6tQpaFp2qNSYunhVtOuC4qmznP372VXtiGjQstNqD2F0JN4n8AG8PvPTmDpf9Kw5M3UHiXMnA8yK7SY8NxuHPZSTulCBCExF2M93+5w4wfH8PKO/HN6r93pFISp+4cgn67tgJNmbDG+gqZp2B1OboFqsTs5EkasA94IvlIm8+pBPiNIIHNdpDfr3RXk+zafwBfHqzyeS1gHWThG7s5rxNl6HVbPiQcApBY2Y0x0EIL9lAB4BdkuUEwJyBhGuLvBakdxY2eP5p/9hCCz3yO9TMu9JpdR+OlkLZ768YzX379CsGteZJAaaoUMJpuDO1+r3jtB5hTkLsQdhdwzrSuo579nRoWWO5cwGuBanSRAJXebnyx2BypaendsbdCZ8dzPeThe1v8VpbqCRJAHECer2s5JoanWmtButPVqFu65Ir1Mi06LHcVNvhFk4aBptNqxbl8J/vLNKezN7zqLui9gFgwyHSYbPkwr7bfyTEIFgGRWeytiYXM4cbZO59N5eYLMn3/t9nyMfmanm6LjqQ7yKzvykfjUds9tdllQlPpYz9QTSEF8ofexJzDa+PcdKWnl7qMWvQVx4X6oaDUi5xzJd09xooJZqJKi/wON/FYHjpScH1knE7DZ5sSOM/Vur7+wLa/Lygc2hxOv7MwflBs3zH9lH2784Gi3x51LhMnmcCLYT4kwf2W/KchFLhUafMFft5zCmGd3ikh1p9kGndnGKY/eojsyGQXXYfLxLafw5u5CjlwD7gt/roqFh371NO4aPCTplTTpUcWKLDfNHM69PjYmCEEaBQDeg+xpbnW1WGRVtmHF2wdxyMfFbWmznrOcGa0OmKwO5NS0c69TFMXZIrz5hIX5N5GBaqgVcjicNKdqk3vG6aR5DzIpBcpGCLsSd1QCgix0fJgFJBzg+0DYTcLEUrmMwrAwP3Sa7UgtbOLI9efHKrH0P6nIKNeCpmlsP11/3tFYstV24pCA8zpPb0MiyOeBAwVNuOH9I+fkxTxbp8MN7x/F377veYkxckP2ZED0BRUtBu6mpmkaH6aVdhsCJze7r0RHSNyMVgca2N3jiHe2P0EGGZqm8ebuQry6swDvHyhFTnU7nM7zKwP0ZXqlSNl0Oml8frySU0+EE0J3JaHW/noWV757yKcJV8uG4P74RRb3WZ+wO1e5/kZk0hEm6X3EhpY9ZeC7hvW6Kw3VFWo5gnxufSycfK0OJ+e3M1odmBbHeBF74p8tadJjX35j9wd6AFEMB2K7WFdUa414LdOM1RvTz2vSEt6nf/oyG3///jRe3s5YumrbTdh8tAK7cr1bpAobOvFRWhl25THH6Mw2vHegZEAqO1jtTty+4ThOVDBKX12HGVk+RN9IqN4bGnVmtyofVjsNlVyGYWF+vborWlcg2yxvy6kT+W+9we5w4qdTdXDSELWx02xHXi2/EPfWfoWMgsPFlvXjyVqsP1CCM7UdHEFzDc03d1HFwuihFJnQg2y0OtBhsmH5W2l4bVcBACCWtVQAwMjIAKgVcmiUMs5PLSTIpHzZKzsLkFWp5cgh8S9n+1gfeT8r5Pgp5TDZHDhZ3SYSGOQUJbCteL5+ypp59TXYTwGNUkzDSJJei97CfQcS7SPjOyHMte0mt/tQKedZsZBwmmwOj6RduKeNUEEeEqBCgFqB/QVNuOeTTOxkP6e0WQ8nzSyyvsmsxsNfZePjwxUev6uvqNIyfZIwxP+8ztPbkAjyeeDrjCqcrGrn/E0AUNCg63Ji2n66HpkVWnyXVQ2AqUHpa3inUueA0WrHaUKQz6PWZmWrAas3HhcRlJQ3U3ETq6xUa014dWcBHvys6519ztYzA2p3ROf91BIcKGwShdcMVjsU7BK3uzXGkZIWbmVtsNFY/lYa/vRlFo6Wel/5e/LJmW0O7nmiZNAA8tnv8fbeIlz33hF8dLAMi14/4POE/u2JalHm9zNbc7G/oIn7rF/P1OOfP+XivQPMblRWDwqyNxB1Q9tNxjVN01z2eKvByoUCyeRA/GsmqwM6sw1mu/ckPYPL5EbTtFtyzYHC5nNO1COTSHff3emkPd4frmWfcms7QNM0TFYHYkM0AHi1BWASVroqWbb8rTTc/+kJn9vvCedCSJ1OmiM1WoMVt2045rNdyROaBYptdmV7F0d2DVeVb8uJavzvELPQIiX+vO1aBvDqWTlLBl7bWYA3dhfio4OluGtTOlZvPO7xfTRN465N6Vi3r9indpY16/HegRK3a6TDZOPusSqtEcfKWvHEdzk9ith1RTadThprPs7Aw1+Jd7+0O51QyCkMC/XzmKR3pqbDpwoEPQFZHJ6p7cCtHx1Hbm0Hrl53yE2911lpHC1p4cZsgFkYkshVp9mOM7XMNTMkQMXdo66QyyhuXKxrN+GbDN4i0WGyYc6IcABdKMge8iP0HnyuYg+y3a06RUSgmvt7aAhDloM1Sl5BFoxNo6MCub/X7S8BeYVYGHJrfYvQpZe3YmRkAIaH+cFkdSC9TCuK/MllFGq6WPx3mm0iaxpFUdwCm4BYLKoF14+FU5DFFovfvX8ED32RJbquhZU0xkQHcX+bvRBkh5O572iaFs13UcFqBKgU3OPPjlUw7dKaEBmkRoPOjH/8yPjHPW0c43DSeOLbHORUdz8OVbYaoZBRGMqO3YMFEkE+R1jtTi6MSS66Fr0Fq945hH/+lOv1fQ9/lY2bPzyGn0/Vcc/5sud8VasRLxw146v0Ki50bLQ6RBe02ebwSlgcThpv7SnkBs1XdhTgSEkrUguZ7NantzIXejFrkicr1a4ma6eT5kL/3SnIGw+V49OjFaLB0WhxcDez0WrnCH+H0YbfBIkMTZ2MInb3xxmgaRotJidKmvT47Wwj7vk406stYvXGdFEio93hxLh/7sKE53fh48PlnELRabbjlMtN/N2JarQZbRj59A60GazQmW2Y8Nwu7MlzV83KWwx48vvTHreKJiSChAvJDkXCjTb0lq4nTKJMtnajsuvMdpGfjAyaRNEhBPnKdw9hygt7BHWQ3fvv8S05+PxYBffYbHOKFNI5SeHoMNlwsLgZ6WWt3HXocNLc4G2xO5BZofVIcMkk0ma0IeWNA7hu/WH8dLLW7bgRT+/A49+6R1lcJ9/cug7YacZPF6RRIEitEO0AdfnbB7HQQ2a9K8w2B7Iq25D41HYuVHq4uKXLhERy/wvbdKamAxOe24VbPjyG7afFFoWyZj1Xo/TnnFpMeWEPPj5cji2Z1ThepsXxslbcuTFdRDwI/vz1SWw96Xl77TUfZ+DPX53kHh8uESdt1bQZcdRH64W3EO6x0lYuctBV1IeUhqpoJYlCTP+9vqsQh4pbcLxM63HxWdSox6HiFvzntyKu6gHATOCEML13oAQvbMtDYUMnbvnoGN7YXSjyddI0jakv7sH9nzIRHHI9Opy0aIcwTxCSGldC9kFqKZa8mQqaprHnbAMKGjrdvJg2hxNKuQyxoX6obTeJrv2mTjOuWX8Y01/ag3ajFV8crxT1wehnduBdHxcGX2dUIfGp7WjRWzjLAcAs9DccLENurQ7p5bw31umk8e90E+7YmI6HPudFj9JmA+LD/bnvfqZWh2Ghfhg/NJiL8rjOKTKK4hTYt34rwlM/ipPs5iS5E2SL3QGd2Q6KEl9bhMt5SpYTzosmQZUHgInaCIlgDEuswvxVnPVLSBpHRvIE2eGkOUJH7nFfy4626K2IDfWDP+vNTS9vxYShwfz3kVHcwshVwPrLNyfxyk5G/X7vjhkoWnsF812UctFxZJwXllqz2p1wOmk+SY/tw0Ydc6ywpKDwe4+N4Qmy0erwGBWx0zQWv5Hqdj1GBWngp+LbdrxMi8KGTtS0GTE7KZwrqwcw/f7iL3lIfGo7nmSj4iVNevyQXeNTlLxSa8TwMD+v/umBQr+1hqKoVRRFFVIUVUJR1FMeXldTFLWFfT2doqjE/mrbueBEhZa7gYnSQEK6R71sXSwcaLQGK66eMhQA8G1mdbfZmz9k14AGo4bkCsJY5CakaRpTXtiD5W+lcQozwHisHt9yCiOf3oF395fgxV8YwkhKyYT5q7ArtwFfpYsnY7Latzqc+DK9UjRZEVRqjVwfCAlyabMeKW8cQJOOv2nNNgfO1uk41TJIrYDRxhPktdvzsXpjOgAg+eXf8PvPTnADdGoBM9Hn1emw8PUDeDmdOe/KiTGwOpz49GiFW9sMFjvSy1uRUaHlFgUk3Gu2OfHSr2fxLLuQ0VsYYjleMNCVCSa+8lYDiho6YbQ68ODnWW41PrdmM4TFUx81sn0gZ2UGuwdFlPyGlJc6FmSC765mp2u7HttyCjnV7VApmEGODK582TZisXAnKnvzG/Gv7XyiksFqFymkKWOjoJLLcN/mE7h1w3Gs289M7P/69SxueO8oaJrGTydrcfOHx/DQF1lu9gUSvq1sNaCi1YjSZgMe23KKm9zeO1CCBa/uBwBsFRBnh5MhSq7h2zO1OpD5yF+lQGiAEpuPVuDhL7O9RmiyKrW4a1M69xsBwNu/FWHTYcZmklGuRUmTHnduSscnR8phdzjdSJ3V7uSUaSGJzqzQwmh1oKzFgIe/ysZSllgBwNL/pGHF2wcBAMVsiPfTYxX4KqMSAPD8tjwcLmnB/w6Vcao4+axfcurw1y2eJ5y0ombungnzV7olDd7w/lHcsTFdFFnxpip5U8Nv/99x7GEXr20u9VFb9RbsOFOPTrMN7+wtAsBfa0LckjwcDieN9LJW/HXLKWgNVjz+7Sl8lFYqWoAKx8Q39xRiwnO7obfY8cbuQmw+WoE7N6Vz4XRiBSto0OGDNCZb/1BxC0x2mvt+TieN2//HK9eeIkzCqIPObEdeXQcqWw2gaRqv7SpAeYsBl799EP/ZU8QdIyTVNgcNpVyGYaF+MFodohqyJLTupJmtm5/9KRe/neUtKDYHjbd+K/LU7ajWGtGqtyCvrgPfZFTh+W15AIDktXvdylT+cpoRX46X8d78wyUtaDAwY1y9TrxIICqjzmzHmZp2TB4WgthQDXePphaKF1pyGTNm3bbhGHa6+NOVcgrT2Q07hPcoUUVjgjWwCu4jEt3yFA0Vkmaj1SHqZ40LqYwOYgjyzcnDkVnRhvSyVtGCXqg2O2kaZLrq5K4fM1r1Fpyp6UBzpwVfplfiy/RKlDbrRYSz3WhFqL8KfirGYlHSZMCk2BDudRu7ZbTw3AQ/n6rj5tlRUYHcdxcqyEFqBeo7zLhrUzoXbfRXyZFd2YYWvYVbmBwuaRGNa8IxTGj5EJLYihaDqIQcAIT6K2FzMLyiqFEvUoIjA9Xc7oQAY63ZfLQCte0mDA/zQ3Qwr/a26i345EgFAODbEzVY8Op+rHyHGePC/FXoDpWtBsQPMv8x0E8EmaIoOYD3AFwBYAKA2ymKmuBy2P0A2miaHgXgbQCv9UfbeopXdubj3zvykSooqbPtVB2yq9qgZQfXpk4LPj5cLiKIgJjgRAapceMMJsngpV/P4hlWwW3VW0TJT6/vKsD6/cX4kVWNjpa2MrsGJYQCAD5KK4XWYMXe/CZYHU5UtBpx0wfHuInmka+ysSOXH8TIQNTCFQl34ovjlaJ20jQtCtU+szUXb+4uxBu7C3D/5kw4nTSuevcQ/v7Dae4YYThy46EyVLQasSuvAc2dFhwva4XZ5kBTJ7/XfHigCkaLHTJBfCqnuh1NOjN3gxNLgdAfVtNmAhESRkcxA/va7flcxYJ2oxUlTXqcrmEyu0/XdGDm2r3YfroejwuIhTDkBgBBGgWWjI2EJ9A0LfL//kugSjudNH5kCVy7yYY2g1WkkhPFivS7zeF08xyTgdRgtWPv2UY3ckLUgozyVpR0kQyp9eC5ffGXPKhYT1qbwSZSiwmhd3ixMQgnBqPFIVJ+gjQKLpQKADvZkn3p5Vqcrdchr07HEbvdeY24/9MTHFky2xzcZ5OSSb9fOAIAo9KdrGrDG7sLPXquPz1agZQ3Ut22T82v18HEmun8VXIEqpmM9u1n6lEgiIIIrRnMFq4teHN3IffcRwfLuPKDDieNL9OZe6OkSY+7P87Amo8zuIXuXZvSMf65XdzvLyTIZS16BGsU3CK4rMXgltVuFUymla1Gt7Japc0GfH68EuOf24WjJS2ifABXUuu6OLpi8lCcru0Q+bBJnwv79fr3jmDqi3vgiu5q1UYHq1HeYsCP2TX4169n8UNWDf789Un86ctsrN6YzkWiqrRGRrETiJALRkUAAO7YmI6tJ2vx/LY8/Jhdi1d2FmD32QaOzJCFR1allqszK1TVmjstuGd+IgD+Prtm3WG8vov/PTfnWjgluK7DLPrunRaG3L65uxBjnt0JvcUuSmLSmWy46t3DWPxGqsiWUNykR3GTHkvHRQEAPjlSAZ3ZBoeTsTAo5RSGh/mJ+jq7qg23beDJOfG+vvTLWWzJrEJlC/+9DBY7TlRo8UtOHVr0FmgNVix8/QBWb0zHW3sYxbYrqwhNA1FBanx2rBJ3bmJEh68zqhCkBH56eD4+vXc2bpsVxx0/liXIte0mVLQaMXl4CGJD/dDUaYHF7sDuvAaE+TP308qJ0ZDLGNpwvEzrFv0cFxOMELaahFDxJdce6RcyxqnZxbsnD/LZOh3nz2UIMj9uuvp2g/0YK8DqOQkI8VPikyMVoj4irwPMGOApQJJXp8M16w9j1st78eIvZ/HM1lws+08avhZEctqMNoT5K+GnlDNbQxssiAziyXelQM1/flse/s1WQxFetxQl9toKyf7YmCDUtJlwqLgFRY16hAeoYLQ6kFPTgb9+e4o77tfT9fhSIGo1dPDztc3hxMLREfjD4hGYNIwn7warg7PdEUQGqrnFQofJJrI6RgaJCXLK2CgcKGiCzUEj1E+FaMH3dl0Ik4RJAIgQHMdYTJh7deOhMly97hD+d7AMla1GJIQPLv8x0H8K8mwAJTRNl9E0bQXwDYDrXI65DsCn7N/fA1hGUd7y+gcOde1mbGP3rid+mc1HK/C7949yHh2rnVEoF7y2H3/dcgoPfJqJosZOLiENABaMHCJagaWXa1HarMfz2/Jw9yY+/P5+aine3FOEaq0JMopXVRaMjOBe/+MXWXj0az60anM68ccvs/HCtjw06sy4e14i9xqJShGyXtFiwPFyseL9TWY1px4U/GsVpseHokprREa5FvsKmrBufwny6nTIKNdCIaMwIiJANHgR8qKSy/CvX8/i7k0Z3Mr3JEt2w/xVXBawEL8IwtHtJis6zTZkVmgxMyEMo1xI7Zho/jGxgtzzSSaWv5XGJeQQPPxVNqYMD8H0eGZhsXxCtOj1RWMiRQkNwgHYaHWgShDCFZKTzAotatpMWDUxBg4njen/+g3XrT/CqQPkN28XZFa7khlCnmvaTHjgsxNY+mYaFwq3OZycP+/bEzW4/X/pHr2R7UarKIOcILuqHXUsefjH1jOcZwwQq+SeVOQgNT/IGax20W5WMopCcgJPkAsbO1HY0MkR+O1n6rmNSP6weATkMgrP/ZwLmvYc5p7NhmW/z6rBDe97rzBQ0WpAU6eFC90DzHVmtTtR3sF8np9KznnKAWC3QJVcf4APYRNC+12WZ8tCldaIH9jXypoNyKlux+GSFry7rxgmqwOHilswdTg/AQnJVV6dDkmRgRgSwKsnGeVa0eKntFmPFr2Vq9/qCc/9zCiFJ6vbRQT7incOwuZw4uEvs5Fb2yH6LQHgqslDQdPiaFYwO2kJF+Bk8UDTNH4724jEp7ajWmvk1LdVE2MAwG3xePkE5vnHv83BpsPleOK7HO6zhKX7bA4atW0mkT0owUUp+iWHt5vl1upw74JEyChgRy6TryG0o9W7+GKnsP3/+Lc5uG3DMZF69tDikUhvcODdfSXcc/4qOV68diIA5p55/NscrD9QAqudSfQkkRBAXKbtl5x6yChGcSP4wyJmUffWb0X48ngVvsqogsHqwOmaDgwLZSb72nYTWvQWPCUQEwBgREQAlo2LQl2HGX//4Qz+8g0/ft/4wVHc9OEx/Pnrk0heu5cLWRc0dOJoaSumxYXiqilDMU4QPhdi6vAQ/PzIAtw0czgy2XJeaUXNSI5RQK2QY9GYSFEFiDHseUiJLUZBZq7Jhg4zKloNGB0dhPyXVuG9O2ZAGAWPdfGMThoWwpGqXwVjOVkIkvMSdbQrBdlkc+CFayZCo5TBZLWLxj1XBZlQBT+VHHfPS8CuvAZkCYSVYA3/u3nb+CJdMA8KyXVhYycadWa8d6AEHSYbQv1V8FcpkFeng5Nmtt4mKG8RR4I3HCxDh9GGy17j7V3DQv1E7Y8O5gnkhNhg0fvJggJgqvUI8d2Jau7vF35hSqQ5nTTsThozE8LwjyvGcwsbgFH3twnuJYDpRyIsMARZXJ/fT8mMGWqFDFHBau4+VitkCBDMD6Uu48/qOfF4/hpGAyV9aXM4MXPtXqx46yBq201Yuz0fubU6vLwjH51m+6BL0AP6jyAPA1AteFzDPufxGJqm7QA6AAzpl9b1ALOTwtGgM6O4SY9rp8aKXtsuCDdNjw/F9dOGYevJWuzNb8LKdw7ib9/xCmaF4RaNAAAgAElEQVRsqB8igsShh6/Tq3CkpAW17SYYLHaR2hegkmNqJHNTRQapMSUulHstvVyLmBANN+jdMz8RCUP8sfloBZw0OI8ZwFcnIAPSlhM1ohBdeIAK//jxDNbtL0GwRgGNUo64MH/UdZg4P+3be/kw4KioQAwJVOG3s43capmE1mrbTdhztkGULJFdxSeBGK12t2SwbYLJst1ow32bMzmf3C3Jw0XHjoxyJ8jES/zpMbEqHqRW4IsH5iCUVTdckwEWjorATTOH49mrxkMpp3BLMq+wdJrtKG8xIEitQHSwmktgcjpprD9QggCVHI8sHcW3pZFXLHPZuqBExWo32rjQ9N3zErjnCGQUEwIkodaGDrPo92nutOCd34phtjnw6dEK1OqZvl3yZioXdhVCOIla7U78kF0jekzgKVHv8cvHcH+3G20iT7KMAhIjmOvKTylHoFqBR77Khs1BQ6WQYceZehgsdsgo4KlV4/Dc1RNwqLgFe/ObPCrDUcFqPLpsNPdYKae4bGwhKSELsSJBH09j74XCNuZ38VcpcN005t6cGBssyvI+WMQsPCx2xtP4+4VJbm2Zxe7I9fHhcujMdkyNC0VhYycMVgciAlVYd6AEP59iVOObBdcJUcwOFDThZFU7pg0PQZho8jSIEp9KmvRo0VswKioQr984Be+vniFqh1AeeGN3IdYKLC91HWacrunA9jP12JXb4LY18JykcGiUMlG1BuLTJH13F6suAoyaSqqdpBY1cwpyPDtpXc4SZQBYMy9B9L2unxaLAIHS9LeVY0VtKW8Vq+dRAkXJE66cPBSxoX5ILWzGg5+dQEWrkVMl61yq6sSF+XPXx/Ey8aL4yZVjMS1SLlJ/b5g+jCMdD3x6QpTrsH5/iYjUkf4AgC+OV2LRmEic/OcKAMBloyIwZXgoLmcX2mXNetFvMIz9jD98noXktXs5xRgAnrlyPNbdMR3jhvL3pnCBU+CS97E3v4lTq002BxaNicR7d8zArscWufXd/Zcl4clV4zA0xA93zIkHTQN78hpgtDoQ6cdfUIEChY9E00hOzeRhIdxzeXU6VLDqnp9KDoVcxtnFAOD66eJpfMrwEPiziV2/5NRx9zohyGRhdYC1zRF7gdBOQRK3r5oyFLfOioO/SuGuILPK86Enl2D7o5eJ2vDgohEID1DhpV/48VCoaHaw4+1/b5vGPRcVpOaiFAAQEchf37m1HZzXHQBC/ZSiHfOGCI71VKHjz4LFDwAkRYgXiHFh/PzsGtnsavEsLGPZ3GnBC9vyuLlWya5ihBpjckI4rA4nAgXEVimnOIJMoiAAsHB0BFbPTeAWO/4qOYLUCm4BqlbKRBYW1/HnstGRuHdBEmYnhXNzX2aFFla7Ex0mG/71i/smZ64L58EARfeHDC5QFPUggAcBIDo6Gqmpqf36+WqjE0oZMCJEhskKfuK9dawKWwp5ZXBigBGzgq34jn1M03wCHACEGGuRe6IeoWoKQSoKkX4UNh8t52oS/rA7DRoFf3FPj6Sgom0AKIwOcqAgl1Ek5BQwNIDCIxOdKNAy4RN/Qz2ujQPeYV0gTZW8KlJc24J9+/nVbH69DqNCZbh2pBK7Kmz4v2QF8ltl2FNpQ4gaSE1NhV1nRa3WBpUcmBopR04zr4JFKUzoMDA3zYaDZYi11aG0lumHzYdL4Cp2koHS0qlFm96B6nqxJ0qY8ZqZk4fMCuZcTY2NuCqyDXeOV+GLfOa5s6cyuX7/Pr0EE2U1CFNTaLPQbl6rJ2YocPzIIbS2MgSloaJE9LqspQQHD5ZhFID3lvqhupOfODNP5WJ/iQ1jQ2WgKDtK67VITU1Fpc6BQ8Vm3DJWicZCcYIeIZ+/nanByvBWFJYz7SlvbEPacaZaQoCxASoZRAmCAQpgdJAdR6vasPK1nZgzlLlFFw9XoLTdgUh/GTYfLcfpkiqcaHRgVDCNYYGpbn5QAFgzQQWt2YwC9vE/52qQFCJDi4nGkwfFRONA2kH4KxkXNEeVW8rwzBwNXk434/nvM1DU5kSQEui0AcVFhRgexAzCSsqBlQlKfFfEXN/L4uTYWW7E8bPlUMuBtLQ0xNE0gpTAJ3tPYXw4874hGgqtZubT8k9mYoaKwv2TVNiUa8XEcBn+MFWNVzPMaDHZkJqaijq9E7/ksCHrUv7e87PrIKeA8jbm/ijOz8V10TJctcIfP5WYsKOc75u2Dh1SU1PxTQHrsW+txd9naaA1O/G/M1bcNFqJq0da8VQzhQaDA1H+FFIiTchhl/e3jqLwUwnFJSbVlRfhnokq/FRiQ6fRgtTUVPxYxFyf8wOacbqCb2deSQUUHbxOcDg7DzUtNgSFyxFlMAIudt0ZUXJkNfL3Wm2rmDj952cm0nQ0rxzlAWKt4/ChgwhX0dh0uBy7TlVgabwSFjZB59fMYoxxVuNQMf+BP+4+iFL2XvzxaD4Sg5nz2VprIKcAtZa/X6apm6AGBTnF7MJl7eAJ9YNT1JhIiRX5P3+RAZ0VWBKnwJI4BQpOHseYMBmK2py4ZoQSe6tsILlD/gqgMjcTQRTTljajDYeKmjFhiAydZuBgdoHo3CW52QiSO+CaJ//odDUOHkzDrUl2nGrmx9Fxima0VTQjSCUejwGIws9zYuRoFNxTeosdI5QdSEtLwwfL/aGUGZF+9BDuiAcq6mXIKauDml3QrZmgQk7GEShkfI3ZxcMVuHakEnobjQRnFZqLqlBXzSbNJinRYnIio8GzrWVqpBy3DtfjcDFgdQD21iqkpjJCws1jlAhUUUirtqOsw4mFgU2w1TQhtYZZaAerKHywlyGKKtrKzZctJp7cVOYxSXtGqwOxgRRyMo/C7qShkAHrdp5Cc6cTTl0j996qKn6em6yox9gwGQrbmPMpWkqQ1cETzZ/2HsXECDkySpn3KJsLMDNajobOTqSmpsJhZcbjk7n5GNLJqsoyGonBMlwXzfQ35bChvLoO1jZ+8WI1G0Rzf6qLdfuKOODLAn7RX1XK225I5KiyOB/3TFRBIQN+LBZH9W4dReE91tFwuqYDfgrATwGY7EB9ZQlyq3iyXlsqviaFY+i0SDmOFIs93GpLu6jtQntbQ6V4XoKh640zKAAvX+aHpw+boNPrcSCN8f1WVZQjNZW5DxcOU0AhAyIVOhwDoKYcIFe+oVMHo80JgEJ9awcKi5lI6W3xRlTmZqKBncsddhua6/mxq7ykCHFB/JgjXLw8PlONytxMVAKwGcxoMdFITU3Fngr+ftrlIdm9qTQPqU3ntkFPX6G/CHItgDjB4+Hsc56OqaEoSgEgBIDb1UHT9AYAGwAgOTmZTklJ6Yv2dokbV9GQyyjQNI1H9u8AADx1y2L89Mo+blX10LULEBvih78cYF7/723TsGJCNPxVCjR38r6lE4uckMsoHCxuwRpBZQNzaCKGRQYCBxky9cR1s5FzMhtRwyLx52WjERuiQeLYRiwbF8VlftI0jVVV7ZgRH4qaNhPeyWaI8LL5yUgYpccT3+WgRk/jqDEaAK+OrEmZgLvmJuBR9vFSAA8Lvm+1ugI7yvNgtwOLp4xAXUYVmjsteHDRCDy6bDRe2JaHnGbmZvysRI4aljB3eskpk8sojEmMw6mWavgFBQPNjPITqFaIQm3hsQmQ5RfDSQOv3rkQceH+mNJpxhcv7wMALE9ZhOvVCsw/VYu/fHMKlapE2KkiAMw5VAom9P7kqrG4J4VReD8uywBampE8fTKQw/TtnXPjcfMVk0Sr7cKGTuA4M9i0KiLQbqnDHYsnIa9Oh9z0KoycMhvmOh1wNAt3Xz4Hk4aF4B59HmJCNPghqwbFTXokDPFHZasRwSOmQVNRDNQ3o9VMIyphDJB1BreumIepk3V46AueXEeEBGDepDgcrClAYZsTlXrmuzx36wKMjAxEm8GKOa/swwmWOJXoKMSMmwHsOsR8Z7mMUxFevHsFvs6owi9lZ7B8fBTuv34WANYPeHCv6DcZMzUZo6KCoPhtB6cSrFw8n7GTpB9CUZsTV00eCrVChh9P1mL8+PG4fGI0Xjy2B3NHReNft0/H8bfTEKxR4qErJ2Pne0dQ1EEhxF8Dco8urs9GerkWyePiQFElOPLMSoz75y4AwJXLUyCTUYhp0GFT7iE8sGIKrpgSi7POQqw/UIJFixZjxNM7uPY2GPlJJSFuGMqNzWjQMYP7vFkzuEShgIQW7GCTP1VyGRRqDWbPvwz37NoNAJgzfRKunMz4hJ9mJyqKojC6NB0NxS1IHhmNv9w0A9+U7EOjzoLbLp+P21eCC5kunjMDyYnh8N9VgI8OlmHx4sX4sf4U4sLbsHL5EgSVtuC9U8zn+4dFQuengVpRCbuThi0gEp22OkwaHY+UlPEAgLWaSi559J6lU7Bh5BDMXMv8Vj8/uhhDQzQ4WdWOp7eeQWYj833bnBpE+gdCLmviFKCUlBQkFh9HXWkravU0fi5zIjxAA8CI4nZg9vzLALYPAODDPKDJRGNUVCBONukRGBIGuawVT9+xDHdpjRgRGYjHU5kNZK5YthgapRxpHaex5UQ1Zk4cjd+q8uFw0Lj/6ssQHazBg8Z8GK12XDYqElsyq1DXbsa7989DEBvqXrqEv/a2n67Ha7sKUKU1IsBPjZSUFGxvzkG+lhlTaACTRwyDkdIiq9UOcn8DwFXLF+OnuhOo7uQTEnc/tojL3meICLMQePmGSVg9h4na3HQFkyi6+WgFbpo5HJezSZMEL942H+NiglHU2Mm9ds2iZO66EmJ7cw6+z2YicXfOjceL108GAKgP7ILd6sDa6yfhzrkJbu+bONOCtu9z8MJNUxARoMayt9LcvJzT40Ox9U8LAAAfDGtESZMeDywcwSU3k+nPbHPAbHMg1CUh6npdLj5jo2mRwfy92GG0AWmM93zV8iXAXua3ffF3M5HCquILKjKQVtQMlUKGW5bMxJwRTEA311kMlBRhRnworli+AHPnWfF9Vg0eWJgEiqKYyOe+nQCAoGEjkTIvEam6PARW1eDyZUtwqDMXpafrkJKSgrCcQ6g36BCbkIQUdoyWHdiNRRPjcPkyJkQfnp2G4LBAREYGAEUM+Y4MD0VKyjy3PiWYYbbhyxd4b/385OlYd5LxgJORY8HsmVwS2+XlWtzy0TEAwN7HF2NUVCB+t0yPPXmN+OhgKT69dzZ+yK7BZ8cqET9iNFqKCwG2WNyS+bMwdaqVSzKPDtbgzZunItRfiUnDQtBhsol8/gunjUUK653nsJvp/8VzZuC9U8e4pxdMHYud5d6rYg0P98MdVy9FGc7i8+OVmDV3PrB3L8aPGYWUBUx0jFwjBQ06fFt0CBqNBndNi0JMiAbHy1pRqWPuHTulxIgRI4GCfCxaeBmCNEpUKMvxfdFZqFRqTB43Ej8WM8rv1EkTcc3UWKy5lkkUFQpSKfOSMWU4E9X7tTkHJ7NqYBoyFrVl1VDKWzAiIhA3Jw/H7rwGZFbwEa4bVy12s84MNPqLIGcCGE1RVBIYInwbgDtcjtkGYA2AYwBuArCfHoj9h30AGZwIoRodFYiwABVumxWHH7Nr8fRV4zE8TOynuWZKLBeWEZr6CbldOCoCw0L9YHcyW37+ewezKg3WKHDoyaUI8Veio0yOe1KmcO9dKQh7kvaQG14YmokKVmNqXCiWjovC49+ewqbD5aL3uYZ1XDE7iXe6DAlQYcejC5Fb24ElbNiP+MoCVHI06SwiH2BsiIbzwI6IDEBZswEahQyRQWroLeLC9MmJYUgtbIZGKYOMorAvvwlOGnj9pimIY20iJNQKMKF9ALh2aix+OlnLVeggmDwsBFmVbVDKxFnCABOCenTpKKSXa7GWndCEECYnbMupg1xGYem4KDicNEw2Bxa+foCrJEK+/wust9Fic+LtvUW4Y3Y81h8owTNbz3ArbCfN+GwBxoe9atJQ/PuGyVyZvRA/JZIi+GtHKZPBDCdi2TqfYQEqXDYqAvsLmrB6Tjy+zazC+4LQoFrBEGQSxiPXgVBhVgmypski4rr1R5D30ir2mmZ+v6ggNbd9KwDcuyARALMpwLyRQxCsUWLbIwswIjIQGqUc3/5hHpw02R2KKdgvvNZXTozBr6frseVENaKC1NAo5XhkyShsy6nj7o1xMcHY98RijGDbH+KnBE27Z4QLrzGFjKkaQMpd+Qtqd85MCINawYQDIwJVsNqdonC/0L4hXCCNiwnCoeIWxIb4QSajkPa3JahpM3LXIQGxGvirmN2wrA4nqtuMnK1JuKtVm4Hxic9OCkdtuwk/ZtdCLqNw/TQ+TH3n3ASOIGuUcgwRZN/HsWWQ5o0cgqunDMW6/YzaVNlqgJOmsXRcFDpMNtgMTOiVRDEuGxWBwyUtXHKoyeZw2+K7RW/ButunY+HoSKxkdxYLUMmhlMswIlI8PpBJjNxWKjmFL+6fgyOlrVxexdNXjueOXzVJPE654qopQ5Ffr8P6AyVcyJ3cf4lD/FHRamRJxxRRfgaxgCUnhHO1wpVyCiMixaHaNfMSkFen48gxQWyoH9fOiEAVaJovy0jGFqEVK9ZLuHvhmEhkVmixek6CiAiTK9T1miGIDFJj872zucd3zk0QJQADwNThvJVu2fhoLBsvzp0g0CjlHsnFlZOHcgQ5WMVf3wFq5lhhiTKAGTMJNq1JhsHiQJBGIbIUkL9JgnVYgAq/Z/3YAB/eBxjvfl5dBw4UNnE2h+hgNdqNNugtdihY1f2/e4sxPS4M80YOgcNJi3zOEYFqnKhsQ66gFFt3RCpQJaY2QosFQYggcW92UjjGxQShoKGT8wSPjAzEQ4sDcO+CRGiUcsSH+0NnsuHaqcMwPNwf937ClBGMDFJj/NBgLB8fhb35TYgN1eCy0RGCz1FyYxDgbrEAgP/cPBUqhUzkZwaA2FCxFVB4HgDcvJAQEQCL3Yn5bOUfUrlIiLHRQbhvQRKumTqUW+idqNDCzAYuOkw2bgtxOcdVmM/XmW0ia4aw8oZrHecggd+b5Nv8kS2BunRcFD6+hxFq9uTxUdroYPWgI8dAPxFkmqbtFEU9AmA3ADmAj2mazqMo6iUAJ2ia3gZgE4DPKYoqAaAFQ6IHPY7/Yxnn53r+mol47pqJovqMBDIPz7m+vv6O6bA5aEwaFoyDRS1ILWzCknFRCBFM4r5CJqOw8y8LsSu3ATHspBUWoMK6O2bg2vWHRbv5CC98TxgbE4TZieHIqNAiUK1AZJCaI8cAn6gxIyEMT64ch1/P1GFGfBh+yWH+f4kd9GfEhzEEWckkUhwsasaxslasnBiNFRNikJwQhpTCVIyOCmJK7tR2YFxMEOfzA/isZ0C8UHn1ximY829GWZ47IhzHy7QYHRWIrMo2bhAGgBevm4ikiADMHxmBhaM9V60AIEpAABhfaqi/Cjcnx2FqXCge+SobRY16aJQyUSIEAFw3LRbvpZZg3NBgvL96Bu7ffAJWhxO3z47H1xlVyKpswwOXJXG/6x1z4qG32LhF0axEpsZkVmUbOi12DAlQiepRPnXFOMwbMQSr58ajurZO5NtWyCmkP72Maz8hLMKawMIBjZAog5XZQMVqd2LK8BBsuCsZCrkMgXIZt8iZFhcKhVyGilev4t4/RTCBk2L9zPMhyKxoE11bl0+MRlSQGo06C7co+7+VY/F/Lp5VYc1SMmGcqBT7S4UI9Vdynk9AvLjRKOWYncQQqCGBatS1m0QJl64TEkEiO4mRwV6jlGNUlHtSVDir2PmxE/KJijacrGrnqgSMjQlCRKAKBosDJyraYHU48fiKMfguqxplzQbcOz9RVF5QCJIoOmV4CE7XdIhqhF49JZYjyE6aqYKxalIMnlo1DmlpaQD4pME758azZaGY76s1WJHu4tfduCYZKWOZe/q1m6ZgzccZ3U5YMcHs5gx+SswZMYRTGM8FhFQR/ympDXvttGHIKG/F/JFDMDMhHJ/dPxs3fsAobCQ7/uElI3Gyug2phc0YFRUkImgA8OJ1k7r9/L8sG42YED/8/jMmqkQIsnCyF5YKE+LaqbFu+SgAv3lCXJh3H6kQ9y1IRH69Dt9n1cBPKcemNcmYmeiuWPcEsxLDERmkRnOnRUSQFXIZtj2ywI2sCRPGFHIZQvzd05SIB7mrOa3i1atw7frDKG3W46p3DwPgiSFZNN/8Ia+UWuxO3P6/49j2yAKYbA7RuZ9cNRYPfZGFqCA1t7jVKNzbJYRr24RjAoEwcQ8AvnhgDrIq20S/OUVR3H0QFqDCO7dNBwAsGRuF0n9fifoOE3ddEOFhWJj7gkgl54ntxFj3+/1GNn/INYHbdVEWHqASbQ9OPjNlTCRSxkaitFmPaq3JY+lGiqLw3DXi4mHCe8XmoDkvOJlbR7OJ8Fa7U7TIENZudq0oIvRkXz4xGvsKmrD1T/OhVsi9JuIlhA8+/zHQjx5kmqZ3ANjh8txzgr/NAG7ur/b0FmIECoOnAWPDXTO73HFKCGH4btWkmG6Vl+4wfmiw2+QbqFZg05pZ+PlULd7Zy3iTPa2uXbF6bjwyKrSi70sQzT5nd9CYPDwEk9nM8pUTY5AmKIc3Iz4M32fVQKOUI0CtwCf3zsJzP+di3sghuGE6M0C8fuMULBgdgc+OVsBgteOZKyeIyKE3RAdrsPVP89HcacGKCdFw0kxI6ZvMaiwXqC4RgWo3QuYJrgPqign8bzEmOghJEQEoatQjNtQPrsVWEiMCkP3PFQhQyUFRFN5fPQPrDpTg0WWjEBfuh9mJ4UhODBe9h5Ssa+60YEigGj/8cT7GPLsTVrvTbZAcEx3E1S5dFq/AwRpeXZXLZKLqKGRAenQpnwAnVDXvmpuAz9kyf0SlvXLyUNHvvO3Pl0FrsPaoiPuMhDBkVrSJFhpqhRzr75iBWz465pWYumLZeIZUP/bNKbfXYoI1uP+yJNw9P0GUYBPqsmBZODoCh4pbEB2sRkWLQbSxguskSXDzzDh0mGxcGTFXBKkV6LTYOYWdEKr/shs93D47njlOo8SJZ1fgiW9z8EN2DcIDVLhicgxyatpR2WrEYyvGeDy/8JzfPTTPrf7y2JggjI4KFPloR0YEiq7FV383Bev2F2PJuCiMHxqM/HodYkM1bFlIXr1ZMy+BI8cAsHhMJB5aPFKUCOkJf0wZiZgQNa6Z4k4Oewoy0ZP2P7hoBKpajbhvQSIeF/TRzIRwfLB6Bv74ZTYiWWKikMtw44zhSC1sxngvlR26w12CSj8API45noSPrnDzzDh8frzSq/LsCoqiOPI4OjoQ80dFdPOO7iGXUbhyUgy+TK9CkErcfuHiVtgGX84J8BWRvGFERABXMxvgF+ZkK/j8ep1b9PLa9UeYzxC0Y3p8GNKfXg4AuG9zJvYXNPVYbRRGwrw9FxGodovKdgW5jBJFihVsSMVTYp1SIQMsjKA2xMtCC2BI+AvXTMCCURFo6rRgXIx4/g7zFxPkKFbhjQv3x+Z7Z8Nsc+C/+4pxg0vypDcoXRYaxJ9N+l9Y2YmUzgTECxQiWj2yZBQeXjJKdO/cOiseN82M6/beiR+EFSyACzBJ70LD5T244foLSREBeGz5GI4gd6cgA8B104ZhWlyox0xTUghcqD4QCInm6OhABKn5vec1Sjlev2mq6PhbWOXtH4IQra8QLjDkFDAxNkSkdvYEQpU1JliDq1ifKgEheN6yjIV9unxCNFdW7k8pozweT0rYCetPB6oV0NqtbmE2IRKC5YgOVnM7KilcBiKNUu7WB8KFXGJEAN6+dSr+uiUHmWxpPFf1PCJQ7VU984YZxAPscq7ZSeH44Y/zu61kQBDip8TLN0zmlD0hgjQKLrQ7XPA7BLmQ3jvnJiA6WIP8+k4cLGrhCPKzV433urWpSiHz+lsBwPZHF+JMbQc38JPrPKuyDddOjcXUODH5IFGGW5LjoFbI8exVE/C3lWNFdhBXEBKg9hAuBYBnrhqPsmYDF6FJcrEWTB4egg13JwMAFo2JQH69DkND/JBbq8OZWj5c7fDgZHvqinFuz6U/vUxUH1mlkOHWWfFe298TcASZfRwRqMaHd830eCyZgIX1VcmiSFgZ4nwgJGCjowK73SnUE56/ZgIeWz66R2SOjBuuJS3PB0+sHIsrJw+FqeqM12OO/WOpx0o2nkCsFd42NiIYGRkIo5WPbpF+GBsThPsvS8JX6VUey0sC3hcjZFx2VS27woa7ZiIiUI1djy3Ef/YUcZVLXK0B5wtSsWjSMHeF+InLx+CZrblui3dPuIf1Do+O9hCxClBhRGQAYkP8MD0+FPcuEFfh0Sjl+Psq93vXG1QuogeJNJL+J/fl0nFRosonnhTkYWF+PVpYjowKQAY75yRKBFnCYEWgDwoy4L0My9ThIXjtxsm4woVEArwKRv4eHxsMSzebEAwGECVl8ZhIfHrfbLfXyaKgt/aOJ0T7YQEp81fJoTV49z4S7H8iBTk17bjjf+kiO4kv0ChlnKXhtV0FkFHuNW/PBYQge1p8CXd38gUrJkTjnvmJKGnS47Bgq2Th4mtYF2FspuzbMJQ1FzEeYa0R42KC8MDCEV7f0x3ih/iLVA8y+TucNOZ6sBrEhGggl1FYPYchlHIZ1SU5Zs7Z9QSeMjYKKWOBX0/XIbuqXWRNccXiMZH4KK1MtKAbHuaHmjaTxy2fPUEYmehtkM1suuFcAHiPeaRg0TYiMhB+SrnHvj8XCEPPnsqp+QKFXNalWugJpFb1aA92nnNFsIaxwKS671zOQWiP6g5kjJF1wy/dvev8G4aGaGCyOdyqDRHIvCjZPEH2fdFBonXjYoJx2agIjiD39jYLZB4VRmMIVs9JcPPA+4pvHpyLP399Es2dFgSo5dj/RMr5NFMEV4FHa7CCosR9U/LyFZDLKFH9dLUHBdnXSAnBc1dPhMXmxI8nawflLnqARJAlwLtC5SsoivKqJIn9oDK8dN1Ej7Uie4JRoTJYZD2beM4FOc9fLiL4QpDBUBh2Oi1HuFIAACAASURBVB/IZJSb0kvIZVe1MAFGpSWKrKv/sjv4KeXcRFbcpMcVk2LcEkzPBZFBaqSMjeRqFJ8vXrh2IpxOGm/sKURSRACe/P60SK3oro8AXg0padZzu4f1FoTX+byR7iRt9ZwELBoT6TVhyxN8vS+/fGAuztZ3dGlbmZM0BH9bORaLx0RiM7s1+4KREdhyorrXicK5gPw23oiREKSvhQmgw0L9cPallX3yXXpqrTgfBHIEufcU5N4G+Y26+61ckyWFpJZYuLwp8976nNi8ultcCiFMSiYRrR7qCD5hw13JqG03+hSR7QnmjhiCf7NRNGHuUG9g1aQYrD/Al5ZrM9hE9haA73NhZE5IkDkFuYcE2U8lx0MpI7E7r0G04dJggkSQJfQphAOZWiHHqF7YTvLZuX7oj/J+IR58awRk22U/Vd/ttUOIgC8rc2KBuH12XDdHikE2+YgJ1qBBZ3YL2Z0PhBn6vQGZjMLfV43jtlwWXltDu7ChEJBBvUprFPnSewOErMcEazyGC/1Ucs437it8Vcn8VHLMTAjv8hi5jMLDS0Zxm/ioFTI8c/V4UBREHt+BArexgQ/HEt+4q6I9GIj++WJaXBimx4f2OMrSn+A9yF33t2sCoHDx3p1i7Y0gE8VZWOmnOwhtBGRDm764VGJCNB5zdHoD89lFtzA5vjfgmqOkNVq9Jl8K7SFCiwWvIPf8u4+JDkLeS6t6/L7+gkSQJfQphCqfL8l2FwrIQJgU0XdKT4CPCjIAhPqrULh2lZunrDsQEjY1LgQxOg23i9xgRnSQBiq5TKTaqhVyLBquwOolU72+jxBk2mV3yd4AiTTMHRHea0StJz5LX+GnlEMhozAtLhTBGiVevXFK92/qB/BJet0fGz/EH++vnsHtLncxISkigKt7PFhBFMbufivXBZ7Q6t6dNc3buUkVi67sRK5QCuTivlSQ+xIBagVO/nOFTwn1PYHrQqTNYBUp7kIII1quCnKov7JHqv6FgovvG0kYVBCSmN6+uQcStybHITJQjWXj+26SDmAHHF+9XedilSGT2Du3TgcN+oJQ4WQyCssnRLlt2nDfJDVSukiKFfZPbxPkIYEqUBSwaMz5+7cJ+qIuKEVRWDUpxqNPciDBK8i+XX9Xesh36A18sHqGx63QJfDwVUEGgLXXT8LWk7Xsluc8Q44MUkNGMSUKPX6Gl3Pb2U2QfCHIpKShcEwj9Z/70TXTawjzsfLP+cDupOHnw+8qJMh3zUvE4l7IWxmMuHgYi4RBCSVbgunyidHn7XUeTGBIWu+G6V0RoFZApZBhSB8OjETVv9DU/fdXe65w0BWEykhPvMC+YGiIH/Y8tqhXqg98cu8sfJtZ3WM/ua9Yf8eMPjnv+aAnCnJfwlOisQQxekKQ75ybAI1SjqzKNpGCrJQzm0WR6juu8HbujWuSkVrY7BNZ3P7oZcyOqAIQBflCJMh9DbKTbXd7NgDixfvMhLBBbQk6H0gE+RJG2t9SfFZszgf/ucV72FuCd6ycGM0oLX04mvdFGH+wQqh6DPdx84aewFNZpnPBkrFRWDLIFN6+Rk+tQRIGDvxOer4dT+xHrmJxTIifV4LsrfzbqKggjxv2eMLQED83rzOJykkEmcddE1TIaGV2ttVb7D4lpbqWE71YIY1KlzAShgQM2gLdEpga2p7q0fYmvFXpuBhBVMrBuq3ppQzXjUIkDF7IfaxiQeCt3vDQLsoGEitFb4NcZ6pLhOD5gmXxSuz+6yIuKd2X3/VSuU8lBVmChEsYlxJRJBaf3vYfSzh/9KSKhYTBAV85EqmXTLtsSNNV5RlvCvL5IipIjQcuS0IS3dAn57+QEezHJjB2IZt+dt9sHC1t7acWDTwkgixBwiWMS4kgE/Wot/3HEs4f3pKyJAw+OFmi66uCTGx8rpS3q0oWdmffKMgUReHZqycgNbWpT85/IYMoyF3di4vGRPZqIvJgh2SxkCDhEsalZLEgoV5JQR68kHjy4AdHkH21KbCHue5oHsP6gx9cNAKv3zhFVOXI122vJfQeOIJ8odXA60NIBFmChEsYyktoMCQlnhIH6bamlzJoVl+UCPLgByG6vvLjOHZnTtcdJomCHBfuj1tmxYk2orBJBLnf4YuCfKlBslhIkHAJ41JJtgCY2qnrbp+Oyyf2bXk+CT0HmZwnDxucW85K4EEUZF9HjlFRgTj05BK3DY/iw/0ho/jfPsxfhWotU4O6rywWEryDS9KTEhg5SARZgoRLEJ/fPxsZ5dqBbka/gqIoXDM1dqCbIcEDEoYE4Ic/zsekYcHdHyxhQOHkFGTfiZQn3390sAY7/7IIIyKZiE6oP1/bWFKQ+x+SguwOiSBLkHAJYuHoSCwcfekkW0gY/LhYNxu42NBjD3IXGBvD1zQO9eMtFn1V5k2CdwQTgiwpyBwkD7IECRIkSJAgwSfQXBWL3j1vmMCD3Fdl3iR4R3AP6iBfKpAIsgQJEiRIkCDBJxDu2tu7sBKLRZBGgX/08QZJEtwRIinIbpAIsgQJEiRIkCDBJ8SyyXajowN79bykisW7t09HVBe77EnoG0gE2R19TpApigqnKOo3iqKK2f/djGYURU2jKOoYRVF5FEWdpijq1r5ulwQJEiRIkCChZ1g8JhLfPTQP9y1I6tXzhrEKsrqrrdwk9BkkguyO/rgSnwKwj6bp0QD2sY9dYQRwN03TEwGsAvAORVGh/dA2CRIkSJAgQUIPMCsxvNfLgZG6yCECL7KE/kOwRqpi4Yr+IMjXAfiU/ftTANe7HkDTdBFN08Xs33UAmgBIKfYSJEiQIEHCJYDZSeHY9sgCTIyVamEPBFQKGfyUcsgkAZ9Df3RFNE3T9ezfDQC6rNJPUdRsACoApX3dMAkSJEiQIEHCwIOiKEwZLgWOBxIhfkrJYiEARbtukH4uJ6GovQBiPLz0DIBPaZoOFRzbRtO0x4KXFEUNBZAKYA1N08e9HPMggAcBIDo6euY333xznq2/cKDX6xEY2LuJERcipH7gIfUFD6kvGEj9wEPqCx5SX/CQ+oKHsC+ePWxEqFqG/5t1aSVJLlmyJIum6WTX53tloxCappd7e42iqEaKoobSNF3PEuAmL8cFA9gO4Blv5Jj9rA0ANgBAcnIynZKScl5tv5CQmpqKS+n7eoPUDzykvuAh9QUDqR94SH3BQ+oLHlJf8BD2xT3yMgSqFUiZHT+wjRok6I+d9LYBWAPgVfb/n10PoChKBWArgM9omv6+H9okQYIECRIkSJAggcUDC0cMdBMGFfrDg/wqgBUURRUDWM4+BkVRyRRFbWSPuQXAIgD3UBR1iv03rR/aJkGCBAkSJEiQIEGCCL3iQR4oUBTVDKByoNvRj4gA0DLQjRgEkPqBh9QXPKS+YCD1w/+zd97hcVRXH36Puty7jQsY40ozzWCKQYApCTWNAAmkkJBAIAkkHwESk0LvvcSEXm3AmOZe5N4tW3JRsWRZvfeyqy33+2PqqtiSLUuWdd/n8WPtzOzs3bMz9/7uueeccdC2cNC2cNC2cNC2gOOUUk0qp3VpgdzdEJHNzQWSdze0HRy0LRy0LQy0HRy0LRy0LRy0LRy0LVpGV7zTaDQajUaj0WhcaIGs0Wg0Go1Go9G40AK5azGzsxtwhKDt4KBt4aBtYaDt4KBt4aBt4aBt4aBt0QI6Blmj0Wg0Go1Go3GhPcgajUaj0Wg0Go0LLZA1miMcEZHOboNGc6Si7w+NZv/oe+Tg0AL5CEREuv3vIiIjOrsNGs2RiohM0P2EjbaDC31dGOgxRHOo6BvpCEFErhWRezu7HZ2NiEwXkS3A7zu7LZ2NiFwjIp8A94vIcZ3dns5ERK4XkYc7ux2djYhcJiIbgN/QzftvEblKRL4FHhaR8zu7PZ2JHj8c9BjioMeQQ0Mn6XUyIhIB/AW4AzgWOEMptU1EwpVSgc5tXcdgLv9EAi8A5wH/UkrNde9X3exCFZHpwGPAQ8AUoC+wXCn1nYiEKaWCndrADsC8LsKAXwH3A8cBlyilVnVqwzoY0w4RwAzgJuBvSqk57v3d8P44E3gd+BfQB7gEWKuUere73B+gxw8LPYY0RY8hh0639kAcCSil/EAKMBG4F/ivub3bdG7KoAHoAcxVSs0VkTARmWzt79wWdgrTgW+VUgswronewK9FpGd36djM6yIA7AFOB+4Eup0X2bSDDwgCn1viWESmiUhk57au05gOrFJKzQO+AgqAP4pIX6VUsLvEXOrxw0CPIc3S7ceQQ0UL5E5ARP4oIk+IyA3mpu+UUh6l1AvAEBG52TzuqB78XHb4qbnpYWCaiDwDbAUeEZGZInJF57WyY2jmmlgLnC8iMUqpIsADhAO/7rRGdhCmLd4Ukd+Ym1YopaqVUm8CPUXkNvO4o7r/ctnhdnPTG8AxIvKOiCQB9wFvYV4TR7ModNnit+am5cA1ItJfKVUP+IBK4G9wdAsiPX446DHEQY8h7c9RPcAcaYjBPcBPgc3Av0Xkl0B/12H3Ak8DmF6jo45m7PAvEblNKZUOzMXwhvwUuBnYAfxARAZ1WoMPIy1cE78AkoE8YLaILMdYRv4K6H00C0PzfrgZ+AK4RUQeAMa4DnkIuNcURketF6SRHX4mIv8AvBj3RxTwE+Bac/8PReTYo1UUNrLFz0Xk70AmsBD4QERWYVwjTwD9RKRnJzX1sKLHDwc9hjjoMeTwEdHZDehOKKWUiFwM/EMptVxEaoDLgQDwgXnMl+ZM8K9KqWdEZLpSaklntru9acEO3xeRG5RSL4vIO0qpGgAR2QZMBeo6s82Hi2ZsUYtxTdRhJGKdCgw348Z+Bhx/NAtD4FLgSaXUAhEpAa4Bfgb8B0ApNd/0IN8uIq8BVyqlPuu85h42GtvhOuB3SqknRGSxUqoWQEQSgQoMD+rRSnO2uFUpdbeIHAtMUEotFpGLgFjLNkcbevxw0GOIgx5DDh96FnGYaLzc6ZqxbQamAZixQWnASSIywXX4HcBTIlIAdOlSNW2ww27gTBGZYHVsJpdh3OieDmjuYaWVtpgPpGIkVYxVSiUopb4zjzsT2NBBze1QXLZIAK4GUEptBtYBIyS0SsHfgMcx7p1hHdnOw81+7LAGOF5Ezm8kAH8BxALlHdrQDuAAthgvItOUUllKqcXmcVcB6R3f0sNPdx0/mqM7jyGN0WPI4UUL5MNHrPuFa8a2B2OJ4xTz9QqM7NLeACJyGvAmxnLiGUqp9zqmuYeNttihD44dbhSRHRiVCx48Sma8bbFFbxxbfF9ENmLY4osOauthRUTCzf8FQmyxBggTkQvN1zuAfGC4efxY4DWMZdQzlFIvd2S725tDsMOPRGQ7RmjBHUqpLj/4t9EWeZiTIxG5UERWAOMw4rS7PPuxRXcbP9pqi6N6DGmjLY7qMaQj0AK5nRGRqSLyBfCqiFzuuqCtcJaNgB+4XEQilFK7MGb5Z5n7S4E7lVI/UUrldXT724t2sMM+jIH/VjPBoMtyCLaYYu5PA36vlPqRUqpLewpF5FwReRO4R0R6W3GzLlukATuBn4pRqioHGAqMNvdXAncppX7Yxe+Pg7XD8eb+VIxr4lalVGFHt789aQdbZGL0mT9QSpV0cPPbFRE5X0TeA/4hIgNctrAS7rrF+AHtYoujaQw5WFscdWNIR6IFcjsiInEY3q05GKV3fg70F6PmoB9AKbUHYznkBIzarmAk3+wz92crpZI6uOntSjvZYZ06CurdHqItMs39aUqprR3b8vZHjBjRV4BlGJ7QB0XkcrDLVQFUA6uAaOAZcwDojzHwo5QqVkqldXTb25NDtEOJeVySUmpdR7e9vWknW2QppXZ2dNvbGxEZg9FXLMfw9D0sIt8HJ+GuO4wf0G62OFrGkEOxRaa5/6gYQzoaLZDbl1OBTUqpj4APMQqX11jLICLyiIi8BWwBXgLOFuOJP2UYGdlHC9oODtoWDmcCa5RSnwCPYHgBbxKRoWDYAvgYw0s8A0MErTJfd/mlYhfaDg7aFg5nA7uVUu8CfwW2YZSyOwa6XV+hbeGgbdFJ6CoWh4CITAXKlFKp5qaVGOVm8jAearAbeE1EFgLZGPGCDymlMs333wxEKKUqOrzx7Yi2g4O2hUMztkgBThOR4UqpPDEyzwcC14tRhmgMcL8ySjUhIr8Geiqlqjuj/e2FtoODtoWDiFyD4RHcrJRaj7FMfrcYJfuyRGQNhkfwRhHZxNHdV2hbmGhbHDloD/JBICL9ROQ7YDFwg4j0AlBKbQOuxLi471RKxWEkmEwHapVSNyul9oiZeaqUqunKF7G2g4O2hUNLtsCIm60C3hUjJnsUhjekt1Iq1bRFussWwa4shLQdHLQtHETkGBH5BuNBL/2Bd0TkCqVUBkbVlp+Yh6ZgxF73AZKO0r5C28JE2+LIQwvkg6MnxtLF3ebf06wdSqmNwGDMOCiM2Lp+mGWY5Oh6Brq2g4O2hUNjW1wIRhwcxoMMHgc+U0r9AKOjj7PeeJTZQtvBQdvC4SyMx2RPU0o9DLwIWE9LXAWcIiLnKONx0bnAhUqpStC2QNuiu9jiiEAL5FYiIreKyEUi0kcplQvMBGZj1FY8R0Ss8kvRGI94vNN866XAAPM4uvpFrO3goG3hcABbnG3ZQinVoJRarpT61HzrGcAC6zxd3RbaDg7aFg6mLeLMvmAp5oM9TEoxPOlg1KhNAJ4zvewnAftEpAdoW6BtcdTa4khE1NH5dNJ2QUQEo9bmx0AQowh9T+BPyiwnJMYDDG7AiBf6wNx2EvBP870+jLJUuzv+G7QP2g4O2hYObbTFJqXUh673XoDhISnBeEJcZse2vv3QdnDQtnA4kC1EJFIp5RORPwInKqV+73rvc8BIjNCsW5VSKR3/DdoPbQsHbYsuhFJK/2vmHxBu/j8e+NDaBrwMzGl07D0YGdj9MB51CsZDIcZ09vfQdtC2OIJs0RcjwQqMkl7f7+zvoe2gbdFZtnAd8w0w3fx7iPl/BEYcdqd/F20LbYvu+k+HWDRCRMJF5DHgMTFqdE7AeNY9yoj9+RNwnrnP4k2gF0YCSqaIjFBK1SsjuL5Lou3goG3h0A62yBCRkUqpPKXUvA5ufruh7eCgbeHQFlsopQIiEgUUA6ki8iiwWET6K6X8qusnI2pbmGhbdE20QHZhXrhbMDJI9wAPYyyHXywiZ4Md6/Mv85/FVRjxpduAU5QRb9dl0XZw0LZwaAdbbMewRU7Htbr90XZw0LZwaKMt/m2+LQb4JUb8aW8Mj2GXf9KZtoWDtkXXRddBDiUIPKucuNHTMR5n+hDwOnCmGKVU5gKXiMhoZcTJeTAu4JWd0+x2R9vBQdvCQdvCQNvBQdvCoa22GIkRVvIh8JwySkIeLWhbOGhbdFG0BzmULcBsEQk3X68BjlXGE2zCReRuc6Y3EgiYHT1Kqa+Oso5e28FB28JB28JA28FB28KhLbYIKqVylFIblVK3HoUiSNvCQduii6IFsgulVJ1SymvGBAFchhEHBPArYJKIfAt8AmwFOyP1qELbwUHbwkHbwkDbwUHbwqGNttgC2hZoW3QrW3Q1dIhFM5gzPQUMBb42N1cDDwInA3utmFKl1FFbJ0/bwUHbwkHbwkDbwUHbwkHbwkHbwkHbouuhPcjNEwQiMepxnmrO7mZgLH+sVkdBwlUr0XZw0LZw0LYw0HZw0LZw0LZw0LZw0LboYugHhbSAiEzFePrZWuAdpdRbndykTkHbwUHbwkHbwkDbwUHbwkHbwkHbwkHbomuhBXILmJmkt2BkkXo7uz2dhbaDg7aFg7aFgbaDg7aFg7aFg7aFg7ZF10ILZI1Go9FoNBqNxoWOQdZoNBqNRqPRaFxogazRaDQajUaj0bjQAlmj0Wg0Go1Go3GhBbJGo9FoNBqNRuNCC2SNRqPRaDQajcaFFsgajUbThRCRgIhsE5GdIrJdRP4iIvvty0VktIjc3FFt1Gg0mq6OFsgajUbTtahXSp2mlDoJuAz4HvDPA7xnNKAFskaj0bQSXQdZo9FouhAiUqOU6uV6PQbYBAwCjgM+AHqau+9SSq0VkfXAJGAv8B7wEvAEEAdEA68qpf7bYV9Co9FojnC0QNZoNJouRGOBbG6rACYA1UBQKeURkXHAJ0qps0QkDvirUupq8/jbgSFKqUdEJBpYA/xEKbW3Q7+MRqPRHKFEdHYDNBqNRtNuRAKviMhpQAAY38JxlwOnisiPzdd9gXEYHmaNRqPp9miBrNFoNF0YM8QiABRhxCIXApMxckw8Lb0NuFsptbBDGqnRaDRdDJ2kp9FoNF0UERkMvAG8oox4ub5AvlIqCNwChJuHVgO9XW9dCNwhIpHmecaLSE80Go1GA2gPskaj0XQ1YkVkG0Y4hR8jKe85c99rwBciciuwAKg1tycCARHZDrwLvIhR2WKriAhQDFzfUV9Ao9FojnR0kp5Go9FoNBqNRuNCh1hoNBqNRqPRaDQutEDWaDQajUaj0WhcaIGs0Wg0Go1Go9G40AJZo9FoNBqNRqNxoQWyRqPRaDQajUbjQgtkjUaj0Wg0Go3GhRbIGo1Go9FoNBqNCy2QNRqNRqPRaDQaF1ogazQajUaj0Wg0LrRA1mg0Go1Go9FoXGiBrNFoNBqNRqPRuNACWaPRaDQajUajcaEFskaj0WhajYhcISJz97M/XkR+08pz7RSROPPvf4nIh614T7SIJIvI4FY3WqPRaNqIFsgajaZbIyKZIjL9MH9GvIh4RKRGREpEZI6IHNPK974rIo8czva1kUeBJ9rjREqpk5RS8W18jxd4G7i/Pdqg0Wg0zaEFskaj0XQMdymlegFjgV7AMx3xoSIS0Y7nmgL0VUqtb69zHiQfA78QkehObodGozlK0QJZo9FomsFcyn9BRPLMfy+4BZmI3Cci+ea+34iIEpGxBzqvUqoCmAuc5jrXRBFZLCJlIpIiIjeY228HfgbcZ3qfvzG3h3yW28ssInEikiMifxORAuAdM3xhtoi8LyLVZmjDWa73/01Ecs19KSJyaQvN/x6wopGdLjNDHipF5BVAXPtOEJFlIlJqes4/EpF+rv3Neu9F5DsRubvRtkQR+YFpwxygHJi6P1trNBrNwaIFskaj0TTP3zEE2GnAZOBs4B8AInIlcC8wHcMjHNfak4rIQOCHwB7zdU9gMYZXdAhwI/CaiJyolJoJfAQ8pZTqpZS6ppUfMwwYABwH3G5uuxb4FOgHfA28Yn7+BOAuYIpSqjdwBZDZwnlPAVJc32UQMAfDLoOAdOB899cFHgeGA5OAUcC/WtH+94Cfuz5nMjAC+M51zG6M30Wj0WjaHS2QNRqNpnl+BvxHKVWklCoG/g3cYu67AXhHKbVTKVVH60TfSyJSCZRgiEnLQ3o1kKmUekcp5VdKJQBfAD85hLYHgX8qpbxKqXpz22ql1DylVAD4AEdcBoBo4EQRiVRKZSql0ls4bz+g2vX6+8BOpdTnSikf8AJQYO1USu1RSi0221EMPAdc1Ir2fw2MF5Fx5utbgFlKqQbXMdVmezQajabd0QJZo9Fommc4sM/1ep+5zdqX7drn/rsl/qiU6gucCvQHRprbjwPOEZEK6x+GOB92CG0vVkp5Gm0rcP1dB8SISIRSag/wZwyRXyQin4rIcJqnHOjteh1iB6WUcr8WkaHm+XJFpAr4EGNysF/Mts8Cfi4iYcBNGKLeTW+g4kDn0mg0moNBC2SNRqNpnjwM8WpxrLkNIB9H4IIROtAqlFJJwCPAqyIiGIJyhVKqn+tfL6XUHdZbmjlNHdDD9bqxmG7uPftr08dKqQswvq8Cnmzh0ERgvOt1Pq7vbn4fty0eM893ilKqD0bYhNA63sOYKFwK1Cml1jXaPwnY3spzaTQaTZvQAlmj0WggUkRiXP8igE+Af4jIYDPW9iEMDyjAbOBXIjJJRHoAM9r4ee8BQzHigr/FCCe4RUQizX9TRGSSeWwhMKbR+7cBN4tIuBkP3ZqwhWYRkQkicomZgOgB6jFCNJpjXqPP+g44SUR+aNrsj4SK9d5ADVApIiOA/2ttu0xBHASepZH32DzXAKCzq2loNJqjFC2QNRqNxhB+9a5//8Lw8m7G8JomAVvNbSil5gMvAcsxku0soeZtzYeZsbQvAjOUUtXA5RjJeXkYoRBPYsQFA7yFER9c4XpAx5+AazBCDH6GURXjYInGqGtcYn72EOCBFtq9FUPsnmO+LsGIlX4CKAXGAWtcb/k3cAZQiSGm57Sxbe9jJAY2foDIzcB7Zk1kjUajaXfECBnTaDQazcFient3ANFKKX9nt+dwIiKXA3cqpa7vgM+6FbjdDP+wtkVjhFZcqJQqOtxt0Gg03RMtkDUajeYgMGvyzsOIBX4PCHaEaOwumKEry4DXlFLvd3Z7NBpN96LDQixE5EqzAP0eEWnyiFARuVdEdpnF4JeKyHHNnUej0WiOEH4HFGHU/g0Ad+z/cE1rEZErgGKM+OuPO7k5Go2mG9IhHmQRCQdSgcuAHGATcJNSapfrmIuBDUqpOhG5A4hTSv30sDdOo9FoNBqNRqNx0VEe5LOBPUqpDDM55VPgOvcBSqnlZsF9MBJeRqLRaDQajUaj0XQwER30OSMILaSfA5yzn+NvA+Yf6KSDBg1So0ePPrSWdSFqa2vp2bNnZzej09F2cNC2cNC2MNB2cNC2cNC2cNC2cNC2gC1btpQopQY33t5RArnViMjPgbNooa6niNwO3A4wdOhQnnnmmQ5sXedSU1NDr169OrsZnY62g4O2hYO2hYG2g4O2hYO2hYO2hYO2BVx88cX7mtveUQI5l9CnK400t4UgItOBvwMXtVTfUik1E5gJcNZZZ6m4uLh2b+yRSnx8PN3p+7aEtoODtoWDtoWBtoODtoVDe9iiss7Hi0vTuO/KCcREhrdPwzoBfV04aFu0TEfFIG8CxonI8SIShVEQ/2v3ASJyOvBf4Fpd21Kj+WP/9QAAIABJREFU0Wg0miOLF5em8faavcxNaOLf0miOOjpEIJuF8+8CFgK7gdlKqZ0i8h8RudY87GmgF/CZiGwTka9bOJ1Go9FoNEckgeDR+2wBjz8AQEOgpSeRHzpPL0zm+lfXHPhAjeYw02ExyEqpeRhF9d3bHnL9Pb2j2qLRaAxei9/DGcf2Z+qYgZ3dFI2my7Mjt5KrX17Ne78+m4vGN8n56fKI+f/hrA776vL0w3dyjaYNdNiDQjQaTSh7S2opqPR0ahteXbaHbxPzOrUNGs3RQkJ2BQALdxZ0cksOD2Iq5LqGQId83sa9Zewrre2Qz9JoGnPEVbHQaLoLFz8TD0DmE1d1yucrpaj3BfAHjt4lYY2mI4mOMHxOHl/HCMiOxuszQisq6ho65PNu+O86oPP6SE33RnuQNZpuii+gCCrjf41Gc+hYAtnrP3wxup1JeZ3P/L9jBLJG05logazRdFPqTS+XP3h0DuYaTUdjC2Tf0XlPVdYbwris1tfJLWlKbkU9NV5/ZzejzXh8AYJHcWJnV0YLZI2mm2ItA/vakJFe5fEdtcvHGs2hYt1KXv/ReY9YHuRqz+EXyG2pBqKU4rpX1vDS0rTD2KL2RynF9a+u4cmFye12zk2ZZby9em+7na87owWyRtNNqW+wBHLrB6JT/7WIa15efbiapNF0aRoCxj11tIZYVJgCuSNK2bVlIp5TXk9JjZfMkq6V0Lczr4rkgmpyyuvb7Zw/eWMd//l21wGPK6nxMvWxpWRWNm/n1+L3MPr+77q1d1sLZI2mm2KHWLSxpmlaUc3haI5G0+Xx+Q0xcTQKZKWUnZwXOMg6bytSi8kpr2vVsbVtCJfYmVcJQFF1sw/gPWKxqp14D8OqnFKKzJJailuwSVphDQVVHgpqm/8tn1qQAkBl/ZEXTtNRaIGs0XQCyjXAVHl8jL7/O95Z07HLYvW+tnuQjyRyK+o7vUyeRuPGeoDG4RA8nYkvEGRfaR1+05t4MF5FpRS3v7+Zd9dktur4tsQT78qrAmhRDB6pLNhhCGSPL8jsTdm8uKT9QkS8/iC3vbeJx+fvbnZ/SY1hK5/rt9xTVM3o+78jKafS3lZa230TMrVA1nRrvkzIobSm4ztVtygtNEXeh+v3dWgbPA1tj0E+kjj/iWVMfXxpZzdDo7Gx7qWGLuRBXplazNas8v0e87fPE4kzy1ICtlBuCxV1Prz+ILUNrRO+bRHIO10CWTXj3U4vruH0/yw6okIw0otr7NU4jy/A/B35zN6c3eS4gx2fKup8ZJbWUVrTvMC1JhNu/8jy5GIA5m5zHiXenSuWaIGs6bbkVdRzz6zt3PHR1g7/7MP5qNbW4lSxaN1g5/Yazd7UtCPXaLo7lkDuqAdptAf//HonLx8gue1Ll2CCg4tBLjaFXn0rbeMWyAfyWO/Kr0LE6FetOGk3G/eWUV7nY19Z68I72opSig/WZVLZzGe3hBVeMemYPnj8AWq9AYprQgV+RnENUx5dwpZ9ZfbntDZBMrWwmkBQtRiqYnmQ3XO56EirTKHzG7UksLsDWiBrui3WYJZf2X4JEq3F7WGy4vnEekzVIbAho5Sb31zfKq9wfRurWLjjKu/7IvHgGqjpMszelN3llqw7G2tlqLHQOVIJBhW55fUHjDN1f5VBvaIIHsR3K6oyBXIrw09qPI6w8+ynKkhZbQP5lR5OGt4HgNLaptdsSkE14PS76/L8jL7/u3arxrE1q4IZX+3kwblJrX7Pwh0FTB7Vj+MH9cDjMzzrDf4g1S5Bm1xQTVBBQaXxnVallXDmI0tscbs/ducbXvWWPPHWve0WyDER4QDUeR17l+kQC42m4yio9JCYU9HZzbA9p50xjrln6O1ZM3VdRilr00tblVjR1ioWurxb96GwysN9XyTy2/c3d3ZTuhSWAAsEFSVdwPNWUuOlIRCkyiVGfYEgqYXVLb5nYM/o/XqQ1+wpaVZUFVUboWSeVvZ37lCMWm/TvmfmynQ+XL/Pjj8+74RBQPNJZZZAtvrdbzOM9uVWtN054g8E+dvniXZioFKKRaY3uLVPGKys97E9p5LpE4cQExGOxxewPb0lrklplunxtqqjpBXV0OAPtsqrawnklkJaLI++3zUAWh5kd1WNsmYmHN0FLZC7KP5AsMuWX7ntvU1c+8oa9pV2bjyYJfg6QyC7PcjtmfFuDUytWcb0mJ+7vyoWqYXVbM+uMI8PPWdbq19oug6WAGptxQGNgTt0qiNttzWr/KDuR0sguj2pD321k8ufX9ni6sGAnlG0NPRkl9Xxs/9t4LwnmuYGWBUmDsaDXNdI5K1NL+Gxecm8sSKdXfmGUD13zEAgVCB/vT2P7LI6W/Bbzgirz/cfRILy+owyZm3OZmVqCWB4df+7MgOAsFasAmaX1TH534sAGD2oJ9GR4aYH2bCLe2JlCWSr3ZZYbU2d7d35xneu8fj5bHO2PeZkldZR5fHZXmj3ZWM96GZfmTM2l7chbORoQwvkLsrdnyRwz+xtnd0MADJLalu9nFjj9dsJFYt2Fh7OZh2Q1noyDgdugWwJ9UMPsHAyjlvj7W1Nkt7lz6/kulfXAE093cWHkNyYU17HOY8tIaP44ErGuT1Y7uXGTZllfLM9r1VLkO2FUoqErPIusaTeWqzr52gsV3Ygvk3M42+fH1wIkc/vFsgdE7qVUlDND19by9Lkoja/1xLIVfWOAP3KjDfOKmvegTGwV1SLT99MsCbTvmATL7MVYuHum2auTOdiV/KfG3eogduDXNfg529miFdOeT3Lk4sZ3jeG0YN6Ao5AVkrxx08SmPbUcrtftCYwQfu8bX/y3oKd+QDUm6J9VVqxvS8iTMitqOfhb3e16GVfvMsZ94b0jiYmMgyvy4PsTsrLtj3IlkA2vtv+xq6IMGMkSTEnBeV1Pv7v80T7ISoXPr2cq19a3WyIRXiYIQkLq5w2NJ6cHA78gSB//zKJjXvLDvtntQUtkLsggaBiRWoxGcWdn5GblFNJ3DPxbN63/yxoi1zXoFHj9VNS4+XvXyZ1yvK91/Ygd7ywcQuPg+mkW6LM9D64vTSV9b5mQ1qaK/NW4/Wzt4VM78Ye5EMpsZaYU0lhlXe/S7n7w91p/+Ltjfbff/sikbs/SeCcx5Z2WBjPwp0F/OC1tXyxNffAB3cRrAG42uNvdqDvqqtXYIiO/V27d32cwKzN2QfVL/gCQSLDDYGS3UEeZOs6b0u8eGWdjx25lXZ/XO8LNEkw3FfafPtjIsNprI/rGvx4fAF7tck6pxsnxMLZ/ti85Bb7G3e/6L7fv03MJ7usnnsvGw8YYWUnDu9D39hIwHmYSXOhY95Gq4aV9T4+WL+v1eNPMKhYaDp2LDut2VNq7w8PE+Yn5fPW6r0trpCmFTl93tA+McREhlPvC9jnc0/uD8aDHBnevKzLLK2179ussjrbU+13manxvd4rOqJJeEtBpYfZmw7u/miJ3Ip6PtqQRWYnryo3RgvkQ8AXCB60B8wfCPLUguSDKjuTWlhNXUOgQx73eSA2m9m1ea2M5XJ3mnUNfp5ekMJHG7L4LjH/sLRvf7gFX2phNTe8sa7dEhI8vsB+y/O4BXK1uZTY0upcQaWHV5fvaVWHZLW/2rU8+dv3NnPtK2uaLME6VSyc7be8taFFj05jr4V7MGwr1sDs9ly1BXcIya78KvteqPb4OWl4HwJBRfpB3pttxRrErJjEzsQfCPLRbi9PzD+0R9e6740H5yRRXO21r+dgUDH9uRXMXJne4vsr63xc8fzKI8ImYNwXljiY9tTyVpUHbG0ogJuGgKJfjyj694jsMA9yshlf25ayaBc+vZyrX14d0m9Xe/whIrslgRwu0kRInfjQQi5/fmVIn1DXqD3F+wmxaE7whYZYGPvfWr3Xjjm+dNIQ5/OP6UOfmAjA8SA3VykoragGpRRW61emFTNj7g67HvGB2JpVbn+P2oYAZbUN7DJjfcEIsbB+d3cf7MZqP8CQPtHERISHVBIqtoRrIGj3k9Z3KTc9yPvLW7EmaI3/rm8IUOOaaFi/ofuz3cmXEWHCyP6xZJfX8fcvk6gy+9iPN2Zx3xeJvL0mk1qvn3tnbTvkevSZ5rV23IAeh3Se9kYL5ENg5soMrnxx1UEtQSzZXcRr8en87H8b2vzehCyjE2rpBmwtjUXtW6v3sinTELz1DQFO/88iFuzYv3BNyjUGwKoDtMXrD+APBENm6rUNAfuGbGst3s2ZZYe8jO4WfE8tSGFjZhk3zVzPi0vSyK2o58uEnIM+9y1vbeDMR5bYr4urvVz8TDx7zLqX7hCLqgNMdP48K4GnF6aQWnhgwWctJf7sfxtsz4xV47SiUfJKc0l61rXVXB3Xxl6WhYcQImPFZx7ou7dErUsgK+Vch3VeP5OOMbLZreXI1vDRhn3c8eGWg2pLtJn53R7hCBnFNYf0GN89xTUs3ufnjRXph1Tf2/1bz9qczZRHl3DBk8sBSMytJKOk1o5xbI6MkhpSCqtZa3rXtmaVM2nGAoqqPWQU14Q8iKAxyQVVbWr7gSaO5bUNnPHwYp5bnNrqc8KBJ29fbcvlk41ZIdt8gSBR4WGMGtCjwwSylYz1xPxktuwrJxhU7Mht2b6V9T5bRLrLnlXV+0IEbnYLJdHCwqTZJ+llldWxI6+SgT2jgNB7FFwCuaHpfdJcEl5No7CKwioPD3+7i3fXZgIwol+svf+EIb2ICA+jd3SE7UF292GWeP5oQxb/XZlhe5CtSUDifq5HNwt2FBAVHsagXlHUN/hZl14asj8ifP8CWSkVsvLbIyqC2KhQGWaNa/mVHlu8Wp7vUtuDHDTbk8/tjRJpoyPD7b/HDelt/13XEGi2DJ2723L3PUN6R9MrOoKErAo+2pBl1+nPMr28j8/bzV8/286chNwWH3JVVtvQqv7M8rZbYTJHClogHwILdhTQ4A/aQezBoOKfX+3Y77Lxpc/G85fZ2/l0k9Gx5lbUt+oC8geCvLvTS1JOpS142iqQ3cuin27M4rwnltkDVUVdAw9/u4ufvLEOMJYHy+t8PPjljv2e0+qID+TN/uFra3l6UUrIwFvn9RNhLgftrxZvMKi486MtLN1tCLKiuiA/fmMd5zy2lD9/mtDi+9bsKbEHD4tvtueRmFOBPxC0BaLCeIIQGHFbzy9J5ekFydwzaztzE5xl8+UpRc0mv/kCQb734io+cxV535Rp/EaWZ2ThzgL2ltTyv1UZ9rksDvQ7WvFgNd792zgYVCFF3S3RGGUmXpSb4nldeinfbM+zf4vmJie786tCxGsgqEJ+u6iIMDZmltnnbCt27KPHz5JdhWzOLGtW6CxLLrQnFW4aT0oTcypRSlHnCzCsTwzhYRLStleWpe33QSx//3IH83cUoJTCHwiycGdBq5cQLbu47eP1B/h0YxZJOZX7DUfIr6zn5aVplNR42ZpVziXPrmDJ7kK27CtvdjVjb0ltixVKUgurQwb61XtKWtX+5mjOQ1XvCxAMKpabsa77m6Bak7GMEuO3+9+qDOp9Aa55eTWXP7+SX76zsdn3eXwBrnxhFRc9Hd+i3UprvORV1KOU4pVlaZz/xLIm3tPZm7LZZoo9S1R8vT3vgNVd3H1x42MLqzx2vGlpjZcH5yTxenyoF90KsRjZP7ZJkp4/EOT+LxJbnHiv3VNCUVXrPHFltQ3MT8pHKRXSx/3o9bV8uimbq19e3UQkr8rx8bsPNjNrkyPqUwqq7ZjVKo+P7TkVhIcJJw3vQ55Z/rLxfRAe5thpflI+V720yt7n8QU59wQjWa5x6JiVpNdcOENNM32gu7+r9QZCakuLYIdUAAw3xXKf2EjHg+xSfieaJeDA6P+sn9maBOxvQuFmV34VJ43ow6Be0dQ1BFiTXkKv6Ah7f5hIs4mP1melF9dQ7fUzbdwg/mKGiMS4BC04VSzcExSvHYNs9AnWuPL7D7eyaFdhyGe5fy/3967zBZq9/v1B43fMKa8L8SAP7RtDD9d3e29tJg3+IPvK6jhlRF/694xivul5H94vluJqL6vTSsgyJx2VdT5zYprSnClDyCypIyYyjCG9ow94bEeiBfJBUljlcbyn5kWXXV7He+v28fv9eKLSi2v5YmsOK1KL6dfDuMFbs6y/Kq2E+Gw/i3YVkGAK5IZAMGRp6tvEvCYzWjButDdXZjDmwXl8sz0PwL6wC6s8FFR6OO0/i0PeY5WR2V/b6hr8tnhxe1uCQcWqtOKQGzWnvJ716aVNPMhWuFR8SjFfbDEGjtmbs/nR62ttMZqQXcG8pAJue28zK1OL2VZkbB/VP5a52/Ka9UJaCRovuQrgF1R6uPuTBK59ZQ0XPR1vJ0vkV3rsJR4Lyzv651nbSC2sZm9JLb96ZxMPzGmavBOfUszu/Co7ccRNoVm/0lrqspbKZppZz+AKsWghTc/q6A8UY1jl8YUM8LM3ZeP1B+zMZMu7fNOb67n7kwQnxKKZWL3rXl3Dr9/ZZL82YgydAefaycMJBBWPz9/NL9/ZaA/SW/aV87V5je0pquG2dzdRUuNtInYsL0tBZT2//WAzP35jHVe9tNoWvtlldSzeVciv393MlS+sbNK+xg9iSMypoCFoeJN7RkfQv0ckGSU19hL/M4tS+cfc0MmeLxBkW3ZFyHVaUefj1eXp/O6DLcSnFtPgD3LLWxtYltyyt9wadNwTnYU7C7l/ThLXvLKaq15eHXJfvha/h6cWGCEQc7bm8uziVB6Yk8R7pmfsifnJ/Oj1tfz7m50hn6OU4uJn4rlx5vpm23H58yu5z5VctiKlOGT/++syue6V1S1+DzctxWT+4PW1vL3a8Bbtr2+wyl2lN8qTKKzyMqR3NKW1DdR4/XaIWXZZHaU1XlakGm2u8fpJdcVqZpfV8Xp8OkopznxkCec9sYzH5yfzzKJU8io99nmUUnj9Ae77IpHrzeRS63cJBBXxKftPZHOL/sZi4vpX13DLWxvZsq+MN1akU9sQIL8y1MFhCOQwRvY3PMju635vSS2fbsrmnlnbWbAjnwufWm7XYPcHgtz8vw38tIXftjF/+jSBOz7ayr+/2dWkyoA1CXc/Ha+kxsu7OxtYuLOQx+Y54Tf5lR7GDukFGH34tuwKJgztzfGDepJvLpsXNep3IsLCKKttYHd+Ff9dmWEnXVtY5dbc92hdg58ar5/IcAmdaJsDQHPhITWNYpDdgjs2MjykbvywPjEAjB/aixWpxVTW+0IE8vEuz2RQKTvu1ur3d+RVNpkcNedtLa/zMbBnFLFRRtzwxr1lTBnd394fHiYtro5Ne2o5058z+rLbLxzD3ZeOA5zawxYlNV4SsspDfj+vmfRoTTwbr1a5Qxzc33vyyL7Od6praPYhKv6g4u5PEvhg/b4QGwzrE0MPl3gvrPIyLymf7LI6Threx647DcaEZcqjS/j5Wxu48OnlfJmQw7OmMLaezrc/sspqGT2wZ7s8C6A96TCBLCJXikiKiOwRkfub2R8tIrPM/RtEZHRHta0t7CutJTGnwvaiQNMBsqX4oMadwF0XjwXgkmfjeWVZ808y2lNUQ1Zpnf0IytTCatKLaxnax5hpWcK0vLaBuz5O4KY313PXx1vtzuRPnxpZvI/OM57H/sVWQ4RaA0FsVLjdobpxVyg465ElfLY5mx25laxNN7xSK1OLWZ5cbM/E3Z3Bu2szueWtjSzZ7djI4wuQXFBtL6UN7BlFXYOfCDNrdsnuQv79zU4CQcV9nyeyZV+53dG4B7Vb397Ix8nG4Dtt3GAATv3XoiYexeyyekprG5i/o4D31xmxUm4Bm1tRz4KdoXFn15023P7bHSdX4/XbcaZzt+WFZCED9m/TKzqiibfFGgAtJ60/oJp4bA/kfbdEdfEBal+WNhIsq/eU8EZ8hu2haOztta6RlsJb3ImXtd5AyGRs8si+DO8bw+zNOcSnFPPsImP5+oUlqfz1s+1Ue3zEpxSxNLmIsx5Zwk9nrrNjoJVSdmzd3G15KAVTxwxgV34V28wQj6teWmXX4HWvLuzKq2LmyvQmAnl7diXW7dUzOpx+PaKYl1TAVS+tDrnv3L/Pg3OSuP7VNXzrin8//eHFfJNoCPyqeh/zd+SzKq2ExbuK+GZ7Xsh9vzK1mKcXJvOa6UV0C4k9hdWECVw0fjC786u46c31tjB4akGK/R5r0rN4VyFfbTM+1wqNWbizgOJqL08uSKba4yyLN14VgaYl904/th8r04pDBNpDX+1ke05liD2WpxTxbjPLoy09mGF7dgXVXj8ixiTaHWs/Lymf859YxpcJOdwzaztAs4nEP5t6HAAvL03jkmfj+TYxj2lPLefGmetDYkEtT5TXH2DaU8t5ckEyeS4hMHNlBqeN6gdgi7l/f7OLCf9YYB+TWOy37Vbl8fGnT53KP5aQqKzzMcfsF922qaz3ce/sbbywJJUar9/+jB+9vo43V+2ld0wEvoCyk8+Mcyoiw8MY1T+WBn/Q7mc9vkBI//P7D7eSVVbHh+v3oZSi0LwOrN8+EFQh98sj3+7i4w1ZPLMwhamPLWVVmtEPW+EGbjLMc7y3NtOuSDF7czYBBR//5pwQ0QTYIUmVZojF5FH9GN4vlvxKD0opPt2YHZIfYZUy+96Lq2wvvcWAnlFMGGYs67vr71oVLEb0i8UfdPpAa/LeXK3efNdvXdsQCBljGntdh5jj4b2XTaCstoFZm7Ls2sEAfWOj7L/9AUW9L7SfrmsIkFFcw50fbeHjDVnc/OZ6bnl7A3d9vDUkjr6iroH+PaLoERVOXUOAgkpPSFhAVb3P1gGW46Q5Thjcy/7bqj0MhijdmlXBD15byzOLUokIE3pFR/Du2kxWphbboSEPzEkKEcXu+8Ide32OWfoOjMlAckFoewb3jsYbMPrYqvpQB8vQPjH0iHbsPGpALO+uzaSkpoFj+sbakxJoWrHlnlnbeX+dsWJ3TN8YmqOizphk5VXUk1lax3EDj6z4Y+gggSwi4cCrwPeAE4GbROTERofdBpQrpcYCzwNPdkTb2sq9s7fzz693smR3EeHm0tSNM9cz5dElbDeziXMr6pnwj/nc9/l2Ugqq2ZxZhj8QpMD1xLZzjh9gd+7VHj//W70Xjy/AJxuzePBL52k8059bwYVPL2eJGV6wyBRnF5ricMqjS/guMT+k5Nu3ifn8/K0N7CmqZvGuQs4ePcDeF252btbAXOP182VCaPZ9rddvL/X97qIxgGLRrkKeXpjCL9/ZREpBNbe+vZE/fGw8orlXdESI92yH2aGU1nj5dGMWN81cj9cfxOsP2gkNA3pGUesNhCSIVXn8rM9wPG3WbDm1sJrBvaPtztRi/FCnk7ESH77alsufP00gIdsRdw99tZMb/rsuZMn5h2eMCDnXicf0CfEyuPH5gyEZya/H77H/Lq72sjy5iJ5R4VR5/Dy/JI2vtuXaA4rVyVuDtD8YbPJse8t2KYXVTH9uhbEc7RKAlrCaMXcHD8xp+UlNzXn03liRbgvnPUU1pLnCf6z4O39QHTCcoLbBHzLxCwsTLnElyaxLL8HrD7A7v5oGf5DFuwpDvAGbMst5z+wwq+r9dgknS6TcOOVYAG7+3wZ+98HmFmPa52zN4bF5ySHF9MG450rqjXPFRobbqzoAy1yi1j2gLzbvqcaeWmtVpKLOZ3t1M4preHzebn734RZ25Breptve22QLXYAa1wCeXlLLsQN6hCxxbm1UCq6o2rPfUnkeX5CfzlzH6/HpfLwhy56kgfOo7y37yvH4Ak0GqGtOHU5JTWgCkbWUnu4KWfnVO5v41ze7AON+fWlpGr5AsElC5qgBsSGvLxg7iIIqDxNnLODMR5Zw9qNLuPOjreSaj2+3KKnxUuXxhcSYTh5p9Hv/XZlBUBmiFowEqiW7C5k+aShgxLQqpXgj3pnA5zfKm7jenNR+viWbtXtKQgRjTGQYb2z32mFkjUOZKuoaWLq7kMn/WcS9s7eT2Sh8pby2gTlbc3lhSRoLm0ni+r8rJgBw7uPLiE8pIr3YaH9lvY+R/Y3BPtv8XZ5dlMLWLOfaCxPoGRXOq8vTOfXfi5jlenT7gh35/PS/6xj79/n8+5udfJeUz/9W7+XBL5NYkVrcpP9oTO/oCP506Tgq6/3MmLuDQFAxe1M2kwaEcd7YQcz9w/m8+6sp9vETTUGbmFtBlcfP6aP6cUzfGBr8QcpqG0jKrWD8kN48fN1JfHPXBbiLJFhjoMXkkX3paYoqdx9mTR6PHWj0sdbqqyUOmwuxyCiu5bwTBiJihOO5f7+YRmOBlQdwysi+TB0zgP+t2hviLe0T64QKePwBmgmDtlcqH/wyiZ15VSTmVPJtYj5fmtVpPD4jKa9/zyhiIyMoN1dBBvVywgIyXEn383cU8Iu3N6KU4l7X+BwbGR4iLvu4QkVOHhE6eRnRP9aetDVemX7ku1323ykFVbYDo8Ef5HcXjmH9A5c2EZ3WJNxiYM8o6k13elW9PyTEIiYynJ5Rht1E4OzRA+2iBLFRYQx2hUOkNwqDu/3CMViXRmyUI7I/WL+P5xen0uAPctp/FvO9F1dx3hPLyCqtY/TAIyv+GDrOg3w2sEcplaGUagA+Ba5rdMx1wHvm358Dl8qR5m/HELYJWRUs2V3IheMG2duLq70hy/lR4WF8vT2PK15YyY/fWMeMr3awLduZiU4c1ifkAquoM7xVH6zbx+dbcgg2Ei2+gGJoD0EpY6C7wPXZf/h4K/EpxQwwkyMmj+pHQlYF059bSV1DICTb1zKpNTAv3FnQxPN40dPxzNmaS1R4GPdfOZFTRvQlr6LeeOqSP8hNbzrLgIN6RTFmcE+yy+rsOF7rMZVef5CZqzJY5xK9W0yv5ADTg9zYE+iO+a2o8/FlQg4LdxZy2qh+XHXKMSHHjh/qJCBYmdx/+nQbc7flhXgFAXbmVfG/X5zFJROHNHkvGBnRPzpjpP3a8qoA5lKwI07cHeLM9aUNAAAgAElEQVRnW7LxBxUzrjbmey8tTeNPn26zOxbLI1RR32CeK2BnIltXd7Ur1m5PUQ2PfLebGV8Z4QB1DaEDwycbs2wvZoM/aHdo763NbDbJLKCULUKfXZzKZc874Qruzry5GPCLJwy2/671+u0JIBhepAkuG9Y2BHh+cZrtMft6e57toU579HvETRjMs4tSyK2oJ6eiafLP2CG9GGNOUBon/8W6vEWWLdxx/tYgkFxuXEs9oyNClmPd4ubR74yVlKDpMTnzuP5NnnhmDfpLk4vYmlVBj6hww9NR6aHBH+SOj7aQVVaHL6D46+UT7PdZorKg0sOy3UWMGdzLTlgCIwHSfa/tzq+mpNrLlNH9GTekF+ePdbw9FpYHdlVaCUtcKxf3fZFIUbWHH7+xllmbsu1YX4urTzXuFStkAWCY6cmxJgDWahAYqwiPz0/mucWprEgptidlN509CoDvnRx6741xTSYnDO0dEpowutGgvLe4NsS7PqyRR8kdOlTt8XPT2aPoHRPBI9/t5lfvbgop/dT4yWcnjehLZLiwcGchNzdKeF745wsRMa57i9NG9ePVm88AYGVaCXd8uNXet2R3IT98ba392ppAAXy+JYdRA2L56Dfn2NsunuD0q6vSSvh4g5NXMrK/MaGYm5DL5c+v4M1Vjpd+WJ8Y7owbyw/N/qba4w8ZO37/4VZ79eadNZncM8sRV0m5ldw4ZRQr/i+OVfddTGN6R0dww5RR3HPZeP55zYlUefwkZJWzr6yO8f2N+0hE6N/DuS6tvm6V+eCLyaP6McoU+HtLasksrWP0oB7ccu5oThnZlzCXKHbbwHqv1ffd+dFWe2XP+o3Hm+Ec/zEnRZawdXvurdMP6hXNCzeeRo/IcMODXN/Ug/yPqyZx45RRIW34vysmUFTt5dXljiOjT4wjQq3QCeseAegRFc5DXzWfb1NS4+XphclMnLEArz9Ivx6R9IgKt/tP9z3euPJHUbWXbxLzmeMqATlmcM8QG1q2BkLCFgCOdVV1aBxWsdYVtvXYvGS79nJQGcl/w/rG2PYFw3uflFsZshoQFRGGNbwYIXrOvrFDetHDFLc9oyLoHRNhOy6iG4WFNC7Vd+Zx/Vn/wKWEh4n9nn2ltcyYu4MXl6Yxv1Hyf0MgyHFHoECOOPAh7cIIINv1Ogc4p6VjlFJ+EakEBgIhmSYicjtwO8DQoUOJj48/TE1unh41zo18dp9qlpt/nzU0nM2FTkd/3jC4YGQ0M9YYHfonG7P5ZKNjAn95HsnbHM/WwBjhuXlJ5FQHUcCchcuJcpVoOb5vGMNjAxTWCSf0Ffal7Q5p188nRVHpVXyTAeNiapk4IYpZKWYcca7TOWcVFBMfH28v1czZmkvvKBjfP5wthQH+eHo0K3L8bM/3MrSHsGLFCqTOS2axn+hwoX+0hHgqh8UECNRXk1gaZPpzK3n10h7syze8pp+vTSajJFQAJ5kiK1hfSWllkH2EDnhfbnUSWNZvTeStHeZ3KC0hbmwU8TFCmcd8yleK46mavzGZkZ69xEZAvZ8mYRDfPz4Syd9FSYnRtuLs0LCSnjU5pCfm884VPVi8z8/AWC+7zXt4Q0ISK7N8HN8njF5RQlqOYcMKT5DnVtRzyqBweleGJutYHf78remcHpnH7nRzCTW/lGVrjASl60+I5Ms9PhL3OR1dTDicODCc1btzeXZWMYNiQ+eIsRFw36zN3Dgxite2eYkbrgiTeP65oOlSdnQ4TB0Wxooco9c7eWA4pwwOJwz4KDk0u3jZ8hVERxhR0NbWqX2rGTYxik+SG3hv4UbmpDkDVFpqCgNjjPl1/2hhVO8w3lhh2GBcvzBWpRYTUV9ORBisWbWSq4YGWZka4InZqxjdt+m8PC1pC388BZZmRfJNuo9hPYSbJ0Xx3BYvkRIkPj6eoFLsyTbsuG6Xk3B3TJSXfcDu4gZA2JO8k7+cEUmpJ4LNBX4W73I646KySuLj48mtDhJUMD62ltgREWRWBsipURzXJ4yfTYrisQ0eVqYWExUOl40K46t047tPPzaC5dn1/PDlFQBU52cSLhBQUFlbT3x8PPP2NlDvC3B2nyoKXV7D7cnpRFc67V62fhv7inyM7BXGfadFI9SzxhnTGeC61lfvKWmSdPf8F6tQCpZuTWF4z1Cb7tq6ngExwpvxqRRm7+WUQeFEBg3bfbt+JwOr9/BL1zXz9aJ4kjKM/Z+v3E5vc8z3lBmTi8Fex/P05LRYanzO/TUyuh5L3k0/NoLrx8Jdy5y2PD13A6kFxv1w5egI9iQ6se2NiQiDYP4uBkQFqfYYy9T9zOsruzrIyi2h3v7MXdvoHw1FjeZcJw0MY2/SJm4dp3h9l3MPnd2/ntx0Q5z99bPtIe95dmFon+ruQ9ZllHLNmEh8OTv4zSlRDOsRRnriRp6cFstLCR42p2TRK9L4nKE9hIwdRnjQB2ZiaLjATydEUeYJ8pPxYYSH5TM32+jbzhwaTlp5kKqG5ldx/AHFA2fH8PhGo+8KVuazN8m5FtzXyaPnRdEjspD4+CKkQREm8OI3m1AKommwx8uCWkcJlWYYq1K78quIDofc3ZuxuviPl24ms9jHuJ5e+7252U7/f3afStZGQJ05LIaXZ5Gw2RGDs+evYHTfcNZmGvfPSREFhAlUVlURHx9PwGd8p62JO+ldbkxkekZCdQPcfpKwa8t6IiTInsxs6kuca9znNe61scDYgTTRAWcNDWe5KwY/Z68zASmqNK77EZQREQZ9o4RybyDk6YDnHhPOunxj7Ppmex7uNI2i7L1kFDjjWn5my9VRwgX++EloInmvYG1IexvcdegLQxOJwz0tl9K0xuHLjotg8T4/87ZlM623cV3kZO0lPj50ZXh8bx+5FTAgWig1r5e6mmpqGgKAkFtURnKKseL0r3NjGFCVRlGe6cxRfkoLnfNlpqeF2MS9wnrKoHAii3azq1iYNCCMnMJS4uPjWZvnaKd7ZzV9yFlFThrx9U3DPTuTjhLI7YZSaiYwE+Css85ScXFxHfr504KKAaOyOWVEX04a3ocnN80D4B8/nmonhQD88vKzOP3YfsxYY8TDTRzWmx+dMZIhfaLJKK7lzotPIDoinJcH5XHcwB6szygNSZ44ZtypxuxtmeHRuO3iE0lNTWVNQQN3XnEqceOHsKFyC3+ePh5fIMh5JwyitMZL2Le7mHHtyWSV1TErxUjIiTvndL7N2k5uRT2p5UH6jJkMOJ6SH08Zzd+unEhOeT1jh/TiXowLPqiM5IZd7GFZdgq1PsXvLhxjP1YT4MHrz+KjjVnsLDVEyBbPUIobcoEGkkqaxjFaN9WE0SNIS8ynR5++UOh09u6i5cOOPQF2GIPWry49latPHc6F59cx7SljWnLJhReQcUUkM77awaebsplxwxn0XbuJ+kaZ4JdMHMIrt55FWJjwTsZGKClm6hmn8tYOpzzOL6+Js70SF2NkNb+cYNgvdvCxpCel8adLx1FQ6WHJ7iLi4uJYnVaCP34DD/5gCueeMJD/bFpCYZUXEacQfUal4uSzziU2OwlyCinzCseOOxE2beW335+Kd3ka85IcD+eAXjGcc+IIXo9P5+UEL2ce1x/w8OFt5xAeJigUN7+5gZcTDDGzpkB48fYLYMHCJrbeNONyZm/KZkXObq48aRhv3HImYHg4P2pUB3bq+RfQNzaSiMXz7LJv06edQ503wCfJq/kizcfwvjGcMrIvC3cWMmniRM49YSBPb15ORFQUz906lStfWEmvmAj+cvWp/P7DLeQ0xNIn1ot1j366by1ZPsXpI4ZDwi7e+dUUfmUmAl41PY6oiDD6pRTxTfombjxvLH+cPp7anrt5d20mcXFx/Pb9zWwpNJRQiS8SMK6vcceNJLUqn0KPD1BMPesMzj7eCCuavSmbDa7Yz8iYWC688CLGPGjct1NOncRjpxvhNt8m5jN1zEAG947mu7w1bM+uYMrxA3noxtP5yizZd/c153BpfpUd6nL+lMn8+ScDeHJBMp9szCIuLo7F5Un075HP7394KctTingzyfiOvQYOhYF9AOOa7j30WGozMjlpzAguu+RkAE5IiLcT2/542STK63y8aHoXH7r6REQM0bgitZg1RRFAAzVhvZC+vXH7IOLi4hi9aw1bsyp4f1cDk0f1IyomAiqrSauJ5KKLLoIF8+zjt3oGk1pheEA3FYsRgpS6l7uvO49BG7P41ZUTeXTDfACuvGQafWMjSfFvZ/bmHM6YdAJLs4yEnL/84FwmHdOHu5Z9Z1xDk4ba4WEL/3yhHZ/67aRKSmq8TBzWhxlf7bDFaN/YKC675GK+zN/CPvO+qPAqpk08hsqUIvICfQBnQnnd5XF8lrWBokznCVwzrj6Rm88+ltiocNTy5by+y7hmJg7rzV9uOJ+o8DBGnFDA9pwKPli3j2njBrFoVyHuqm5f/eF8/EHFgh35tvf3xkvO4Pyxg4gjlOVlW4x68PXCGcf24v3bzqFXdARRy+fT4A/yvZOHcd+VE5uEcKlhRczds4k7rjidEf1j+d6Lq2jMScP78OrNZzB6UE9S/NvYkFHG766ZaodwbD/bR3i4kFpYTUZxLdeeOTLk/bOyN9hPJxvcO8a+F4uqPbDK6AOuv+Ji7ok3roXfXjiWSy42VkWeS1zOnDTDdnFnTCTODIPa2pACGXs487j+3P6D8xgzoZA7P97Kkz86hetPG2F4OpcZ496A0ZOImzycDQuSiUjN4LrLL2Z1VSLr0kuIi4uj//ZVFNRWMWL0CcRNGwNA5KrF/PyMYdx+/SkA9N+0nL4D+zF0cC9INsTooP59iIs7v4m9LEZMqg5ZLZt6xqm8sd24D2t8zrY//9gI4Xh1+R5eXmbMTv9w8Qncfck4npifTGGVh/k7CvjleaMpq23g6+15jB8/gcW5e8B07sRNPZONFSn2SmlsZDhxEwYzrG8MP596HIt2FvLkAmdsP/fkMcTFjQ9t8GLjfrngrMm8tcOZQE49eSzx2S3XNO8VHcHM31/O/V8ksTS5iKnnXQCLFzFh3FjbnqsnG79hcn41y9/fjF8iAB+R4cKgAf0oyikHFETFcsLY0bBrJ9dOn8aAnlFkRGTw5Z7dREdFcfL4MXyTbrTl1JMnce3kEVywu5C/frY9JCRuxo/OtvvfL/IT2JFbSVxcHOvm7wYM7TBhWB+8/kBIEu91l54XUrrvSKCjBHIu4F4HGWlua+6YHBGJAPri7gmPEMLDhJvPObbJ9tNG9WPyyL5sz6mkd0wEU0b3t0uYAcz9w/lNEgsArplsxNCN7N+DZxamGhm2QcX9cxLtpZc74k7gJ2eNZE19Bg/ceIkd0/PRb6aGnGtgr2hevPF0AMZGOPG5Q/tEs+Tei1iaXMgDc5L45duhJZYuGj+YmMhwO5sZCFnuGDPI2T6gZxQzbzmTz7fk8N9bzkREQh5x+najhJ/IcLEFl5XYEBURRq/oSGo8/pBazMcO6EFWWR09osLx+oP2gx4e+N5Erj7VsFPfHs5SWY/ocMLChL9cPoGFOwv486fbKHCJY+t8U8cMsJe0LP0dHmZ0LjVeP1tnXNbkt+nhipv6alsuSsFlJw5l6e4iSmq8/OLtjXZIi3VTf33XBfSOieDvX+7gy4Rcbjr7WD7ZmMX/t3fe8XFVVx7/npnRqFerS5Yt995xxbaMC8XYlIDppjkskIRdCAkkOEAghU2yJNkUAqTAQhI2FbIhgSUEiMEQTDEBlmBwwQaDccHG3ZZ0949XZzQjjewpKuf7+fiDZt6b4c7vvXfvueeec+6dT611l5j3HmpxQxXKC8LcvmQc7+96zq0/XJwXptGnvZOo2FiR7/5/BlUW8PaHe2gsz2f9tr38xldeLhwMuEkaRTlZ7mf8sZXhUFsP7o+eWst1JwyzE3AslaqKciI+99kFQ3l/134efX0LNcW51Bbnct6UBs6YWM+gygJuWjySgMAkO6v7nx/sjohdbRpSwe1/WUN1UTZ54SBNQyrokx9m+95DbpumDujDJTMaOd9O5CrKzeJgs1U/2+/R8yelBANiLx8eanPt/KFIxblZHGppjVjuL80Pu2FHzrMIMLSqgFc27WRAeQF9CrL5+bIpPP7Gh4yoLWJs3xLXQC7LD5OTFaQwJ4sDh1tpbTVs3LHPXRot9JVJ2rnvME+t2cqgygL2HGjmNy++y+4DzRFxh7+7cgZjv/y/rv4XzWh0DeQzJ9VTmJPFxTMa+dQvXnI313lryx5CwQDj+pZExFj7l0Ff2bTTrQX77kf721SX+PnfNzJ7SAWXzx7IuT9+jvuee4dwKMCAigJuWBiZLuL8JidZqzAnxPlTG7j/uY1u2M3zN8ylucVQW5LLph372Lxzv2scQ2Ss5Z3nT+TfH/0ndz61zr0PnGcrOxTgYHMrNcU5nDO5IWJyHgwI4VCA8kJviRusuGSnj/RH6T3yb7PcvxeOqWHhmBq+cOIwAEbe9GhEuFd+dohBlQXUl+a6BnK8ZKNBlQU88voHNJbnc8PCERFlv8C6r2LlN8wZVsmKz8+hr32vzB9R1WblKz875CaB3b5kXJvvcPrDCQ2lTGgobXN84egaN6GvKOxp4Q858Gu02Jeo/PXTR/PSOx9RUZjN4rFezobTlzqhSPNGVLHmKye6x/25Ik5d74/2HqIkL0wgIFQVZfPhbquyjXO933h/Nx8fOExRThYtrcbNlQErXODdj/ZFVGeIrvwQTUNUmI8/ztd7L+TeJ9fMH+IayBdO609OVpCbF49kw7a9zB1exScm1PHkmq2WgVxVwIR+pW64T0lemF9eNpULf/o8T63ZSl1pLnecP9H9/1zRVGDF3dr9sj9Bz6GiMJvSvKyI8D2IDLGIRWO5VfmhX3ke2/YcdJP9/dfAmUw5z9QFU/txwbR+hIMBrnrg5YgYZGdVMeh7tsEK5yvI8e7r7FCQYEBYMLKa3IdeizCQS3xjdG5WgPXb9jLh1sfYc7CZYdWFfHnxSEbUFnHpPS+4/VA4FKCmKPbzlUnSZSCvAgaLSCOWIXw2cG7UOX8ALgSeBc4A/moysQdwJ7nllJEMq7bihr515lg27zrA7CEVbc6LZRz7KcsPs2xmI/sOtTCqrpiHVr/Hs2u3c8q4Wq47werEAyIRAe/tkRsOsuzYRn7/8nvUluSSkxXk5DG1VBXltCkTFavz8DN/RBWVhVanVpYfZsHIahaMrHaPOwPHrCEVDKks4NcvvsukfqU8/s8PWTSmlt/ZccVj60t4dt12ckIBThpdzb0rN7B2616GVReSHQpw6cwBXPXLl2lpNZTkZvHAKit72p+JWxD2blmnRFBZfpivnz7GrXrgMLqumI079rn7ywOcc0xf/rZmK8Nrinjqc03s3H/Y7Tj85PsGuQ3b91FXksuImiL65Gezbc9Bfv/ye248bFWx1alV2Q/4orE1/P7l95jQUIIxhrtXrEfEqizw8sad3PW3ddSV5FKaHyYrGOC/L5vG1/5keUrzw8GIxK6d+w4TEKjyxatfOK0fP356Pf+xZCzX3P8ct/m8E1lB4abFo9wC8U590J0dGMh3PGkZyE4HedvpoynIDkUM9scNq6QoN4vxDaXMGGQZnl89bbR7/ALbqAVvcpLvu16nT6zn9r+s4dHXtzC4sgAR4c//NtMthQfWc3LjIs8gczrb9krchQJCbUmOm/jjv3a1JbkMqMhn3da9lBeE2XOwOaI+rT8W048zqITsMKcZg8rd3+zHuXcco/zjA4dZuXY7J4yqjjgOVs3Z93ft5/LZA1m5djurN+1kdF2xG4sKkbVdo/uMQp9Rs2hMjWsg7z7YzPPrd7BkUj3fOGMMzzxnTYCdygDXzB/C7Y+t4eMDze4Eyl9CCixD6ttnjSMcCnDJjEZ+8vR616COxjGQHMPKGLhl8SiWLxzhHqss9Aa7vmV5rhEY7/uy7WfZuTed6jYLx1jPUkNZHudNaWDfoRY3bMEpQfWFE4e7qzAVhdn0iTIynvvCXLcWcjTObxhRU0RDnzw3VtTpZ/0GS01xbO/WJ2cOYOqAPkwb2Cciac35y4lHjoVfl9tOHx1hIB83rJIbFg6P+9lEOH5kNTfYiXp+Azk7FOCCqf0iJoUQaZBNH1julmzz4xhPUfl5LiLCz5dN4dJ7V7Fu615O/cEzvPreLneyXFWUQ3Or4a4V69w8m9++9C4vbfyIv352Nq2tJiJG96TR1XzrfyPDGHKy2vZhfqJjZAuz297L0ZOEuy6YyE+fWR9x//Qvz3cnKHOGVvLKjQsozstiZG0x501p4Nm1292Ye8cojXW9s4KCM/8aXNXWQH72+uMQkYiKKAAlUWNzYXbITXAGz4AdYceRO5O5WEnOeeEQr3/5eHKzgq6+2aEATj7u7gOH3ZwWZ8hstJ1jHx9ojhgL/AZ4tNb+/tcJW5kztJKcrABzh1dGjOcODWV5Ede8q5AWA9mOKf408CgQBH5qjHldRG4BXjDG/AH4CXCfiLwN7MAyors8S6f1d/8eXFXI4Kjkr7H1xbzZzsYhfj5vG8IAZ0ysZ7/tbT1Slp88gi+eNDzixjumfxk3njyCb/9ljZvlG6vz8GPNFKu4/7mNxJqxOEZYS2sry08ewfUnDrOC8/c3s2rDDtdAntivlGfXbSc3HGRMfQn/delkLv7ZKib2K+Wrp43mUHMr/fvkcfX8Ifx4xXqaWw3fPXucW+0DiPgtfs/H/BFVXHpsI2u27OamRSN584PdfLj7AA+/+j59fR3WiaNr2HDbQvd19GDqkBc1EZk/ogoRobo4h1tOGcU72/fx1JqtdnWNyHNnD6nkpkUjmD+iitPG17Fr/2H+/NoHXNk0iBsfeo2pA/qwfOFwsnxGwdi+lkdt5/7DjKor5tF/m8Xx3/kbB5tbqS3OiViNuGBafy6w77u5DSE3ThsgFAxw3hTPUHUmL/6kqrDvuxzjESwvQXOr4doFQzh7srdK8qPzJ/Daex9Taht7sQzFaCY0lLBxx76ITrWuJJdlxzZy94r1rreusjAnwpiKZkydde39lV2iOXV8XUQSTH525PWYNbiCdVv30qcgmx17D0VUfIgegBwWja3l9sfWcPr4+pjHHRwD20kk/Majb9LSahhv37MDKgp48FMzuOPJt3n09S2IwDmTG1i/bS+vvAtfPW1Um0oADk6G/++unO7WJXdoGlrproA4DKgoYEhVIZuLrbbMHFzOP97dxekT6vjJ0+vZtf8wtSU5bLDvXYeTx9TwvXPGu8/T544fypNvftimkkU0F8/oz1/e2MKCkVUEAkJOILHJeyycZ8ExvmYMKueelRs4Y0I9l88eSL8+eYgIt5wykvzsED96ai059jPatyyPb54xhs/95h8RybUO1cU5bRIDo/nvf5kG4BnI9vX0X5t4zonivKyIlQqHqqIcNu7Yl/CycZ+CbC6Z0chPn1lPXUkuP73omI4/1AGl+WGmD+zDire2UZQd2XfeeuqoNud35MgBrw8OSHyDZsagciY39uHtD/e4lVScftK5Frf9+Z8R12v9tr3M/Y+n2H2wOcKDfEXTIIZWF1FXksutf/w/dwzpDNF9NLR1DEU7fmLheOxzw0GmDujDVJ+x54zVsa53VigAh1q4edEI16Hmx+nf++Rb49G5UxrYsecQE/pFrgqU5ocjDGTHUJ09pIKnr5vD5p0HWHLns26lmGjyo8b6LN9YcLDZ2zzLue8H+1aVC6M8yA7OZOWEkdU0Da2I+P2fO34o84ZXuQ6DeEQn9nYV0haDbIz5E/CnqPdu9P19ADgzXe1JF7+9YnpMozIROtsJxCLWrOzC6f1ZOq0fjV+wLkdBHE+Rn8+fMIysYICToipJgDcTP2wv1TgPe7Gd7eswvqEEEa8TPqZ/GU9c2+QaNOFQgCc/Z2VmT24sIxwMxDVgY+FUkgBr2bO11TCkqpDpA9vOWDsiLxypyYIRVRGvHc9gbYyBNxgQLp7R6L7+7tnj+Zf3P2Zc3xLmR32P294Ka2LlVAMYWl3oGkC17QywU2oiDeSsYOT1rizK4YHLpkZkR/vPWTi6huLcLL7y8Btssj2ruVG//YRRNZwwqu11b48J/Up5cPXmNh3ydScMY/veQxEDS3uMrrc8NT//+8Y2x/qW5bLi88cBRJQHdAYZh9Mn1LF6004GVhTw+nu7InaocuqnRtNYnh8xkYpm+cLh3LNyg3svOwbVY/+3hZG1RVx6rHf9x/UtcSvWzBpcQd+yPK5oGsiJo2sYE2cgA+85ibV0npMV5NTxtax8e7ubTT8gahn/6nlDOGtSA/WleRw7qJyHX32fmuJcNmzfx998BnKZL8zE+e77l01xd3B0+O7Z49jiC2EaUlXIqhvmxW1/Z8hyHAF2M+aPqOLvX5zrrso4iIgdlx9Z3cSZqAyvjnRQJEr0JCU3AUOxI+69ZDKPv7GlU32YY4T4w92OlitmD6QsP0xeKH7C1zfOGBOz1FosQgkYyGDdj/77zDGkjhtWSXVRDs2trW3qdzv3sv96BAPi9ptOf9JRiIWf6QP7UFdqTc5//LQXAuj3ICcDx+EUq1zZiJoiVq7dzinj6toc8xMOBdrtd8rywxHlHh1niIhQX5pHfWkea792UtxJdzR+Axm8lUbn2pb6VsAKsj29/LWbHWN5bN+SCMcKWJPEjoxjgIayrlfBArphkl53IxQ8cg9wKvEPiNFGTCyKcrK4adHImMdG1RUhAlfMGdjmmN/IL8sP079PfoQHsyLO1pLxljM7QyAgCXk7Y+HvYO5eOsndPtXBWfpPpJ3hUCDCCx6LgZVWB+Ff0s0LBzs0kMNB4UfnT+S5ddu5Z+WGNh0e0MYYjTaGnMHY2Yo52tA6EhyjLjoeMxQMxIylbI/rTxzG4298GBFfDkSEb/i9FtGDw5j6Eh781Ay+8cg/OdTSyrsf7ae8IJsXlh+5cbds5gCW2Ukw4N3nW3cf5MyJ9W12hLW1sTsAABqaSURBVHIMuPPs/IUx9SXtGsfQsRFws/08DrrBSp4bGGVUhYIBNxZz5mDbQC6xDE5/6cBYJf5qinPb3NsdDe5HQ6z7Nto4dnAm3f5ldmcgH1ZzZAZyNP4l5F9fPi3uZjrt0VieH3GPJIJjIA9OooE8fVA50weVt1vxacmkvnGPRRN0Q2zaP29ARWQ/4hhSWcEASybV8/0n3o7rBIq33O4YZtmdmMB856xxBAPC8pNHUFWU426a1VGYRmd5xi6b2DS0bYjlHedN5KVNH0UYnIkybUAfNwGwLD/Mg5+aQX442Ga12iFR4xjarpQ6Rr7/O3528TFUFGRHXG//8+HoWFvSuRji604cxifusIoF9C/vmh7krmm9KWklP3x086SSvDDrv76wTU1MiPTEWnHQNUwZUNbmvK7IzYtG8NCnZrjhFX4cgyeegd9Z8sIhfnjehIgC/s7EpT0DGeCEUdWcbderDQUT7xzB8pQ5SSP3PfsOdSW5zIoRQ99ZhlUXkhcOdhjfngiFOVk8cNlUfnP5NPe7IXLyVddOnKdDOBTgcIuVRNdeXOiR4Pc4xoqxmzOsktMn1Ll1uBOhowE8FAwQCgb4xSenMG94Ff3aifOdM8wKyfBP1JxM8+htwDOBszydyN3r6OLXfFzfEr68eGSbes1HSnRYWqxY3FTgGsgx4lS7Co53saNtCvzJ3RB5P1cV59BqiMg/8BOM892OYdYZ49YfpujfGS7Z2yx8e8k4pg3oE9P7X5yXFXN8TISfL5vCDSdZsegHDrcwrm9JXOO4s0Q7fpwt4v36zxlayai6Ygr9HmTf5N35u7MVKCb2K+WnF00C6JI1kEE9yAqdm3F2Fv8glpMV5LO+jRWOlOVTchg2auxRf09HXOQLk4jG0SwZYTAO0eErzuy+LoGZueOVL8ntnIciNxyktiSXcCjAoeZWzpvakJT7IRQM8OMLJ1FfkhzPgJMs88qNC9j00T5O/t7TERO7jiYR4A2U67bt4Zj+yZ2kOdcqILghAH7iVRloj0TiQSF+MpWfqqIcVt84n137D3PjQ1Yt4fOmNPD8+h0drm6kA6fmeyJGi7Nhgl+fYEC4cHr/lLQtnZTYE+/ojYy6EkE3xKL98+J5kAGq7LyDQ3E88/E8yM12RaToag/t4TeQ3Z3hEv504pw6vo5Txyd/lSUQEGYPreCrf3ojIsQpGTRFGe1uiEUM/f0JxLE9yJ13OkwfWM4NJw0/ojDIdKAGspJS/AZkspa0BpUGYybFpBNnp7FEjZgjIVEPMljLuVcdN4gzO7FUCtYEJhgQGvtYJePO6uTn2yMVXrfivCwkYBnd/nvL2c0qektkP84AveXjg26VimThJIyNqituE1ZyxN+Z5HsrFAy4Hv3qohwWj61lbH1Jm+1oM4ETYpGI4eJUaPHHefcUjhtWyV0XTOwSk5Z4JJKkB0Rspxx9frzwGYd4HmSnLOjAisQ9jv6QPv9EtjsxuLKAZcc2cnJU1ZGjpThqhe+jfYfiOkgikvSiYpCDAenwmsYiJyvIJ2d1LgwpnaiBrKQUf4xTZxIrujoLRlTzvb++zYkJJCAcKfm2dokYyCLCNUfgnXeMsKXT+7H/UEunEooyRVFOFsW5Wa4+YP3+5VNyWDxvetzPhSNqgyY3xMK5z6c0Js8znewYSbAM0fxwkIn9SxERt4RVpnEN5AQMl4rC7HYTmbozWcFAh5UUMo2TpNfRpWrrhfRCeZzSmPGIl7rjGMgDYtQSjoc/D8hxOnQyEi3jiFgx1Klm177DcScn/uvpXw2oKMxmQHl+SleiM4UayEpK8YdY+AuId3dG1xenfJDO64QH+UhxvLD+0nDdgVtOGdmmiP6g0mC7JeOyg6kzkOtKchlWXcjCMUfv4akryeW9nftjlqZKBt86c2yXi3H1YpAzO8iuvP449h5MrJpDbyXoxiB3fO4T1zbxqxc2cceTa/HvatAnP5tgQCK2u/cTL8RiVF0xm3cd6HADDbBqaDu1wh26qwc5Xezcf7hNJaRY+EMsrj1+KJ+aMyiVzcoYaiD3YsoLsl1vQKoIBITvnzuesfUlSU+K6OkUhK2NOuJt2JAMco6iznYmOZKKCpEe5OSGFRTmZEXs1HY0/PryaazetDNlHpkTY5RqzDThTniQU0kqJ6M9heiNYtqjsTw/5s5xwYBQUZDdpjKN+/+I893fPmscm3fuTyj86LtnjeObZ4yJeM/1IHfPbi+liEBLq0loTPAbyNEbSvUkeuavUhLi71+cm5b/z8lJ8Kr1Ri4+tj9NQytSOrFIZpJhVyeVIRbJpLYkt9cZarHKvCldE+dSJTp/c0KFon3FVcU5cQ3k1jib6OZnhxKu4OBUefGjHuS2fGlqDnsLG7h7xTp2H2hOaEe7rlq+Ntn0jl+pxCQYkB4ZN9RTGFZdlHJvXzI2ROguOF7KisLslCZXKp0nkWVdpWsQtPch7ihJz8HJPTFRRm9VOyUynWoVycbpA/JDer85DCwJctXcwe7GKWoTeKgHWVF6Mb3JUHQ8yF3Ze9xbcWOQMx1joXSIYz8leqlse7qtB7mdqgexNq9JBhWF2Vy7YAiVBzal5Pu7M0W5Wby3c3/cJD2wwr9WbdiRxlZlFvUgK0ovpjeFWGS7BnLmy5opkYQCiZd5UzKL4whOdDITL/Gyuji+gdzS2vmdCxNqiwifPm4wlXlq+kTjlHFrL8TimP5lXNnUMxPyYqF3iaL0YnpViIV6kLssxvYvqgO56+PEBycaYuHYx9FhxZV2iMU5kxv417mDI5b2U+VBVuLjhljoQ+iiBrKi9GI0xELpSujY3PVxDN1EQ1Xz7D7G2czHwfEgD6su5Or5QyKq9aQqBlmJj6O/xiB7aAyyovRielNnOKC8gONHVjFrcEWmm6JE4S7ba5BFl8fxICd6pSY3lnHLKSPbbMPsxCCH7ATN4twsPtpnbXUcrz6ykjqcXTYD6jZ1UQNZUXoho+qKeO29jzPdjLSSGw5y5wWTMt0MJQbDagqZNaSCzx/f+d0glfTieZATjEEWYem0/m3ebyzP5+xj+rpb0vu3PW5OUQyyEh8nBllDLDzUQFaUXsh/XzaNnfsPZ7oZigJYW9f+1yWTM90MJQFaPXf/UZEVDHDbJ7yNPIp8BrJ6kNOPE4OcSB3k3oIayIrSC8nPDrm7SimKoiRKZz3IieL3IB/WGOS0ox7ktmi0iaIoiqIoCdHZGORE8RvI8XbSU1KH48HvTXkpHZFyA1lEykTkMRF5y/5vaYxzxonIsyLyuoj8Q0TOSnW7FEVRFEXpHI7pmioPcnlBmC+cODyp3610jFsHWT3ILunwIF8PPG6MGQw8br+OZh+w1BgzEjgB+I6IlKShbYqiKIqiJIiz4U5BTnJDtBwD+RtnjKGinW2oldSgW023JR1BiKcATfbf9wJPAtf5TzDGrPH9vVlEPgQqgJ1paJ+iKIqiKAmweGwtm3fu55JjG5P6vY6BnBXUyM9MkMhOer0NMSmO9RGRncaYEvtvAT5yXsc5fzKWIT3SGNOm1ouIXAZcBlBVVTXxgQceSE3DuyB79uyhoKAg083IOKqDh2rhoVpYqA4eqoVHV9di1QfN/GD1Qa6fnMOwstRuYNTVtUgnjhYfHzRc9cQ+BpUEWD61d22mNGfOnBeNMW1qgCbFgywifwGqYxy6wf/CGGNEJK5FLiI1wH3AhbGMY/s77gLuApg0aZJpamo60mZ3O5588kl60++Nh+rgoVp4qBYWqoOHauHR1bUYuGMfj72/itPnTaHS3kQkVXR1LdKJo8XB5hZ44hFKS4ppapqe6WZ1CZJiIBtj5sU7JiJbRKTGGPO+bQB/GOe8IuBh4AZjzHPJaJeiKIqiKF2fvmV5/O/VszPdjF5LdihIdiigSXo+0hHs8wfgQvvvC4GHok8QkTDwe+C/jDG/SUObFEVRFEVRFJvCnCxN0vORDgP5NmC+iLwFzLNfIyKTROTH9jlLgFnARSKy2v43Lg1tUxRFURRF6fUU5YbUQPaR8ioWxpjtwNwY778ALLP/vh+4P9VtURRFURRFUdrSUJZHWV44083oMuhes4qiKIqiKL2c7587AXUge6iBrCiKoiiK0sspyFaT0E/K6yCnEhHZCryT6XakkXJgW6Yb0QVQHTxUCw/VwkJ18FAtPFQLD9XCQ7WAfsaYiug3u7WB3NsQkRdiFbPubagOHqqFh2phoTp4qBYeqoWHauGhWsRH93RUFEVRFEVRFB9qICuKoiiKoiiKDzWQuxd3ZboBXQTVwUO18FAtLFQHD9XCQ7XwUC08VIs4aAyyoiiKoiiKovhQD7KiKIqiKIqi+FADWVEURVEURVF8qIGsKF0cEdG9jRQlDvp8KEr76DNyZKiB3AURkV5/XUSkLtNtUJSuiogM1X7CRXXwofeFhY4hytGiD1IXQUQWi8g1mW5HphGReSLyInB5ptuSaURkkYj8ErheRPpluj2ZREROFZFbM92OTCMi80Xk78Ayenn/LSILReSPwK0iMiPT7ckkOn546BjioWPI0aFVLDKMiISAzwJXAA3ABGPMahEJGmNaMtu69GAv/2QB3wGmAzcbYx70Hze97EYVkXnA14AbgWOAYuAJY8zDIhIwxrRmtIFpwL4vAsDFwPVAP+A4Y8yKjDYszdg6hIAvAecA1xljfuc/3gufj4nAHcDNQBFwHLDSGHNPb3k+QMcPBx1D2qJjyNHTqz0QXQFjTDPwJjAMuAa4036/13RuxuIQkAc8aIx5UEQCIjLWOZ7ZFmaEecAfjTGPYN0ThcAlIpLfWzo2+75oAd4GxgNXAr3Oi2zrcBhoBX7jGMciMlNEsjLbuowxD1hhjPkT8BDwAXCViBQbY1p7S8yljh8WOobEpNePIUeLGsgZQESuEpHbRGSJ/dbDxpgDxpjvAJUicq59Xo8e/Hw6nGW/dSswU0S+BbwEfEVE7hKR4zPXyvQQ455YCcwQkRxjzIfAASAIXJKxRqYJW4u7RWSZ/dZTxpjdxpi7gXwRudQ+r0f3Xz4dLrPf+hFQIyI/E5FXgc8DP8G+J3qyUejT4pP2W08Ai0Sk1BizHzgM7AKug55tEOn44aFjiIeOIcmnRw8wXQ2xuBo4C3gB+LKIXASU+k67BvgmgO016nHE0OFmEbnUGLMWeBDLG3IWcC7wGnCaiJRnrMEpJM49cSHwT2Az8CsReQJrGfkhoLAnG4b283Au8FvgAhH5AjDAd8qNwDW2YdRjvSBROpwnIsuBg1jPRxg4E1hsHz9dRBp6qlEYpcX5InIDsAF4FLhPRFZg3SO3ASUikp+hpqYUHT88dAzx0DEkdYQy3YDehDHGiMgcYLkx5gkR2QMsAFqA++xzfm/PBK81xnxLROYZY/6SyXYnmzg6nCQiS4wx3xORnxlj9gCIyGpgKrAvk21OFTG02It1T+zDSsQaA9TacWPnAY092TAE5gL/box5RES2AYuA84BbAIwxf7Y9yJeJyA+BE4wxv85cc1NGtA6nAP9ijLlNRB4zxuwFEJF/ADuxPKg9lVhaLDXGfEZEGoChxpjHRGQ2kOto09PQ8cNDxxAPHUNSh84iUkT0cqdvxvYCMBPAjg16CxgpIkN9p18BfENEPgC6damaTujwBjBRRIY6HZvNfKwH/UAamptSEtTiz8AarKSKQcaYl40xD9vnTQT+nqbmphWfFi8DJwMYY14AngXqJLJKwXXA17Genep0tjPVtKPDM0CjiMyIMgAvBHKBj9La0DTQgRZDRGSmMWajMeYx+7yFwNr0tzT19NbxIxa9eQyJRseQ1KIGcurI9b/wzdjexlriGG2/fgoru7QQQETGAXdjLSdOMMbcm57mpozO6FCEp8PZIvIaVuWCL/aQGW9ntCjE0+IkEXkeS4vfpqmtKUVEgvZ/BSK0eAYIiMgs+/VrwPtArX3+IOCHWMuoE4wx30tnu5PNUejwCRF5BSu04ApjTLcf/DupxWbsyZGIzBKRp4DBWHHa3Z52tOht40dntejRY0gntejRY0g6UAM5yYjIVBH5LfADEVngu6GdcJbngWZggYiEjDH/hzXLn2Qf3w5caYw50xizOd3tTxZJ0OEdrIF/qZ1g0G05Ci2OsY+/BVxujPmEMaZbewpFZJqI3A1cLSKFTtysT4u3gNeBs8QqVfUuUAX0t4/vAj5tjDm9mz8fR6pDo318DdY9sdQYsyXd7U8mSdBiA1afeZoxZluam59URGSGiNwLLBeRMp8WTsJdrxg/ICla9KQx5Ei16HFjSDpRAzmJiEgTlnfrd1ild84HSsWqOdgMYIx5G2s5ZCBWbVewkm/esY9vMsa8muamJ5Uk6fCs6QH1bo9Siw328beMMS+lt+XJR6wY0e8Df8XyhH5RRBaAW64KYDewAsgGvmUPAKVYAz/GmK3GmLfS3fZkcpQ6bLPPe9UY82y6255skqTFRmPM6+lue7IRkQFYfcUTWJ6+W0XkJPAS7nrD+AFJ06KnjCFHo8UG+3iPGEPSjRrIyWUMsMoY83PgfqzC5XucZRAR+YqI/AR4EfhPYLJYO/7swMrI7imoDh6qhcdE4BljzC+Br2B5Ac8RkSqwtAB+geUl/hKWEbTCft3tl4p9qA4eqoXHZOANY8w9wLXAaqxSdjXQ6/oK1cJDtcgQWsXiKBCRqcAOY8wa+62/YZWb2Yy1qcEbwA9F5FFgE1a84I3GmA32588FQsaYnWlvfBJRHTxUC48YWrwJjBORWmPMZrEyz/sAp4pVhmgAcL2xSjUhIpcA+caY3Zlof7JQHTxUCw8RWYTlEXzBGPMc1jL5Z8Qq2bdRRJ7B8gieLSKr6Nl9hWpho1p0HdSDfASISImIPAw8BiwRkQIAY8xq4ASsm/tKY0wTVoLJPGCvMeZcY8zbYmeeGmP2dOebWHXwUC084mmBFTf7MXCPWDHZfbG8IYXGmDW2Fmt9WrR2Z0NIdfBQLTxEpEZE/gdro5dS4GcicrwxZh1W1ZYz7VPfxIq9LgJe7aF9hWpho1p0PdRAPjLysZYuPmP/PdM5YIx5HqjAjoPCiq0rwS7DJD1rD3TVwUO18IjWYhZYcXBYGxl8Hfi1MeY0rI6+yflgD9NCdfBQLTwmYW2TPdMYcyvwXcDZLXEFMFpEphhru+j3gFnGmF2gWqBa9BYtugRqICeIiCwVkdkiUmSMeQ+4C/gVVm3FKSLilF/Kxtri8Ur7o3OBMvs8uvtNrDp4qBYeHWgx2dHCGHPIGPOEMeYB+6MTgEec7+nuWqgOHqqFh61Fk90XPI69sYfNdixPOlg1al8Gbre97COBd0QkD1QLVIseq0VXREzP3J00KYiIYNXa/AXQilWEPh/4V2OXExJrA4MlWPFC99nvjQRusj97GKss1Rvp/wXJQXXwUC08OqnFKmPM/b7PHovlIdmGtUPchvS2PnmoDh6qhUdHWohIljHmsIhcBYwwxlzu++ztQD1WaNZSY8yb6f8FyUO18FAtuhHGGP0X4x8QtP87BLjfeQ/4HvC7qHOvxsrALsHa6hSsTSEGZPp3qA6qRRfSohgrwQqskl4nZfp3qA6qRaa08J3zP8A8++9K+78hrDjsjP8W1UK16K3/NMQiChEJisjXgK+JVaNzKNZe9xgr9udfgen2MYe7gQKsBJQNIlJnjNlvrOD6bonq4KFaeCRBi3UiUm+M2WyM+VOam580VAcP1cKjM1oYY1pEJAxsBdaIyFeBx0Sk1BjTbLp/MqJqYaNadE/UQPZh37gvYmWQvg3cirUcPkdEJoMb63Oz/c9hIVZ86WpgtLHi7botqoOHauGRBC1ewdLi3fS1OvmoDh6qhUcntfiy/bEc4CKs+NNCLI9ht9/pTLXwUC26L1oHOZJW4D+MFzc6Hms70xuBO4CJYpVSeRA4TkT6GytO7gDWDfy3zDQ76agOHqqFh2phoTp4qBYendWiHius5H7gdmOVhOwpqBYeqkU3RT3IkbwI/EpEgvbrZ4AGY+1gExSRz9gzvXqgxe7oMcY81MM6etXBQ7XwUC0sVAcP1cKjM1q0GmPeNcY8b4xZ2gONINXCQ7XopqiB7MMYs88Yc9COCQKYjxUHBHAxMFxE/gj8EngJ3IzUHoXq4KFaeKgWFqqDh2rh0UktXgTVAtWiV2nR3dAQixjYMz0DVAF/sN/eDXwRGAWsd2JKjTE9tk6e6uChWnioFhaqg4dq4aFaeKgWHqpF90M9yLFpBbKw6nGOsWd3X8Ja/nja9ICEqwRRHTxUCw/VwkJ18FAtPFQLD9XCQ7XoZuhGIXEQkalYu5+tBH5mjPlJhpuUEVQHD9XCQ7WwUB08VAsP1cJDtfBQLboXaiDHwc4kvQAri/RgptuTKVQHD9XCQ7WwUB08VAsP1cJDtfBQLboXaiAriqIoiqIoig+NQVYURVEURVEUH2ogK4qiKIqiKIoPNZAVRVEURVEUxYcayIqiKIqiKIriQw1kRVEURVEURfGhBrKiKEo3QkRaRGS1iLwuIq+IyGdFpN2+XET6i8i56WqjoihKd0cNZEVRlO7FfmPMOGPMSGA+cCJwUwef6Q+ogawoipIgWgdZURSlGyEie4wxBb7XA4BVQDnQD7gPyLcPf9oYs1JEngOGA+uBe4H/BG4DmoBs4AfGmDvT9iMURVG6OGogK4qidCOiDWT7vZ3AUGA30GqMOSAig4FfGmMmiUgTcK0x5mT7/MuASmPMV0QkG3gGONMYsz6tP0ZRFKWLEsp0AxRFUZSkkQV8X0TGAS3AkDjnLQDGiMgZ9utiYDCWh1lRFKXXowayoihKN8YOsWgBPsSKRd4CjMXKMTkQ72PAZ4wxj6alkYqiKN0MTdJTFEXppohIBfAj4PvGipcrBt43xrQCFwBB+9TdQKHvo48CV4hIlv09Q0QkH0VRFAVQD7KiKEp3I1dEVmOFUzRjJeXdbh/7IfBbEVkKPALstd//B9AiIq8A9wDfxaps8ZKICLAVODVdP0BRFKWro0l6iqIoiqIoiuJDQywURVEURVEUxYcayIqiKIqiKIriQw1kRVEURVEURfGhBrKiKIqiKIqi+FADWVEURVEURVF8qIGsKIqiKIqiKD7UQFYURVEURVEUH/8PR+j5itSCwukAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light", "tags": [] }, "output_type": "display_data" } ], "source": [ "symbol = 'TSLA'\n", "\n", "end = datetime.datetime.today().date()\n", "start = end - datetime.timedelta(3*365)\n", "\n", "# get stock price data\n", "S = pdr.data.DataReader(symbol, \"yahoo\", start, end)['Adj Close']\n", "rlin = (S - S.shift(1))/S.shift(1)\n", "rlog = np.log(S/S.shift(1))\n", "\n", "# plot data\n", "plt.figure(figsize=(10,6))\n", "plt.subplot(3,1,1)\n", "S.plot(title=symbol)\n", "plt.ylabel('Adjusted Close')\n", "plt.grid()\n", "\n", "plt.subplot(3,1,2)\n", "rlin.plot()\n", "plt.title('Linear Returns (daily)')\n", "plt.grid()\n", "plt.tight_layout()\n", "\n", "plt.subplot(3,1,3)\n", "rlog.plot()\n", "plt.title('Log Returns (daily)')\n", "plt.grid()\n", "plt.tight_layout()" ] }, { "cell_type": "code", "execution_count": 62, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 269, "status": "ok", "timestamp": 1604438429792, "user": { "displayName": "Jeffrey Kantor", "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64", "userId": "09038942003589296665" }, "user_tz": 300 }, "id": "D2qXz4_UKe4-", "jupyter": { "outputs_hidden": true }, "nbpages": { "level": 3, "link": "[7.1.4.4 Volatility Drag and the Relationship between Linear and Log Returns](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.4.4-Volatility-Drag-and-the-Relationship-between-Linear-and-Log-Returns)", "section": "7.1.4.4 Volatility Drag and the Relationship between Linear and Log Returns" }, "outputId": "9ab6b903-7bf0-4752-a36f-9c95aa71639e", "pycharm": {} }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean Linear Return (rlin) = 0.0034779\n", "Linear Volatility (sigma) = 0.0422834\n", "Volatility Drag -0.5*sigma**2 = -0.0008939\n", "rlin - 0.5*vol = 0.0025840\n", "\n", "Mean Log Return = 0.0025842\n" ] } ], "source": [ "print(\"Mean Linear Return (rlin) = {0:.7f}\".format(rlin.mean()))\n", "print(\"Linear Volatility (sigma) = {0:.7f}\".format(rlin.std()))\n", "print(\"Volatility Drag -0.5*sigma**2 = {0:.7f}\".format(-0.5*rlin.std()**2))\n", "print(\"rlin - 0.5*vol = {0:.7f}\\n\".format(rlin.mean() - 0.5*rlin.std()**2))\n", "\n", "print(\"Mean Log Return = {0:.7f}\".format(rlog.mean()))" ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "executionInfo": { "elapsed": 6573, "status": "ok", "timestamp": 1604438437167, "user": { "displayName": "Jeffrey Kantor", "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64", "userId": "09038942003589296665" }, "user_tz": 300 }, "id": "hdV8UM38Ke5B", "jupyter": { "outputs_hidden": true }, "nbpages": { "level": 3, "link": "[7.1.4.4 Volatility Drag and the Relationship between Linear and Log Returns](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.4.4-Volatility-Drag-and-the-Relationship-between-Linear-and-Log-Returns)", "section": "7.1.4.4 Volatility Drag and the Relationship between Linear and Log Returns" }, "pycharm": {} }, "outputs": [], "source": [ "symbols = ['AAPL','MSFT','F','XOM','GE','X','TSLA','NIO']\n", "\n", "end = datetime.datetime.today().date()\n", "start = end - datetime.timedelta(3*365)\n", "\n", "rlin = []\n", "rlog = []\n", "sigma = []\n", "\n", "for symbol in symbols:\n", "\n", " # get stock price data\n", " S = pdr.data.DataReader(symbol, \"yahoo\", start, end)['Adj Close']\n", " r = (S - S.shift(1))/S.shift(1)\n", " rlin.append(r.mean()) \n", " rlog.append((np.log(S/S.shift(1))).mean())\n", " sigma.append(r.std())\n", " " ] }, { "cell_type": "code", "execution_count": 71, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 390 }, "executionInfo": { "elapsed": 633, "status": "ok", "timestamp": 1604438645855, "user": { "displayName": "Jeffrey Kantor", "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64", "userId": "09038942003589296665" }, "user_tz": 300 }, "id": "8GvAkq-wKe5D", "nbpages": { "level": 3, "link": "[7.1.4.4 Volatility Drag and the Relationship between Linear and Log Returns](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.4.4-Volatility-Drag-and-the-Relationship-between-Linear-and-Log-Returns)", "section": "7.1.4.4 Volatility Drag and the Relationship between Linear and Log Returns" }, "outputId": "24e1e65e-7d4e-4e17-a1d3-4415756cbc3b", "pycharm": {} }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtcAAAF1CAYAAAAjssYlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de5hdZXn///dtAkkhGCXSCAmSIDGQg0YSDq2AE0EJIAQVS1KqoULTAwdFaYViZYLNT6haDl+hlgIlYmlELDVAEOELU6w/OasEgikRYjNIKwSJDBAg4f7+sVfCzmROYZ455v26rrmy1rOetfa9n9nJfLLmWWtFZiJJkiSp+97U1wVIkiRJg4XhWpIkSSrEcC1JkiQVYriWJEmSCjFcS5IkSYUYriVJkqRCDNeStI2LiNERcVdEPB8RX9vKfVsiYs+eqk2SBhrDtaQBIyL+MCLurwLdUxFxS0Qc1Nd19ZaIyIjYqwcOPR94BnhzZn6ujde9OiL+tq0dM3NEZj7eAzVtlYhoiIjXqs/G8xGxIiL+uIv7jqvGdmhP1ylp8DNcSxoQIuKzwEXA/weMBt4BXAbM7su6Bok9gOU5QJ4q1kEI/lVmjgDeDJwB/FNETOyFeiIi/HkqCTBcSxoAImIkcB5wSmb+W2a+kJmvZuaNmfmXVZ9hEXFRRPyq+rooIoZV2xoiojki/ioifl2d9T42Io6MiP+KiGcj4q/rXq8xIq6PiG9XZ0EfjIj31G3fJyKaIuK5iHgkIo6p23Z1RFwaETdX+94TEe+s2753RNxWveaKiPiDruwbEXdV3X5WnZ09PiLeFhE3VXU8GxE/bC/kRcTvR8R9EbG2+vP3N74mMA/4q+q4h23l92bT2fRuvvejIuInEfHbiFgdEY112zaeWT4pIv4buKOjmrJmKfAs8O7qGG+KiLMi4hcRsSYirouInatdNo7tc9UY/F71GfhWGzUMrdabImJhRPwIeBHYs9r+ZxHxWPU9uTQiYmvGU9LAZ7iWNBD8HjAcuKGDPucABwLTgPcA+wNfqNv+9uoYY4AvAv8E/BEwHTgY+JuIGF/XfzbwHWBn4Frg3yNiu4jYDrgR+AHwu8BpwL+0OkM6B1gAvBVYCSwEiIgdgduq4/1u1e+yiJjU2b6ZeUi1/T3VVIxvA58DmoFdqJ3N/2tgi7PPVYi8GbgEGAX8PXBzRIzKzBOBfwH+rjru7W0Pb5e90ff+AvBJ4C3AUcCfR8SxrY79fmAf4PCOCqiC9DHA26oaoPZ9OrY6xm7Ab4BLq20bx/Yt1Rj8uIvv9RPUptTsBPyyavswsB+1UP8HndUqafAxXEsaCEYBz2Tm+g76nACcl5m/zsynqQW8T9RtfxVYmJmvAoupBa+LM/P5zHwEWE4tlG/0QGZeX/X/e2rB/MDqawRwfma+kpl3ADcBc+v2vSEz763q/RdqgR9qwWtVZv5zZq7PzJ8A3wU+3oV92/IqsCuwR3Um/4ftTO04CngsM6+pXvdfgZ8DR3dw7DfqDb33zGzKzGWZ+VpmPgT8K7UgXK+x+q3FS+289m4R8RzwErX/iH22eh2APwPOyczmzHwZaASO62CKSVdcnZmPVO/n1art/Mx8LjP/G7iTjr9/kgYhw7WkgWAN8LZOgtBuvH72kGp5t/pjZOaGanljOPvfuu0vUQvNG63euJCZr1E7Q7xb9bW6aqt/rTF16/9Tt/xi3XH3AA6opgw8VwXBE6idVe9s37Z8hdqZ2R9ExOMRcVY7/VqPTVs1l/KG3ntEHBARd0bE0xGxlloYflurY6+mY7/KzLdQm3N9CfCBum17ADfUvfajwAZqZ/zfqLbq2Zrvn6RByHAtaSD4MfAytV/rt+dX1ALURu+o2t6o3TcuVPOYx1bH+xWwe6u5ze8AnuzCMVcD/5GZb6n7GpGZf/5GCqzOun8uM/cEjgE+GxGHttG19dhsTc2ldPberwWWALtn5kjgG0Dr+cpduuCyOjP9eWBq3dSS1cARrV5/eGY+2c5xXwB2qFt/ext9BsQFoJJ6l+FaUr+XmWupzZO+NGoXIu5QzX8+IiL+rur2r8AXImKXiHhb1f9b7R2zC6ZHxEers+WfoRbu7wbuoXZG8q+qGhqoTa9Y3IVj3gS8KyI+sXH+dkTsFxH7dLGm/wU23VM6Ij4cEXtVF82tpXYm9rU29ltave4fRsTQiDgemFTV01VDImJ43df2W7EvdP7edwKezcx1EbE/8IdbefzNZOYrwNeofQ6gFtYXRsQeANXnZOOdZp6mNm719+v+KXBIRLwjahfUnt2deiRtOwzXkgaEzPwa8FlqFyk+Te1M5KnAv1dd/ha4H3gIWAY8WLW9Ud8Djqd24dsngI9W85pfoRamj6B2b+jLgE9m5s+78B6eBz5E7WK+X1GbQnABMKyLNTUCi6qpDX8ATABuB1qond2/LDPvbON111Cb8/w5alNs/gr4cGY+08XXBTiL2tSZjV8d3rGjjRo6e+9/AZwXEc9TC8TXbc3x23EV8I6IOBq4mNqZ8R9Ur3E3cEBV24vULrz8UTW2B2bmbcC3qX2eHmDr/iMiaRsWA+S2ppLUa6rbwO2VmX/U17VIkgYWz1xLkiRJhRiuJUmSpEKKhOuImFU9bWtlW7eCitqT075dbb8nIsbVbTu7al8REYfXtb8lak9I+3lEPBoRv1eiVknqTGY2OiVEkvRGdDtcR8QQak+5OoLa1edzWz1tDOAk4DeZuRdwIbWLWKj6zQEmA7OoPa1rSLXPxcD3M3Nvag92eLS7tUqSJEk9qcSZ6/2BlZn5eHUV/WJqjw2uNxtYVC1fDxxa3TpqNrA4M1/OzCeoPQxh/+q2R4cAV0LtlkqZ+VyBWiVJkqQe053Hvm40hs2fUtVMdXujtvpk5vrq6Vujqva7W+07htptnp4G/jki3kPtNkifzswXOirkbW97W44bN+6Nv5M+8MILL7Djjjv2dRmDgmNZjmNZhuNYjmNZjmNZjmNZzkAcywceeOCZzNyldXuJcN0ThgL7Aqdl5j0RcTG1e6z+TeuOETEfmA8wevRovvrVr/Zqod3V0tLCiBE+HbcEx7Icx7IMx7Ecx7Icx7Icx7KcgTiWM2fO/GVb7SXC9ZPUPSaY2iOCWz9Sd2Of5uppZyOpPcigvX2bgebMvKdqv55auN5CZl4OXA4wY8aMbGho6M576XVNTU0MtJr7K8eyHMeyDMexHMeyHMeyHMeynME0liXmXN8HTIiI8dXjcOdQewpWvSXAvGr5OOCOrD29Zgkwp7qbyHhqTxu7NzP/B1gdEROrfQ4FlheoVZIkSeox3T5zXc2hPhW4FRgCXJWZj0TEecD9mbmE2oWJ10TESuBZagGcqt911ILzeuCUzNxQHfo04F+qwP448MfdrVWSJEnqSUXmXGfmUmBpq7Yv1i2vAz7ezr4LgYVttP8UmNHd2l599VWam5tZt25ddw/VI0aOHMmjj257dxkcPnw4Y8eOZbvttuvrUiRJkorprxc0FtPc3MxOO+3EuHHjqN39r395/vnn2Wmnnfq6jF6VmaxZs4bm5mbGjx/f1+VIkiQVM+gff75u3TpGjRrVL4P1tioiGDVqVL/9bYIkSdIbNejDNWCw7of8nkiSpMFomwjX/c24ceN45plnADjssMP6uBpJkiSVMujnXLc27qybix5v1flHbVX/zOS1117btH777bcXrUeSJEl9xzPXvWDVqlVMnDiRT37yk0yZMoXVq19/Wvyuu+4KvH7z9OOOO469996bE044gdqtwCVJkjRQGK57yWOPPcZf/MVf8Mgjj7DHHnu02ecnP/kJF110EcuXL+fxxx/nRz/6US9XKUmSpO4wXPeSPfbYgwMPPLDDPvvvvz9jx47lTW96E9OmTWPVqlW9U5wkSZKKMFz3kh133LHTPsOGDdu0PGTIENavX9+TJUmSJKkww7UkSZJUiOFakiRJKmSbuxXf1t46r4Rx48bx8MMPv15D3Vzqp556CoCGhgYaGho2tX/961/vrfIkSZJUiGeuJUmSpEIM15IkSVIhhmtJkiSpEMO1JEmSVMg2d0GjJEmSyouIosfLzKLH6y2Ga0mSJHXbHp+/qcPtm+7Y1jhyi21NExfQsOLc1xsa15YsrVc5LaSXfP/732fixInstddenH/++Vtsv/rqq9lll12YNm0a06ZN44orrgBe/19bY2PjZuttOfLII3nuuefKF19pq5a22l588UWOOuoo9t57byZPnsxZZ53VYzVJkiT1J9vemes2/rfUveN1/j+rDRs2cMopp3DbbbcxduxY9ttvP4455hgmTZq0Wb/jjz9+i/tbX3TRRbz5zW/mhRde4JxzzuH9738/H/rQh9p8naVLl77x99EFP/jBD7jrrrt49dVXueKKK3j++eeZNGnSFm1/+qd/yplnnsnMmTN55ZVXOPTQQ7nllls44ogjerQ+SZKkvuaZ615w7733stdee7Hnnnuy/fbbM2fOHL73ve91ad8zzjiDp59+mksuuYRZs2bxoQ99iKeeeopDDjmEadOmMWXKFH74wx8CtYfVPPPMMwB86UtfYuLEiRx00EHMnTuXr371q0DtYTVnnHEGM2bMYJ999uG+++7jox/9KBMmTOALX/jCptc99thjmT59OpMnT+byyy8H4PDDD+fwww/n4osvZs2aNZxxxhlttu2www7MnDkTgO233559992X5ubmYuMpSZLUX217Z677wJNPPsnuu+++aX3s2LHcc889W/T77ne/y1133cW73vUuLrzwQnbffXcuvvhidtllF04//XS+//3vs27dOh566CEOP/xwzjnnHDZs2MCLL7642XHuu+8+vvvd7/Kzn/2MV199lX333Zfp06dv2r799ttz//33c/HFFzN79mweeOABdt55Z975zndyxhlnMGrUKK666ip23nlnXnrpJfbbbz8+9rGP8eCDD9LU1MTpp5/OqFGjuPjii5k0adIWbZ/+9Kc3vdZzzz3HjTfeuFmbJEnSYGW47ieOPvpo5s6dy7Bhw/jHf/xH5s2bxx133MHpp59ORNDY2EhjYyOZybBhw/jUpz7Fq6++yrHHHsu0adM2O9aPfvQjZs+ezfDhwxk+fDhHH330ZtuPOeYYAKZOncrkyZPZddddAdhzzz1ZvXo1o0aN4pJLLuGGG24AYPXq1Tz22GMcdthhfPCDH6SxsZGTTz5503zrttoA1q9fz9y5czn99NPZc889e2zsJEmS+gunhfSCMWPGsHr16k3rzc3NjBkzZrM+o0aNYtiwYQCcfPLJPPDAA8Drt7XZeMFgRHDIIYdw1113MWbMGE488US++c1vblU9G1/nTW9606bljevr16+nqamJ22+/nR//+Mf87Gc/473vfS/r1q1rs5a22jaaP38+EyZM4DOf+cxW1SdJkjRQGa57wX777cdjjz3GE088wSuvvMLixYs3nT3e6Kmnntq0vGTJEvbZZ592j/fLX/6S0aNH8yd/8iecfPLJPPjgg5ttf9/73seNN97IunXraGlp4aabOr41Tmtr167lrW99KzvssAM///nPufvuu7dqf4AvfOELrF27losuumir95UkSRqonBbSC4YOHcrXv/51Dj/8cDZs2MCnPvUpJk+ezBe/+EUmT57M8ccfzyWXXMKSJUsYOnQoO++8M1dffXW7x2tqauIrX/kK2223HSNGjNjizPXGu5G8+93vZvTo0UydOpWRI7t+l5RZs2bxjW98g3322YeJEydy4IEHbtX7bW5uZuHChey9997su+++AJx66qmcfPLJW3UcSZKkgWbbC9d9dFPyI488kiOPPHKztvPOO4/nn38egC9/+ct8+ctf7tKx5s2bx7x587ZoX7Vq1ablM888k8bGRl588UUOOeSQTRc0NjU1berT0NBAQ0PDpvX6bbfcckuXamnL2LFjB+xTlSRJkrpj2wvX24j58+ezfPly1q1bx7x58zadQZYkSVLPMVwPUtdee21flyBJkrTN8YJGSZIkqRDDtSRJklSI4VqSJEkqxHAtSZIkFVIkXEfErIhYERErI+KsNrYPi4hvV9vviYhxddvOrtpXRMThde2rImJZRPw0Iu4vUWd/MW7cOJ555pm+LkOSJEmFdftuIRExBLgU+CDQDNwXEUsyc3ldt5OA32TmXhExB7gAOD4iJgFzgMnAbsDtEfGuzNxQ7TczM4um0KmLppY8HMvmLduq/pnJa6+9VrQGSZIk9Q8lzlzvD6zMzMcz8xVgMTC7VZ/ZwKJq+Xrg0IiIqn1xZr6cmU8AK6vjDSqrVq1i4sSJfPKTn2TKlCmsXr1607avf/3rTJkyhSlTpmz2qPAvfelLTJw4kYMOOoi5c+fy1a9+tS9KlyRJ0lYocZ/rMcDquvVm4ID2+mTm+ohYC4yq2u9ute+YajmBH0REAv+YmZe39eIRMR+YDzB69OjNnjIIMHLkyE1PQewJXTl2S0sLjz32GJdddhmXXnopU6ZMoaWlheXLl3PNNddwxx13kJl84AMfYMaMGaxfv57vfOc7/Od//ievvvoqBx98MFOmTOnR99EX1q1bt8X3qztaWlqKHm9b5liW4TiW41iW41iW41hu7nNT13e4fdNYTVywxbaWYbvRVN8+gMe1Pz9E5qDMfDIifhe4LSJ+npl3te5Uhe7LAWbMmJH1j/MGePTRR9lpp516rMiuHHvEiBHsscceHHrooQBEBCNGjOAnP/kJRx99NG9/+9sBOO6443jwwQd57bXX+MhHPsIuu+wCwOzZsxk2bFiPvo++MHz4cN773vcWO15TUxOtv/96YxzLMhzHchzLchzLchzLzZ141s0dbl91QkNtobH1BAdomriAhhXnvt4wd23BynpXiWkhTwK7162Prdra7BMRQ4GRwJqO9s3MjX/+GriBAT5dZMcdd+zrEiRJktTDSoTr+4AJETE+IrandoHiklZ9lgDzquXjgDsyM6v2OdXdRMYDE4B7I2LHiNgJICJ2BD4EPFyg1n7l4IMP5uabb+bFF1/khRde4IYbbuDggw/mfe97HzfeeCPr1q2jpaWFm266qa9LlSRJUhd0e1pINYf6VOBWYAhwVWY+EhHnAfdn5hLgSuCaiFgJPEstgFP1uw5YDqwHTsnMDRExGrihds0jQ4FrM/P73a21v9l333054YQT2H//2kn5k08+edM0iWOOOYZ3v/vdjB49mqlTpzJy5Mi+LFWSJEldUGTOdWYuBZa2avti3fI64OPt7LsQWNiq7XHgPSVqa21rb51Xwrhx43j44ddPvK9atWrT8qmnnsrZZ5+9xT5nnnkmjY2NvPjiixxyyCFMnz69N0qVJElSN/TnCxq3afPnz2f58uWsW7eOefPmse+++/Z1SZIkSeqE4bqfuvbaa/u6BEmSJG2lIo8/lyRJkrSNhOvajUnUn/g9kSRJg9GgD9fDhw9nzZo1hrl+JDNZs2YNw4cP7+tSJEmSihr0c67Hjh1Lc3MzTz/9dF+X0qZ169ZtkyFz+PDhjB07tq/LkCRJKmrQh+vtttuO8ePH93UZ7Wpqair6CHBJkiT1nUE/LUSSJEnqLYZrSZIkqRDDtSRJklSI4VqSJEkqxHAtSZIkFWK4liRJkgoxXEuSJEmFGK4lSZKkQgzXkiRJUiGGa0mSJKkQw7UkSZJUiOFakiRJKsRwLUmSJBViuJYkSZIKMVxLkiRJhRiuJUmSpEIM15IkSVIhhmtJkiSpEMO1JEmSVIjhWpIkSSrEcC1JkiQVYriWJEmSCjFcS5IkSYUYriVJkqRCDNeSJElSIUXCdUTMiogVEbEyIs5qY/uwiPh2tf2eiBhXt+3sqn1FRBzear8hEfGTiLipRJ2SJElST+p2uI6IIcClwBHAJGBuRExq1e0k4DeZuRdwIXBBte8kYA4wGZgFXFYdb6NPA492t0ZJkiSpN5Q4c70/sDIzH8/MV4DFwOxWfWYDi6rl64FDIyKq9sWZ+XJmPgGsrI5HRIwFjgKuKFCjJEmS1ONKhOsxwOq69eaqrc0+mbkeWAuM6mTfi4C/Al4rUKMkSZLU44b2dQFtiYgPA7/OzAcioqGTvvOB+QCjR4+mqamp5wssqKWlZcDV3F85luU4lmU4juU4luU4luU4lpv73NT1HW7fNFYTF2yxrWXYbjTVtw/gcS0Rrp8Edq9bH1u1tdWnOSKGAiOBNR3sewxwTEQcCQwH3hwR38rMP2r94pl5OXA5wIwZM7KhoaHAW+o9TU1NDLSa+yvHshzHsgzHsRzHshzHshzHcnMnnnVzh9tXndBQW2hsPXsYmiYuoGHFua83zF1bsLLeVWJayH3AhIgYHxHbU7tAcUmrPkuAedXyccAdmZlV+5zqbiLjgQnAvZl5dmaOzcxx1fHuaCtYS5IkSf1Jt89cZ+b6iDgVuBUYAlyVmY9ExHnA/Zm5BLgSuCYiVgLPUgvMVP2uA5YD64FTMnNDd2uSJEmS+kKROdeZuRRY2qrti3XL64CPt7PvQmBhB8duAppK1ClJkiT1JJ/QKEmSJBViuJYkSZIKMVxLkiRJhRiuJUmSpEIM15IkSVIhhmtJkiSpEMO1JEmSVIjhWpIkSSrEcC1JkiQVYriWJEmSCjFcS5IkSYUYriVJkqRCDNeSJElSIYZrSZIkqRDDtSRJklSI4VqSJEkqZGhfFyBJktRXIqLo8TKz6PE08BiuJUnSNmuPz9/UaZ9V5x9VW2gcuVl708QFNKw49/WGxrUlS9MA5bQQSZIkqRDDtSRJklSI4VqSJEkqxHAtSZIkFWK4liRJkgoxXEuSJEmFGK4lSZKkQgzXkiRJUiGGa0mSJKkQw7UkSZJUiOFakiRJKsRwLUmSJBViuJYkSZIKMVxLkiRJhQzt6wIkSZK07YgFv22j9YzNVxdEl4+Xmd0rqLAi4ToiZgEXA0OAKzLz/FbbhwHfBKYDa4DjM3NVte1s4CRgA3B6Zt4aEcOBu4BhVY3XZ+a5JWqVJElS38lz37xFW9PEBTSsqIt6jWsBmLpoaofHWjZvWdHaSuj2tJCIGAJcChwBTALmRsSkVt1OAn6TmXsBFwIXVPtOAuYAk4FZwGXV8V4GPpCZ7wGmAbMi4sDu1ipJkiT1pBJzrvcHVmbm45n5CrAYmN2qz2xgUbV8PXBoRETVvjgzX87MJ4CVwP5Z01L136766l/n/CVJkqRWorvzVCLiOGBWZp5crX8COCAzT63r83DVp7la/wVwANAI3J2Z36rarwRuyczrqzPYDwB7AZdm5ufbef35wHyA0aNHT1+8eHG33k9va2lpYcSIEX1dxqDgWJbjWJbhOJbjWJbjWG5u2ZNrO+0zdczI2sJTP92svWXYbox4+VevN+w6rWRpA05nY9neOEL7Y7l8zfIOjzlpVOvJEr1n5syZD2TmjNbt/faCxszcAEyLiLcAN0TElMx8uI1+lwOXA8yYMSMbGhp6t9BuampqYqDV3F85luU4lmU4juU4luU4lps78aybO+2z6oSG2kLj5r+Y32Ke8NzOg/pg1tlYtjeO0P5YnrbotA6Puexjg3DONfAksHvd+tiqrc0+ETEUGEntwsZO983M54A7qc3JliRJkvqtEuH6PmBCRIyPiO2pXaC4pFWfJcC8avk44I6szUdZAsyJiGERMR6YANwbEbtUZ6yJiN8BPgj8vECtkiRJUo/p9rSQzFwfEacCt1K7Fd9VmflIRJwH3J+ZS4ArgWsiYiXwLLUATtXvOmA5sB44JTM3RMSuwKJq3vWbgOsy86bu1ipJkiT1pCJzrjNzKbC0VdsX65bXAR9vZ9+FwMJWbQ8B7y1RmyRJktRbfPy5JEmSVEi/vVuIJEmSBqHGNu6q0tQ0aO624plrSZIkqRDDtSRJklSI4VqSJEkqxHAtSZIkFWK4liRJkgoxXEuSJEmFGK4lSZKkQgzXkiRJUiGGa0mSJKkQw7UkSZJUiI8/lyRJ6oJY8NtWLWdsvrogunyszOx+QeqXDNeSJEld0DoQNzU10dDQsEW/qYumdnicZfOWlSxL/YzTQiRJkqRCDNeSJElSIYZrSZIkqRDDtSRJklSI4VqSJEkqxHAtSZIkFWK4liRJkgoxXEuSJEmFGK4lSZKkQgzXkiRJUiGGa0mSJKkQw7UkSZJUiOFakiRJKsRwLUmSJBViuJYkSZIKMVxLkiRJhRiuJUmSpEIM15IkSVIhRcJ1RMyKiBURsTIizmpj+7CI+Ha1/Z6IGFe37eyqfUVEHF617R4Rd0bE8oh4JCI+XaJOSZIkqSd1O1xHxBDgUuAIYBIwNyImtep2EvCbzNwLuBC4oNp3EjAHmAzMAi6rjrce+FxmTgIOBE5p45iSJElSv1LizPX+wMrMfDwzXwEWA7Nb9ZkNLKqWrwcOjYio2hdn5suZ+QSwEtg/M5/KzAcBMvN54FFgTIFaJUmSpB5TIlyPAVbXrTezZRDe1Ccz1wNrgVFd2beaQvJe4J4CtUqSJEk9JjKzeweIOA6YlZknV+ufAA7IzFPr+jxc9Wmu1n8BHAA0Andn5req9iuBWzLz+mp9BPAfwMLM/Ld2Xn8+MB9g9OjR0xcvXtyt99PbWlpaGDFiRF+XMSg4luU4lmU4juU4luU4lptb9uTaTvtMHTOyzfb2xnL5muUdHm/SqME507WzsWxvHGFgjuXMmTMfyMwZrduHFjj2k8Dudetjq7a2+jRHxFBgJLCmo30jYjvgu8C/tBesATLzcuBygBkzZmRDQ0N33kuva2pqYqDV3F85luU4lmU4juU4luU4lps78aybO+2z6oSGNtvbG8vTFp3W4fGWfWxZV0obcDoby/bGEQbXWJaYFnIfMCEixkfE9tQuUFzSqs8SYF61fBxwR9ZOmS8B5lR3ExkPTADureZjXwk8mpl/X6BGSZIkqcd1+8x1Zq6PiFOBW4EhwFWZ+UhEnAfcn5lLqAXlayJiJfAstQBO1e86YDm1O4SckpkbIuIg4BPAsoj4afVSf52ZS7tbryRJktRTSkwLoQq9S1u1fbFueR3w8Xb2XQgsbNX2n0CUqE2SJEnqLT6hUZIkSSrEcC1JkiQVYriWJEmSCjFcS5IkSYUYriVJkqRCDNeSJElSIYZrSZIkqRDDtfJPGOkAABGbSURBVCRJklSI4VqSJEkqxHAtSZIkFWK4liRJkgoxXEuSJEmFGK4lSZKkQgzXkiRJUiFD+7qAwSAiih4vM4seT5IkSb3DcF3AHp+/qdM+q84/qrbQOHKz9qaJC2hYce7rDY1rS5YmSZKkXuS0EEmSJKkQw7UkSZJUiNNC1K84f12SJA1khmv1K53NX980dx2cvy5Jkvodp4VIkiRJhRiuJUmSpEIM15IkSVIhhmtJkiSpEC9o7GWx4LetWs7YfHVB1++W4Z0wJEmS+hfDdS9rHYibmppoaGjYot/URVM7PM6yectKliVJkqQCDNcasPwtgCRJ6m8M1xqw/C2AJEnqb7ygUZIkSSrEcC1JkiQVYriWJEmSCjFcS5IkSYUYriVJkqRCioTriJgVESsiYmVEnNXG9mER8e1q+z0RMa5u29lV+4qIOLyu/aqI+HVEPFyiRkmSJKmndTtcR8QQ4FLgCGASMDciJrXqdhLwm8zcC7gQuKDadxIwB5gMzAIuq44HcHXVJkmSJA0IJc5c7w+szMzHM/MVYDEwu1Wf2cCiavl64NCIiKp9cWa+nJlPACur45GZdwHPFqhPkiRJ6hXR3SfTRcRxwKzMPLla/wRwQGaeWtfn4apPc7X+C+AAoBG4OzO/VbVfCdySmddX6+OAmzJzSgevPx+YDzB69Ojpixcv7tb7eSOWPbm20z5Tx4xss72lpYURI0Zs0b58zfIOjzdpVOtfDgwOnY1le+MIjmVJ7Y2lto7jWI5jWY5juTl/hpezrf0Mnzlz5gOZOaN1+4B/QmNmXg5cDjBjxoxs6wl9Pe3Es27utM+qExrabG/vqYKnLTqtw+Mt+9jgfKpgZ2PZ3jiCY1lSe2OpreM4luNYluNYbs6f4eX4M7ymxLSQJ4Hd69bHVm1t9omIocBIYE0X95UkSZIGhBLh+j5gQkSMj4jtqV2guKRVnyXAvGr5OOCOrM1HWQLMqe4mMh6YANxboCZJkiSp13U7XGfmeuBU4FbgUeC6zHwkIs6LiGOqblcCoyJiJfBZ4Kxq30eA64DlwPeBUzJzA0BE/CvwY2BiRDRHxEndrVWSJEnqSUXmXGfmUmBpq7Yv1i2vAz7ezr4LgYVttM8tUZskSZLUW3xCoyRJklSI4VqSJEkqxHAtSZIkFWK4liRJkgoxXEuSJEmFGK4lSZKkQgzXkiRJUiGGa0mSJKkQw7UkSZJUiOFakiRJKsRwLUmSJBViuJYkSZIKMVxLkiRJhRiuJUmSpEIM15IkSVIhhmtJkiSpEMO1JEmSVIjhWpIkSSrEcC1JkiQVYriWJEmSCjFcS5IkSYUYriVJkqRCDNeSJElSIYZrSZIkqRDDtSRJklSI4VqSJEkqxHAtSZIkFWK4liRJkgoxXEuSJEmFGK4lSZKkQgzXkiRJUiGGa0mSJKkQw7UkSZJUSJFwHRGzImJFRKyMiLPa2D4sIr5dbb8nIsbVbTu7al8REYd39ZiSJElSf9PtcB0RQ4BLgSOAScDciJjUqttJwG8ycy/gQuCCat9JwBxgMjALuCwihnTxmJIkSVK/UuLM9f7Aysx8PDNfARYDs1v1mQ0sqpavBw6NiKjaF2fmy5n5BLCyOl5XjilJkiT1K5GZ3TtAxHHArMw8uVr/BHBAZp5a1+fhqk9ztf4L4ACgEbg7M79VtV8J3FLt1uEx6449H5gPMHr06OmLFy/u1vvpbS0tLYwYMaKvyxgUHMvNLXtybYfbp44Z2e629sZy+ZrlHR5z0qjB+QumNzqWHX0mHcu2be1YdjaOMDjHsrNxhPJjORjHsbv8uVPOQBzLmTNnPpCZM1q3D+2LYkrKzMuBywFmzJiRDQ0NfVvQVmpqamKg1dxfOZabO/GsmzvcvuqEhna3tTeWpy06rcNjLvvYsq6UNuC80bHs6DPpWLZta8eys3GEwTmWnY0jlB/LwTiO3eXPnXIG01iWmBbyJLB73frYqq3NPhExFBgJrOlg364cU5IkSepXSoTr+4AJETE+IrandoHiklZ9lgDzquXjgDuyNh9lCTCnupvIeGACcG8XjylJkiT1K92eFpKZ6yPiVOBWYAhwVWY+EhHnAfdn5hLgSuCaiFgJPEstLFP1uw5YDqwHTsnMDQBtHbO7tUqSJEk9qcic68xcCixt1fbFuuV1wMfb2XchsLArx5TUdb+84MMdbo8Ltu543b34WZKkbcGAv6BRUtu6HIYbt7yjQNPEBTSsOLeuT+d3JpAkST7+XJIkSSrGcC1JkiQVYriWJEmSCjFcS5IkSYUYriVJkqRCDNeSJElSIYZrSZIkqRDDtSRJklSI4VqSJEkqxHAtSZIkFeLjz6VtXCz4bRutZ2y+uiC6dqwTo+uPXZckaRDyzLW0jcvMLb7uvPPONtu78iVJ0rbMcC1JkiQVYriWJEmSCjFcS5IkSYUYriVJkqRCDNeSJElSIYZrSZIkqRDvcy1J0gDzyws+3GmfuKDrx/M2mlI5hmtJkgaYrQrDjSM3W22auICGFefWbV9bqCpJYLiWJPWizs64erZV0kBnuJYk9ZouB2LPtkoaoLygUZIkSSrEcC1JkiQVYriWJEmSCjFcS5IkSYUYriVJkqRCvFuIJHXC28dJkrrKcC1JnfD2cZKkrnJaiCRJklSI4VqSJEkqpFvhOiJ2jojbIuKx6s+3ttNvXtXnsYiYV9c+PSKWRcTKiLgkIqJq/3hEPBIRr0XEjO7UKEmSJPWW7p65Pgv4v5k5Afi/1fpmImJn4FzgAGB/4Ny6EP4PwJ8AE6qvWVX7w8BHgbu6WZ8kSZLUa7obrmcDi6rlRcCxbfQ5HLgtM5/NzN8AtwGzImJX4M2ZeXfWrhb65sb9M/PRzFzRzdokSZKkXtXdcD06M5+qlv8HGN1GnzHA6rr15qptTLXcul2SJEkakKKzW0xFxO3A29vYdA6wKDPfUtf3N5m52bzriDgTGJ6Zf1ut/w3wEtAEnJ+Zh1XtBwOfz8wP1+3bBJyZmfd3UN98YD7A6NGjpy9evLjD99PftLS0MGLEiL4uY1BwLMtxLN+gp3662WrLsN0Y8fKvXm/YddqmxeVrlnd4qEmjJhUtbcDp4lh2No7gWJYay21+HNvgv5XlDMSxnDlz5gOZucW1gZ3e53pj+G1LRPxvROyamU9V0zx+3Ua3J4GGuvWx1IL1k9VyffuTndXTRn2XA5cDzJgxIxsaGjreoZ9pampioNXcXzmW5TiWb0zEzKLH26YfONM4e7PVLe4ZPrd2z/DTFp3W6aGWfWxZ0dIGnEJjuc2PYxv8t7KcwTSW3Z0WsgTYePePecD32uhzK/ChiHhrdSHjh4Bbq+kkv42IA6u7hHyynf0laUDIzM2+7rzzzi3atuZLkjTwdDdcnw98MCIeAw6r1omIGRFxBUBmPgt8Cbiv+jqvagP4C+AKYCXwC+CWav+PREQz8HvAzRFxazfrlCRJknpctx5/nplrgEPbaL8fOLlu/Srgqnb6TWmj/Qbghu7UJkmSJPW2boVrSZJ6Qiz4bauWMzZfXRBdP9aJ4TQbSb3Gx59Lkvod569LGqgM15IkSVIhhmtJkiSpEMO1JEmSVIjhWpIkSSrEcC1JkiQVYriWJEmSCvE+15IkDWKl7hnu/cKlrvHMtSRJg1jJe4ZL6pzhWpIkSSrEcC1JkiQVYriWJEmSCjFcS5IkSYUYriVJkqRCDNeSJElSIYZrSZIkqRDDtSRJklSI4VqSJEkqxHAtSZIkFWK4liRJkgoxXEuSJEmFGK4lSZKkQgzXkiRJUiGGa0mSJKkQw7UkSZJUiOFakiRJKsRwLUmSJBViuJYkSZIKiczs6xqKiYingV/2dR1b6W3AM31dxCDhWJbjWJbhOJbjWJbjWJbjWJYzEMdyj8zcpXXjoArXA1FE3J+ZM/q6jsHAsSzHsSzDcSzHsSzHsSzHsSxnMI2l00IkSZKkQgzXkiRJUiGG6753eV8XMIg4luU4lmU4juU4luU4luU4luUMmrF0zrUkSZJUiGeuJUmSpEIM1z0gIo6NiIyIvVu1T6vaZ7Vq3xARP42IhyPiOxGxQ9Xe0pt19yfVOH2rbn1oRDwdETdV66Mj4qaI+FlELI+IpVX7uIh4qRrPjV/n1i1vqFs+va/eX3/Vanx+GhHj+rqm/iYido+IJyJi52r9rdX6uyLioohYGRGPRcT3ImJs3X4dfqb1uurv97UR8XhEPBARP46Ij0REQ0SsbfUZPayv6x0IOvjcjuvbyvqPiBhV97n6n4h4stXPkUci4qFq/YBqn6aIaPMOF+1lgW1VNRZfq1s/MyIaq+XGiDizWo6I+EL17+h/RcSdETG5j8p+QwzXPWMu8J/Vn11pfykzp2XmFOAV4M96vsR+7wVgSkT8TrX+QeDJuu3nAbdl5nsycxJwVt22X1TjufFrwcZlXh/raZl5Se+8lQHlpVZjt6qvC+pvMnM18A/A+VXT+dTmCs4HdgImZuYE4N+Bf4uIqPp19pkWtR+s1MburszcMzOnA3OAjf9R+WGrz+jtfVbsANLe59a/46/LzDV1Pyu+AVxYLf85MAvYNzPfDRwGrO7CIdv7mb+tehn4aES8rZN+pwC/D7wnM98FfBlYEhHDe7rAUgzXhUXECOAg4CRqPxA2tgfwceBE4IMdfEh+COzVw2UOFEuBo6rlucC/1m3bFWjeuJKZD/ViXdKFwIER8Rlqf98vA/4YOCMzNwBk5j9T+2Hygbr9OvpMq+YDwCuZ+Y2NDZn5y8z8P31Y02DR+nP71T6uZ6DYFXgmM18GyMxnMvNXHe3QXhbYxq2ndiLijE76fR44NTNfBMjMHwD/P3BCz5ZXjuG6vNnA9zPzv4A1ETG9av994InM/AXQxOs/YDeJiKHAEcCyXqq1v1sMzKn+I/Ju4J66bZcCV1a/LjonInar2/bOul/lXdqbBQ8Cv1M3djf0dTH9VWa+CvwltbDyGWAP4L8z87etut4P1P86s6PPtGomAw92sP3gVtNC3tlbhQ10rT+31bo69wNg92qKwmUR8f4u7NNeFtjWXQqcEBEj29oYEW8GdszMx1ttav1vab9muC5vLrUfoFR/zu2kHapAQ+3D89/Alb1QZ79XnY0eR22slrbadiuwJ/BPwN7ATyJi4yNI66eFnNKLJQ8G9dNCPtLXxfRzRwBPAVO6ukNHn2m1LSIura6tuK9qaj0t5Bd9WuDAs9Wf221dZrYA06lN/Xoa+HZEnNjJbh39zN9mVScgvgkM6muehvZ1AYNJdaHIB4CpEZHAECAj4vPAx4DZEXEOEMCoiNgpM5+nCjR9Vnj/toTary4bgFH1GzLzWeBa4NrqorBDgAd6u0BteyJiGrU50wdSm1N5HfCOur/TG00HWl+w2O5nWgA8Qu3fSwAy85Rqjub9fVfS4ND6cxsRizPzqT4ua0Copns1AU0RsQyYB1zdVt8OssBfpvc/BriI2m+n/rn1hsz8bUS8EBF7tjp7PR34j94qsLs8c13WccA1mblHZo7LzN2BJ4BzgIcyc/eqfQ/gu4BnBjt3FbAgMzebKhMRH4jX76qyE/BOamf9pR5VXT/xD9R+rf7fwFeAvwMWAX8fEUOqfp8EdgDuaHWINj/T2uQOYHhE/Hld2w59Vcxg0c7n1jnXXRAREyNiQl3TNOCXHezSXhY4uCfrHCiqE2PXUZuP3pavAJdsvPi7uiPQQdROpg0Ihuuy5gKt56l+FxjfTntnvybaISKa674+W6jOASMzm9u5q8d04P6IeAj4MXBFZt7XRj+ptD+hNr/6tmr9MmAf4HvAOuC/IuIxahcwf6T1maoOPtMCqvE6Fnh/dau4e6n9x+XzVZfWc66P67NiB5Y2P7ddnD+8rRsBLIrabV8fAiYBjXXbb677Of0d2s8CTg153deA9u4a8n+A+4BlEbEC+Btgdma+1FvFdZdPaJQkSZIK8cy1JEmSVIjhWpIkSSrEcC1JkiQVYriWJEmSCjFcS5IkSYUYriVJkqRCDNeSJElSIYZrSZIkqZD/BwdT0HcBDjspAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light", "tags": [] }, "output_type": "display_data" } ], "source": [ "import seaborn as sns\n", "N = len(symbols)\n", "idx = np.arange(N)\n", "width = 0.2\n", "\n", "plt.figure(figsize=(12, 6))\n", "\n", "p0 = plt.bar(2*idx - 1.25*width, rlin, width)\n", "p1 = plt.bar(2*idx, -0.5*np.array(sigma)**2, width, bottom=rlin)\n", "p2 = plt.bar(2*idx + 1.25*width, rlog, width)\n", "\n", "for k in range(0,N):\n", " plt.plot([2*k - 1.75*width, 2*k + 0.5*width], [rlin[k], rlin[k]], 'k', lw=1)\n", " plt.plot([2*k - 0.5*width, 2*k + 1.75*width], [rlog[k], rlog[k]], 'k', lw=1)\n", " \n", "plt.xticks(2*idx, symbols)\n", "plt.legend((p0[0], p1[0], p2[0]), ('rlin', '0.5*sigma**2', 'rlog'))\n", "plt.title('Components of Linear Return')\n", "plt.ylim(1.1*np.array(plt.ylim()))\n", "plt.grid()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "SKV6m6SsKe5F", "jupyter": { "outputs_hidden": true }, "nbpages": { "level": 3, "link": "[7.1.4.4 Volatility Drag and the Relationship between Linear and Log Returns](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.4.4-Volatility-Drag-and-the-Relationship-between-Linear-and-Log-Returns)", "section": "7.1.4.4 Volatility Drag and the Relationship between Linear and Log Returns" }, "pycharm": {} }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": { "id": "9vIpNkKGKe5I", "nbpages": { "level": 3, "link": "[7.1.4.4 Volatility Drag and the Relationship between Linear and Log Returns](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html#7.1.4.4-Volatility-Drag-and-the-Relationship-between-Linear-and-Log-Returns)", "section": "7.1.4.4 Volatility Drag and the Relationship between Linear and Log Returns" }, "pycharm": {} }, "source": [ "\n", "< [7.0 Risk and Diversification](https://jckantor.github.io/CBE40455-2020/07.00-Risk-and-Diversification.html) | [Contents](toc.html) | [7.2 Geometric Brownian Motion](https://jckantor.github.io/CBE40455-2020/07.02-Geometric-Brownian-Motion.html) >

\"Open

\"Download\"" ] } ], "metadata": { "colab": { "collapsed_sections": [], "name": "07.01-Measuring-Return.ipynb", "provenance": [], "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 0 }