{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "95JXKOZXC_9R", "nbpages": { "level": 0, "link": "[](https://jckantor.github.io/CBE40455-2020/07.02-Geometric-Brownian-Motion.html)", "section": "" }, "pycharm": {} }, "source": [ "\n", "*This notebook contains material from [CBE40455-2020](https://jckantor.github.io/CBE40455-2020);\n", "content is available [on Github](https://github.com/jckantor/CBE40455-2020.git).*\n" ] }, { "cell_type": "markdown", "metadata": { "id": "yniNR0U6C_9T", "nbpages": { "level": 0, "link": "[](https://jckantor.github.io/CBE40455-2020/07.02-Geometric-Brownian-Motion.html)", "section": "" }, "pycharm": {} }, "source": [ "\n", "< [7.1 Measuring Return](https://jckantor.github.io/CBE40455-2020/07.01-Measuring-Return.html) | [Contents](toc.html) | [7.3 Binomial Model for Pricing Options](https://jckantor.github.io/CBE40455-2020/07.03-Binomial-Model-for-Pricing-Options.html) >
"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Cj9jZN-5C_9U",
"nbpages": {
"level": 1,
"link": "[7.2 Geometric Brownian Motion](https://jckantor.github.io/CBE40455-2020/07.02-Geometric-Brownian-Motion.html#7.2-Geometric-Brownian-Motion)",
"section": "7.2 Geometric Brownian Motion"
},
"pycharm": {}
},
"source": [
"# 7.2 Geometric Brownian Motion\n",
"\n",
"This notebook presents methods for modeling a financial time series as geometric Brownian motion. The basic outline is to:\n",
"\n",
"1. Capture a data series.\n",
"2. Compute returns (we'll do both linear and log returns).\n",
"3. Test statistical properties. We need the returns to be independent and identically distributed (iid).\n",
"4. Fit distribution of returns to a normal distribution.\n",
"5. Perform simulations."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "2spMuzM7xKX8",
"nbpages": {
"level": 2,
"link": "[7.2.1 Historical perspectives](https://jckantor.github.io/CBE40455-2020/07.02-Geometric-Brownian-Motion.html#7.2.1-Historical-perspectives)",
"section": "7.2.1 Historical perspectives"
}
},
"source": [
"## 7.2.1 Historical perspectives\n",
"\n",
"The name [Brownian motion](http://physics.ucsc.edu/~drip/5D/brown/brown.pdf) (or Brownian movement) is a tribute to Sir Robert Brown, the Scottish botanist who, in 1827, reported the random motion of pollen grains on the surface of water when viewed under a microscope. \n",
"\n",
"The explanation of that behavior waited for the genius of Albert Einstein. In the *[Annus mirabilis](https://en.wikipedia.org/wiki/Annus_mirabilis)* of 1905, while employed as a patent clerk and living in a [modest apartment in Bern](https://en.wikipedia.org/wiki/Annus_Mirabilis_papers#/media/File:Albert_einstein_house_bern.JPG), Einstein published papers describing Special Relativity, laid the foundation for quantum theory with a paper on the photoelectric effect, and demonstrated the existence of atoms and molecules with a paper on [Brownian Motion](https://www.zbp.univie.ac.at/dokumente/einstein2.pdf). \n",
"\n",
"Remarkably, five earlier [Louis Bachelier](https://en.wikipedia.org/wiki/Louis_Bachelier) published his Master's thesis on the \"Theory of Speculation\". While this study was limited to the dynamics of prices on the Paris Bourse, and therefore didn't have the profound implications for Physics of Einstein's forthcoming work, nevertheless Bachelier should be credited with introducing random motion to describe price dynamics. Unfortunately, this work laid in relative obscurity for decades.\n",
"\n",
"Other figures in this intellectual history include the Japanese [Kiyosi Ito](https://en.wikipedia.org/wiki/Kiyosi_It%C3%B4) whose work in the difficult circumstances of the second World War [laid a foundation for stochastic calculus](http://www4.math.sci.osaka-u.ac.jp/shijodanwakai/pdf/1077.pdf). Later, the [eccentric](https://www.theatlantic.com/technology/archive/2014/06/norbert-wiener-the-eccentric-genius-whose-time-may-have-finally-come-again/372607/) [Norbert Weiner](https://en.wikipedia.org/wiki/Norbert_Wiener) established a [theory for random motion -- [the Wiener process](https://en.wikipedia.org/wiki/Wiener_process) -- now widely used in engineering and finance.\n",
"\n",
"The colorful history of individual genius and iconclastic research doesn't end there, but it is enough to provide some understanding behind the terminology that will be introduced below.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "aJ9K6S4aC_9U",
"nbpages": {
"level": 2,
"link": "[7.2.2 Python Imports and Utility Functions](https://jckantor.github.io/CBE40455-2020/07.02-Geometric-Brownian-Motion.html#7.2.2-Python-Imports-and-Utility-Functions)",
"section": "7.2.2 Python Imports and Utility Functions"
},
"pycharm": {}
},
"source": [
"## 7.2.2 Python Imports and Utility Functions\n",
"\n",
"The [`pandas-datareader`](https://pandas-datareader.readthedocs.io/en/latest/#) package provides a utility for accessing on-line data sources of data. Since the interfaces to those data sources are constantly changing, the next cell updates any current installation of the data reader to the latest available version."
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"executionInfo": {
"elapsed": 430,
"status": "ok",
"timestamp": 1604588431403,
"user": {
"displayName": "Jeffrey Kantor",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64",
"userId": "09038942003589296665"
},
"user_tz": 300
},
"id": "5j6hDBPaC_9V",
"nbpages": {
"level": 2,
"link": "[7.2.2 Python Imports and Utility Functions](https://jckantor.github.io/CBE40455-2020/07.02-Geometric-Brownian-Motion.html#7.2.2-Python-Imports-and-Utility-Functions)",
"section": "7.2.2 Python Imports and Utility Functions"
}
},
"outputs": [],
"source": [
"%%capture\n",
"#!pip install pandas_datareader --upgrade"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"executionInfo": {
"elapsed": 402,
"status": "ok",
"timestamp": 1604588436232,
"user": {
"displayName": "Jeffrey Kantor",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64",
"userId": "09038942003589296665"
},
"user_tz": 300
},
"id": "yAi20ohoC_9Y",
"nbpages": {
"level": 2,
"link": "[7.2.2 Python Imports and Utility Functions](https://jckantor.github.io/CBE40455-2020/07.02-Geometric-Brownian-Motion.html#7.2.2-Python-Imports-and-Utility-Functions)",
"section": "7.2.2 Python Imports and Utility Functions"
},
"pycharm": {}
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import datetime\n",
"\n",
"import pandas as pd\n",
"import pandas_datareader as pdr"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"executionInfo": {
"elapsed": 324,
"status": "ok",
"timestamp": 1604588449862,
"user": {
"displayName": "Jeffrey Kantor",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64",
"userId": "09038942003589296665"
},
"user_tz": 300
},
"id": "u22-e3K2Zm32",
"nbpages": {
"level": 2,
"link": "[7.2.2 Python Imports and Utility Functions](https://jckantor.github.io/CBE40455-2020/07.02-Geometric-Brownian-Motion.html#7.2.2-Python-Imports-and-Utility-Functions)",
"section": "7.2.2 Python Imports and Utility Functions"
}
},
"outputs": [],
"source": [
"# python libraray for accessing internet resources\n",
"import requests\n",
"\n",
"def lookup_yahoo(symbol):\n",
" \"\"\"Return a list of all matches for a symbol on Yahoo Finance.\"\"\"\n",
" url = f\"http://d.yimg.com/autoc.finance.yahoo.com/autoc?query={symbol}®ion=1&lang=en\"\n",
" return requests.get(url).json()[\"ResultSet\"][\"Result\"]\n",
"\n",
"def get_symbol(symbol):\n",
" \"\"\"Return exact match for a symbol.\"\"\"\n",
" result = [r for r in lookup_yahoo(symbol) if symbol == r['symbol']]\n",
" return result[0] if len(result) > 0 else None"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "KEj5yQDMC_9b",
"nbpages": {
"level": 2,
"link": "[7.2.3 Statistical Properties of Returns](https://jckantor.github.io/CBE40455-2020/07.02-Geometric-Brownian-Motion.html#7.2.3-Statistical-Properties-of-Returns)",
"section": "7.2.3 Statistical Properties of Returns"
},
"pycharm": {}
},
"source": [
"## 7.2.3 Statistical Properties of Returns"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 458
},
"executionInfo": {
"elapsed": 2100,
"status": "ok",
"timestamp": 1604589685688,
"user": {
"displayName": "Jeffrey Kantor",
"photoUrl": "https://lh3.googleusercontent.com/a-/AOh14Gg_n8V7bVINy02QRuRgOoMo11Ri7NKU3OUKdC1bkQ=s64",
"userId": "09038942003589296665"
},
"user_tz": 300
},
"id": "jrVe5ZTMC_9c",
"nbpages": {
"level": 2,
"link": "[7.2.3 Statistical Properties of Returns](https://jckantor.github.io/CBE40455-2020/07.02-Geometric-Brownian-Motion.html#7.2.3-Statistical-Properties-of-Returns)",
"section": "7.2.3 Statistical Properties of Returns"
},
"outputId": "6d6703a9-66d2-4901-f6b8-31490fa9a4b2",
"pycharm": {}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'symbol': 'AAPL', 'name': 'Apple Inc.', 'exch': 'NMS', 'type': 'S', 'exchDisp': 'NASDAQ', 'typeDisp': 'Equity'}\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAGoCAYAAABbtxOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3xUZdbA8d+ZSe+BFEgg9N5BREEQFMWCvRfEte66u7qW3XV9Xdvqvq/rFlddV9d1de2994pgAem99xBKAqT3mfP+cW8ykxAgCSGN8/188oG5986d557MnZz7zHPPI6qKMcYYY4wxxuFp6QYYY4wxxhjTmliCbIwxxhhjTBBLkI0xxhhjjAliCbIxxhhjjDFBLEE2xhhjjDEmiCXIxhhjjDHGBLEE2RjTJojIlSLybUu340BEZKCIzBMRaem2tFUiMl5EVrd0Ow6ViPxSRB5s6XYYYxrHEmRjTJMTkRkisldEwlu6LVDdnmua4aX+APxZ3QLzIrJJRHaJSHRQW64RkRm12iciskFEVtTeoYgMEpHPRGSPiOSKyHwROc1dN1FE/CJS6P5kishrIjK6jv30cLf9Zx3rEkTknyKyQ0SKRWSpiEw/0IGKiIpIUdBrF4rIb+obqP1R1Vmq2i/odTaJyORD2aeIxLjt+/gA21zpHtNFtZYHx7hARFaLyE/cdd3d54TUscungMtEJOVQ2m6MaRmWIBtjmpSIdAfGAwqc2aKNaUYi0hmYBLxTa5UXuOkgT58ApAA960hu3wc+Bzq529wI5Aetz1LVGCAWOAZYBcwSkRNr7ecKYC9wUfCFi4iEAV8A3YBjgXjg18CfROTGg7R7mKrGBP386SDbt5TzgDLgJBHptJ9tpgN7cOJUW1WM44DfAk+JyMADvaCqlgIf72d/xphWzhJkY0xTuwKYDTyLk3RUE5FnReQJEfnc7Y37RkS6Ba1XEbnR7U3NEZGHRKTOzykR6e/uZ4/bq3dhfRrn9ghmisitbu/u9qoeQXd9pIj8RUQ2i0ieiHwrIpH12PVJwAI3MQr2EHCbiCQc4LnTgXeBjwiKmYgkAT2Ap1S13P35TlX3GWqijkxVvQv4N/Bg0H4E5/dyJ1ABnBH01GlABnCBqm5U1QpV/QQnEb9fRGLqcew1uDF81v0WYYWI/FpEMoPWq4j0Dnr8rIjc7/5/YtW2IvK827b3q3qoReRDEfllrddbIiLnHKBJ04EngCXA5XW0txtwPHAdMGV/SbQb43dwLjQOmCC7ZgCn12M7Y0wrYwmyMaapXQG86P5MEZHUWusvwxmKkAQscrcLdg5wFDASOAu4qvYLuEMWPgdewulVvRh4/GC9ekE64fSUpgNXA/8QkUR33Z+BUcBYoAPwG8Bfj30OAeoaOzsPJ1G6ra4niUgUcD6BmF3s9uoC7AbWAS+IyNl1xHJ/3gJGSmBox3FAF+AV4DVqXricBHysqkW19vEmEIXTq9xQdwO93J8ptV6v3lR1GrAFOCOoh/q/BCW5IjIM5/f4YV37cJPfiQTiW1eP7hXAPFV9E1iJ8x6ta18eNxFPAJbW4xBWAsPqsZ0xppWxBNkY02RE5Dicr+pfU9X5wHrg0lqbfaiqM1W1DPgf4FgR6Rq0/kFV3aOqW4CHgUvqeKmpwCZVfUZVK1V1IU5Cd0E9m1oB3Of2ln4EFAL93N7qq4CbVHWbqvpU9Xu3rQeTABTsZ91dwC9FJLmOdefifP3/GU6SF4rb6+iOZZ4EbAL+AmwXkZki0ucgbckCxG0TOAnqx6q6F+ei4pSgsbFJwPbaO1DVSiAHqKvNVRaIMy666meKu/xC4AH397gVeOQg7W2I94C+QTGYBryqquX72X4asERVV+BcIAwSkRG1trkCJy64/9ZOotNEJBcnHncD01S1PjcSFuBciBlj2hhLkI0xTWk68Jmq5riPX2Lf3sOtVf9R1UKccZ9pda0HNtdaV6UbMCY4OcPp9dvf+NLadrsJYJViIAYnWYzASewbai/OOOB9qOoy4APg9jpWT8e5oKh0h2e8SVDM3GETv1DVXjjHXQQ8d5C2pOOMAc91h4dcgNtTr6o/4PTKVl245ACda+/AvfEsyV2/PyNVNSHo51N3eRr7/h6bhBujV4HL3QuaS4DnD/CUqm80UNVtwDfUHMYyDmcYyyvuopeAISIyPGgfWe7xdVDV4ar6CvUTC+TVc1tjTCtiCbIxpkm4idiFwPHiVEPYAdwMDHO/Bq/SNeg5MTjDGLLqWo8z/jR4XZWtwDe1krMYVf3ZIR5GDlCKMzSgoZYAfQ+w/m7gWpzkFQAR6QKcgJPsVcXsfOA0d/xxDW5v7D+AwQdpyzk446GL3P/H4QxBqXqNdAJJ4hfAqUHDMaqcB5QDcw7yWnXZzr6/x2DFOMM3qhzowkbrWPZfnAuiE4FiN+nfh4iMBfoAvws69jHApUGVJ6bj9LYvctfPCVp+qAYAi5tgP8aYZmYJsjGmqZwN+HBuXhru/gwAZlHzK+vTROQ4d5ztH4DZbuJX5dcikugOu7gJp7ewtg9wvmafJiKh7s9oERlwKAegqn7gP8BfRSRNRLwicqzUr1zd5zjjfiP2s+91OMcSXBliGrAG6EcgZn2BTOASNw73ikhvd/xrEs4QkNm19y+OdBG5G7gGuMNdNd09piFBrzEO58JlCE7vaybwujhly0LdoRKPAA+pamN6QF/DSUoT3YuAX9ZavwgnSfWKyCk4N8jtz06gZ/ACNyH24ww7OVDv8XSc30vwe3IwEIlzURCBc1F3XdD64W57g5PogwkXkYign6q/rcfjVLIwxrQxliAbY5rKdOAZVd2iqjuqfoDHcOrBViUbL+H0pu7BuRmudlWBd4H5OEnUh8DTtV9IVQuAk3FuzssCduBUbWiKusu34dyANddt44O4n5VuJYXxdT1JVXcCX+HcWLg/9wHBPbXTgceD4+XG7Al3XTnQHaeXNx9YhjNe+cqgfaSJSCHOOOq5OInwRFX9TETScXpZH671GvOBT4Dp7vjqyTi98nOAEnfdw8C9B4nVYqlZB/lhd/m9OMMqNuKMra6dxN6EU0mjamhM7dJ4wf4XuNMdShN8o+Nz7rG+UNeTgpLfR2sd+0a3PdNxLupKgOdqxf8/QAhwykGOv0qhu5+qnxPc1z8Np7fbGNPGiFvP3hhjDjsReRbIVNU797NegT5ub2ub41bR+C9wtLbRD1cRCcXp9dwGXNkUxyEiE4EXVLXLoe4raJ9XANep6nFNtc+m5Jai66qqhzx5ijGm+dX36yNjjDEH4VZK2GcWu7ZEVStE5DycXt5+OBOPtCpuabwbgMdbui37o6qPtnQbjDGN1+AhFiISJSK/F5Gn3Md9RGRq0zfNGGNMS1DVPFW9T1VbY3I8BcjGGZv80kE2N8aYRmnwEAsReRVnfOAVqjrYvZL/XlWHH+SpxhhjjDHGtHqNuUmvlzubUQWAqhbjlMgxxhhjjDGmzWvMGORyt96pAohIL5y7qptNUlKSdu/evTlfEoCioiKio2uXCj0yWSwCLBYBFosAi4XD4hBgsQiwWDgsDjW1RDzmz5+fo6r7zBjamAT5bpwSQF1F5EWceppXHlrzGqZ79+7MmzevOV8SgBkzZjBx4sRmf93WyGIRYLEIsFgEWCwcFocAi0WAxcJhcaipJeIhInXO9NngIRaq+jlwLk5S/DJwlKrOOJTGGWOMMcaYI095pZ///Wgl2QXNOhjhoBpTxWIcUKqqHwIJwB0i0q3JW2aMMcYYY9q1p2Zt4MmZG1iSmdvSTamhMTfp/RMoFpFhwC3AepwZjYwxxhhjjKmX0gofT83awOQBKZw4ILWlm1NDYxLkSndmpbOAf6jqP4DYpm2WMcYYY4xpDyp9fr5atZOScl/1suLySv70yWpyiyv4ybgeLdi6ujXmJr0CEfkdMA0YLyIeILRpm2WMMcYYY9qD1+ZlcsfbS+kYHcYVx3anuLySV+ZuJa+kgotHd2Vsr44t3cR9NCZBvgi4FLhKVXeISAbwUNM2yxhjjDHGtAefLt9B5/gI+nWK5W9frMHrEU4emMo143swqluHlm5enRqcILtJ8YvAaHeK6R9V1cYgG2OMMcaYGlbtyGfW2myum9CL20/tT+beYiJCvSTFhLd00w6owQmyiFyI02M8A2cGvUdF5Neq+kYTt80YY4wxxrQBucXlfLduN9tyixnVrQNrdxawemcBL83ZQqjXw2VjMgDokhjVwi2tn8YMsfgfYLSq7gIQkWTgC8ASZGOMMcaYI8wny7Zz48uLKPf5aywP83o4eVAqt5zUl64d2kZiXKUxCbKnKjl27aZx1TCMMcYYY0wb98rcrUSFe3l5+hh+WL+bJZl5nDMinXF9koiLaJt1HBqTIH8iIp/izKIHzk17HzVdk4wxxhhjTFvg9ysLt+Ry2pBOjOrWodXedNdQjblJ79cich4wzl30L1V9u2mbZYwxxhhjWrttuSXklVQwtEtCSzelSTWmBxlVfRN4s4nbYowxxhhj2pDMvSUAZLSxMcYHU+8EWUQKAK1rFaCqGtdkrTLGGGOMMfW2KaeIEK8c9ioRqso/v1lPp7gIzh3ZhaxcJ0FOS4g8rK/b3OqdIKuqTSdtjDHGGNOKlFf6+c93G/m/j1cR4hHuOXMQ8ZGh7C4sY/rY7ohIo/ZbUFrBjrxSEqPDyC+pYOm2PDpEhzFzTTZPzdoIQLeO0dUJcuf4iCY7ptagIT3Io4EkVf241vJTgV2qOr+pG2eMMcYYc6TYmV/KjrxShnaJ329iW+HzE+p1iod9vWoXv35jMTmF5Yzvk8TO/FLufGdZ9bZPzdrIE5ePIjU+nJTYgyewu/JL+cOHK1mweS/b3MS3LhP6JjN/0x6u+e9c9hZXkBQTRkSot4FH27o1ZAzyg8BP6li+AngGOKFJWmSMMcYYc4RRVa57bh6LM/MIC/FQXumnW8cobjmpL5t3F/PNmmzW7Sokr6SC9IRIeqfE8M2abLp3jOKh84cxoW8yFT4/K7fns7uwnMWZuTz61TrOeOxbAP520TDOHp6+T+K9aGsuucXldIwO57J/z6a0wl9dz/h3p/bH6xHWZxeSGhfBMT07EhsRwoBOcczdtIeXf9zCkm15nDUsvdnjdbg1JEGOVdXNtReq6mYRSWrCNhljjDHGHDF2F5bx2NfrWJyZx4iMBI7qlshTszayeXcxN72yCICoMC8jMhIYkp7A9rwSVu8oAODGE/swqX8KAF6PlxEZiQBMHpjKWcPTWJ6Vz2/eWMLNry7mzfnbuHPqADwivDB7Mwu27GXZtny8HqFPSgxhIV7e+fk4Vm4vYN2uQq4/vtd+2zymZ0fG9Ox4mCPTchqSICceYF37unXRGGOMMaYZ/M/bS3ll7lZ8fuXKsd25a+pAPB7hotEZRIZ5WbYtj+FdE0iN23eIRG5xOfGR+5+Io3dKLL1TYokJD+GF2ZtZuDWXUx6eVb2+Y3QY1x/fk3/N3MDm3cX8+YJh9EyOoWdyzGE51rakIQnyFyLyAHCnqiqAOP309wJfHY7GGWOMMcYcboVllbw0ZzOvz8tk+tjuXH5Mt2Z53aIK5cU5W5gyKJWbT+pL/06BgmC9U5wkNf0A1SESosLq9TonDkjlxAGp7C4s4463l/L16mwevmg4pw7uhIhw8sBOdEmMrDMJP1I1JEG+Ffg3sE5EFrnLhgHzgGuaumHGGGOMOTItz8rj9XmZTBnUiWN6dmh0JYZgPr/yt8/XsGVPMZeOyeCYoOEBN728kC9X7SIlNpw731nGDxt284tJvRnQufEVbEsrfLw+bysT+6XQdT81grfkO2N9Lzk6o0ZyfLh0jAnnyWlHUV7pJyzEU718VLcDDRI4MjWkzFsRcImI9AQGuYuXq+qGw9IyY4wxxhxW5ZV+QjyCx3PoCWiVskofnyzbwaT+KcRF7P/r/9qWZ+Xx2FfryOgYxcdLd7BlTzHPfr+J7h2jGNWtA/efPZjIsMZVSiit8HHTKwv5dPlOAN5bnMXIjARyiyvYuLsIVbjpxD5cO6EnP3thPp+v2Mmny3Zww8ReXHR0xgF7ceuydU8xj89Yx8s/bqVf6hY+vXnCPtv4/Mozy8sAGJQW36jjaqzg5NjUrTFTTW8ALCk2xhhj2iifX/lo6XbueGspXq8wunsHJvZL5uLRGXjdZHnOht3c+/4KfH5lQOdYTh7Uqfor+f2Zu2kPv31jCRtyiugUF0FUmJfThnTm5pP6Vu+3yrpdhfzq1YXEhoeSlhDJzLXZFJZW4vMr5T4/D180nHKfnxdmb+bNBZkM6xrPFcd2r9fx7cgrJa+kgt4pMXg9wjPfbeLT5Tv5/dSBHNc7iSkPz2RxZh4nDUhlQ04REaEerhrXg5jwEJ6/egx7i8q5673lPPLVOl6bl8l3t5+AR5xZ42r3Bu8tKicsxENUmJePlu7g0a/Wssq9gQ5g9c4CdhWU7lNmbfPuInYVK5MHpJIcG16v4zLNp1FTTR8KEfHiDMvYpqpTRaQH8ArQEZgPTFPV8uZulzHGGHMk+Hjpdh74aCWZe0voHO+U7lqwZS+fr9hJUVklZw1PJzEqjF+9ugiPCP07xfLtuhzeWZTF0T06cOMJfRjbq2N1r/PWPcXc+vpiissrWbYtn4wOUZw9PI0FW3KJCvfy2NfrWLUjnztOG0BUWAiK8uzyMpZ9O5vySh99UmP5dl02iVGhPHPlaPp3imV3UXn1eNgLRnXhnMe/5653lzO8awJDuyQc9BhvfHkhP27ag9cjJEaFkVNYxtheHbn6uB4AfPDL4+ieFE1MeAjbckvwCMRHBXq7E6PDePSSEfRKjubhL9by48Y9LNiyl4c+Xc1HN45nYJozHGLZtjymPvotU4d2Ztox3fj5SwsAuOWkvpw2pDPF5ZWc+dh3zN6whzOHpdVoY1UViptO7HOIv1FzODR7ggzcBKwEqgbbPAj8TVVfEZEngKuBf7ZAu4wxxph2Lb+0gjveXkpSTDj/vGwkJw1MJcTrQVU595/f88ePVvHHj1aR0SGK7XmlPHPlaCb1T8HnV3rd8RE/btzD5U/PITk2nMkDUuiSGMW/Z21gb3EFiVGhTOqXzP3nDKkxJOH5HzZxz/sr+GLlruplIQJH94zn1pP71Tn+NfhmMRHhp8f35KcvLODMx77jvrMGHbAnubTCx4+b9tAhOoxLj85g9c4C1u4s4L6zBldvMzg9MKThQMMnrpvQk2e/38TfvljDgs17Afhk2XZS4sJJignn8RnrAPhgyXZmb9gDwH+vOprj+yYDzhCWUK+wIit/nwR55fZ8BOiTahUjWqOGzKTX4UDrVXVPPfbRBTgdeAC4xa2CcQJwqbvJf4F7sATZGGOMaVJ//2Itf/tiDQAPnDOEU4d0rl4nIvx+6kAufOIHOsVHMLBzHMf3Ta5O9Lwe4a8XDuOF2Zu5aHRXZq7J4b1FWRSV+xjYOY63bxhH96ToOl932rHdGZQez/uLs3hjXiYT+iUzMSGXC047pt5tP2VwZ96+YSx//3Itd727nHcXZeEV4bmrj95nBrdv1+YA8ND5QzlxQGqDYlRbVFgI147vyUOfrq5e9shX63jkq3WkxoWzM7+M0d0TWbAll6Fd4vnFCb0ZmRFI+MNCPPRJiWXupj2s21VAr+SY6iEqM9Zk0y3O0+5moGsvGtKDPB9QQIAMYK/7/wRgC9CjHvt4GPgNEOs+7gjkqmql+zgTaH/TsRhjjDmiqSolldpir//+4qzq5LhncjQT+yXvs83IjERW33/qPmOFq5w7sgvnjuwCwEWjMyivdGZciwk/eCoxMiORkRmJ3H2Gc4//jBkzGnwMIzISeXr6aP706SreXrCNXQVlrNpRwPCugSEXZZU+/vjxSrp1jGJc76aZw+zsEek89Olq4iNDef2nx3LnO8sYmh5PdmEZPr/y5wuGEer17DduI7sl8MLsLUz+60ymDEolLiKU2IhQlmTmcVG/+pVpM81P3JLG9X+CyFPA26r6kfv4VOBsVb3+IM+bCpymqjeIyETgNuBKYLaq9na36Qp8rKqD63j+dcB1AKmpqaNeeeWVBrW7KRQWFhITY1+FgMUimMUiwGIRYLFwHAlxqPQ7f0dD6kiQKv3Ka6vL+XGHj9wypW+ih7FpIQzs6CUlqnkqCczOquTJJWX0TfRw1eBwEiOEMG/TVa1ojEN9X+wq9vObmSVcOSiMgnIlq9DP9cMieH99OW+ureCWUeEMTW66UaQ/7qikR5yH5Eb8zir8yqY8P19srmDODl/18mPTvFzQrZIO8e37/GiIlvi8mDRp0nxVPar28sYkyEtVdcjBltXxvP8FpgGVQATOGOS3gSlAJ1WtFJFjgXtUdcqB9nXUUUfpvHnzGtTupjBjxgwmTpzY7K/bGlksAiwWARaLAIuFoz3GobTCx9PfbuTkgamkJ0Zy5TNzWb2jgBevGcPg9HhW7chn7qa9FJdV8tq8razPLuLUwZ0IKd7N8oIwNmQXIQLXje/JB0u2Exnm5TdT+uERYWzvjkSFNS6xW5GVzxvzMzl5UGqNGr/nPv4dRWU+3v3FuFbzdf6hvi/8fmXovZ8xtldHPlvhlG57/uqjufa5eUzsm8IT00Y1UUubTmmFj6Xb8thdWIbPD6cN6cQ333zT7s6PQ9ESnxciUmeC3JizMEtE7gRecB9fBmQd7Emq+jvgd25jJgK3qeplIvI6cD5OJYvpwLuNaJMxxhhz2FR1Jq3bVciv31jCoq25PPHNemLDQ8jKKwXgttcX85Nx3bn/g5UUlDkjB4d1TeDxy0Zy2pDOzJgxg0eOP541Owv55csLeHLmBjrFRbAzr5Trnp8PQKhX6Jsayxs/HVvvmr9+v/Kf7zby4CerqPApL/+4hbl3TiYy1MvcTXtYtDWXayf0bDXJcVPweISrj+vB379cW71s2tM/Ehnq5a4zBrZgy/YvItTL6O4HvJ3LtCKNSZAvAe7G6f1VYKa7rLF+C7wiIvcDC4GnD2FfxhhjWrk35meyans+aQmRHN2jQ42KArX5/Mr363MYkZFIpc/PhpwiRnRNaJKZ1Rriqmfn8vXqbEI8QlSYlw7RYewpKic9IZK/XzKCFVn53PfBCn775lJCPMLDFw2nX6fYfWZiExH6dYrlkUtG8PWqbH4yrjuZe0t45Mu1HNOzI7M37Oa9xVm8OGcz14zvCTjjar0ieETILalg4Za9fL9+N7sLy9iYU8TizDwApgxK5fxRXbn2uXkMvvtTYsJDKHQT9aqb7dqTX03uQ2mljye/CUzNcNPkPqQ1cFIPY+rSmIlC9gA3iUi0O7teg6nqDGCG+/8NwNGN2Y8xxpi2Y+ueYh77ah2vztuK1yP4/EpCVCgPnjeU2Rt2s3l3MUkxYVT4lPAQD6qQlVfCrLU5RIR68IhQXO7jnjMGcuW4+twX3jg+v/Lp8h1EhnqZ1D+FCp+fr1dnA3DuyHR+e0p/Fm7J5U+fruKFa8aQFBPO6O4duPCoruQUluH1yEGTtP6d4qqnFu6dEsMjl4wA4NIxGewuKuOJb9Zz7sguzNmwm1++vJBKv+IR8AeNiuySGElafCRnD09jbO8kLhjVBVW45rgeFJX7UFWiwkIY17sjY3s1zQ1rrYmIcPsp/bni2O4s2ZrL16t3cc1xh+99YY4sDU6QRWQs8G8gBsgQkWHA9ap6Q1M3zhhjTPuwcns+057+kZzCMnokRfPOz8fx0dLt/O6tpVz//HzCQzx07RDF9+tziI90JmwoLvNRUFbJCf1TSI2LoLCskvcXZ/H16uwmT5CXZuaxODMXVeXpbzeyaXcxEaEeZv3mBLILnOmA/3TeUC4c3RWAyQNTmTywZgmxyDDvPrOsNcbtpwzgvCe+Z/yDXyEiVPqd2db6dYphd2E55ZV+fntq/xq1gquIwJ1TW+cQg8NBREhPiCQ9IbJG2TpjDlVjhlj8DefGuvcAVHWxiOw7ybgxxhgDLNqayxVPzyEqLIRHLhnBhD5JxEeGMqlfCuB8/f/UFUcRFlKzQkB5pZ9Nu4volRxTXUIrJtzLB0u2k1dSUZ1IN9a6XYXc/+EK1mcXsnVPSfXyIenx3HPGQO7/cCWn/n0mYV6nXUd133dCi8NhSJd4Xr/+WGcs8aY9vHTRmHrNHmeMaTqNulVWVbfWGv/l29+2xhhjjkxvL8zk8dkl5H03j7jIUF6+9pgaPayd4iP4/OYJ9EiKJsS7b/mssBAPfVNjayw7a3g6b8zP5OgHvmBMz47cf9Zg0hIieHLmBsoqfHg9HgpKK+jWMYq0hEiO6t5hn0S60udn5fYCfvrCfApKK5jYL4XLxnTjmJ4d8YiTIIsIfTvF8uKcLazbWcjNozPomdx85aeGdU1gWFdLio1pKY1JkLe6wyxUREIJTB1tjDGmjSssq+StBZlEhYWQEBnK4sxc9hSVM3VoGmkJEXSIDiM2ou6e23W7Cnlh9maGd03g69W7eHdRFsmRQn5FBU9PH13n8IM+tRLggzmmZ0f++5Ojuf75+cxck82Z//iW5Jhw1u4qrN4m1CtU+AKDdS8e3ZWEqDDW7SpgfXYRO/NLKS73Eeb18PJ1YxjVre7KAmN7JbXLsbvGmINrTIL8U+DvODPebQM+A2z8sTHGtCEl5T48HmdaXp9fiYkIoVdyDPd/uJL3F+9bufPFOVsAp1f3ktFdGdW9A1m5JfhVWb4tn9U7C1gXlKR6PcKtJ/VlkCeTEyZNatK2j+2dxJe3Hc/WPcVc/K/Z5BZXcP3xPRnWJYERGQl0iovg37M28sBHK0mMCuWLlTvZU1RefYPbtGO6MbpHB8b06FDnOF5jjGlMgtxPVS8LXiAi44DvmqZJxhhjDsXWPcU88OFKyip9JMWEExnmpVvHaFQVr0eYsTqbb9Zk7/f5l43J4OrjelBU5iMyzEtybDgLNu9lT1E5z83ezH9/cH6CDegcx52nD+DkgZ3ILSmnY0w46QmRzJix7bAcY0psBCmxEbz78+PYmFPE6UNr3qB17YSeXDuhZ/Vjv1/JKSwjr6Siwb3WxpgjT2MS5EeBkfVYZowx5jAqrfCxPCufJZm5bMguomuHSIrLfXyzJpuFW3KJCQ8hJjyE/NIKissDt4qIwOlDOgfOAbYAACAASURBVBMfFUqXxEiWb8vnuD5JVPqVjtFhnDQwldBaY4In9XduqDt3ZDq7CsrYmV9Kt47R7CkqZ0N2IScOCFR0yODQKznU18C0OAamxR10O49HSImLIMV6jI0x9VDvBNmdBnoskCwitwStigPaz/Q8xhjTyr27aBt/+GAFe4sr8LnjBkI8TjkwgNjwEG4/tT9XjetBWIgHVWXz7mKiwr2Eejx4PNLoChAiQmpcRPXQhPjIUHokRTfNgRljTCvRkB7kMJzaxyFA8PdT+ThTRRtjjDkMVJWZa3N4be5WMvcWs2RbHoPS4rjgqK4M75rAsC4JJMeGk1dSQVxEyD4VIUSE7pbEGmNMvdU7QVbVb4BvRORZVd0MICIeIEZV8w9XA40x5khVVunjh/W7eWnOFj5bsZPwEA+D0uK4eXJfrhzXnbha1SQ6RIe1UEuNMaZ9acwY5P8VkZ/i1D6eC8SJyN9V9aGmbZoxxhy57v9gBf/+diMAkaFebjqxDz+b2IuIUBvRZowxh1tjEuSBqpovIpcBHwO3A/MBS5CNMaaJfLV6FwD/ufIoxvZKssTYGGOaUWMS5FB3gpCzgcdUtUJE9GBPMsYYs3+VPj+LtubiV0iMCmVTThE3ndiHE/qnHvzJxhhjmlRjEuQngU3AYmCmiHTDuVHPNJOd+aVEhHobfRe6Mab5Ze4tZmlmHr1SYigqq2Tz7mJyCsuo9Ct+VWatyeGHDbtrPKc+5cuMMcY0vQYnyKr6CPBI0KLNItK00ySZfazPLmRDdhHb80p48ONVVPqVHknRJMeGc3zfZK4Z37PG9hU+P2WVfmLC6/4Vqzqd/iJy2NtuzKHKK65g0+4iZ3rgEA9dEiNJjgln1Y4Cvl+fw5RBneqcxviwtqmkgg3ZhSTFhOPxCJtziiip8DE4Pb66BFqlz88jX67lgyXb2ZBTdMD9eT3CLSf1ZXjXhOqpkCf1S2mOQzHGGFNLgxNkEblrP6vuO8S2mCCqyq/fWEKv5BjOHZnOaX+fRVmlH4DeKTEMToujoLSSDTlF/PGjlUwdmkaneOeP8pqdBUx7eg45heX0TIqmoLSS4/smoyi7C8u5cHRX/vH1OtbvKqRbx2jOH9WFq47r0ZKHa44A36/LIS4ylEFpcYgIfr/i8Rz4Am3epj088/0mPlyyfZ91Xo9U1wD+evUunrtqDN6D7K+xVBWfX3l+9ma+WrWLldvzySks3+/2fVNjKCwqpvzbr8gpLOO43klcdkw3hndNYGNOEQmRoXRPiiIxKoywEA+hXg8iEB5i44yNMaY1aMwQi+BukAhgKrCyaZrT9qgqG3KKeGnOFpZty+NP5w8lMszLzrwykmPDqfD5G9WztXBrLm/MzwTgwU9WAXD9hJ6cPrQzQ9Ljq3t+N2QXcsJfvuHcx7/jzxcM46juHbj9zSX4/MrlYzL4Zk02RWWVfLFyJx6PEOIRrn9+PgAn9E8hu6CM+z5YwRcrd/LiNWOsR9kcFtkFZVz67zkA9EyOpl9qLLPW5nDl2O50SYxk7qa9VPr9jO+TTIfoUJZvy+fDpdtZtaOAhKhQpg7tzIS+yXRJjKSsws+m3UWszy5kSHo8O/PL+Ovna5j66Lf0Tonh5IGpnDEsrV7t2pVfSniIl5IKH4oSFxFKVJi3xnnw4ZLt/OrVhcRHhpFTWEZqXDgn9k+lZ3I0XRKj2LKnmLjIEHp0jMavMGP1LjbkFJFPCV3Tkjh5YCqnDglMgzyqW2LTBtcYY0yTa8wQi78EPxaRPwOfNlmLWqGySh9frdzFpt0+jq30ER7ipbTCx468Un724gJWbg8MwT7j0W/JL62s8fxTB3fi9lP7061jzUL9Pr9SWFZJXERIjT/Iny3fwW2vLyYuIoTzR3XlP99tJC0+gt+dNmCftvVMjuGZK0dz5zvLuPm1ReSXVFJS4eM3p/Tjhom96zyWBz9ezXfrcvj7xcPx+ZXxf/qa79fv5uZXFzGhbzLnjEg/ohLlwrJKotwKAR6PoKq8Pj8TFC44qssRFYvD5f3FWQBMP7Yba3cVsjwrn8KySh77el2N7d5dlFX9/8Hpcfx+6kAuOborUWH7/6hSVTI6RPHMdxuZs2E37y/O4r3FWfxiUm8+XLqdmWuyufyYblx+TDcAZq3NZkVWPl+s3MncTXv32d/IjATOG9WF/p1iWZqZxx8/WkWv5Bh6p8TQKzmGm0/qe8BjPa5PEgAzZsxg4sTh9QuQMcaYVqUxPci1RQFdmmA/rZbPr/zi5YX4/Mq7W7/jsjEZ/P3LdeQUlgFw75mDmNQvhSXbcnnymw0MTo9n0dZchqTHkRQTzrPfb+KzFTu576xBlJQ7ifWaXYXMWpuNKkSFeSku9wEwsHMca3cVEBsRymOXjmBsryROHdKJ2Ij9/6om9U/hpsl9uP3NJZw4IJW+qTHVyUBt4SFe7jpjYI1l8+88iZtfW8SMNdm8syiLW15bzCe/Gk//Tu33BqF5m/bw7qIs5m3eW32Bc+awNK46rgcfLM6qrj+7p7ica47rsc/MZO2V36/M3rCb2Rv3sDGniFEZCSzLyuerVbvwqxIV6iU81EvvlBiSYsK5+rju9E4JTKy5Ic+Hrt5FRaWfzL0lTDu2G6FeD+8s2sagtDjuPWtw9bY+v1a/12PCQ/h2bQ69UqLZW1RBz+RoUmLD63VxIiKcPSKds0ekk1dSwX3vr+C9xdv4fMVOvO63Jne+s4wFW/byk7E9uPKZufj8TlL96yn9KKv00zE6jFCvh+yCMv49awP/8/ay6v2f0D+Fv144jIQom4TDGGOOFI0Zg7wUqCrr5gWSaefjj6PCQghxxzuu2lHA799dXl1B4raT+zJ9bHcAMjpGMXXovl/tjshI5Nrn5lX/0Q0L8RAbHoIqTB6QQuf4SN5euI3CskriI0O5/Jhu3DCxN8mx4QCM7t7hoG288KiunDE0jciwho9hDAvx8I9LR+L3K7e8toh3FmXxhw9WcMtJ/Xh/cRbfr89hfJ9keiZH859vN3LjiX2Ib/CrNL/i8koqKpVKv58l2/LomRRNt47RZOWWMO3pHymp8DEkPZ6zh6fxziKn1/E9t6fz/FFd2Jlfyv99vIrX523l1MGduWRMBukJkS18VIfHyu357C0q58U5W/hw6XY8AqFeD+8vziIuIoQT+qcQGxFKQWkFxeU+Vu7IZ9veEl7+cQvRYU5Fla4dopizsRR+mFu934hQLz2To1mSmcedp9f8BsTrkRoXYacP7cyhio8M5S8XDuOq47ozb9NeThncifySCi55ag5vLdjGWwu2EeIRvrz1eHomRdeZgF9+TAbbckvYme9cAE8ekGLfIhhjzBGmMT3IU4P+XwnsVNXK/W3cXtx4Yh8e+nQ1D50/lA7RYZzQP4Wict9+q0QEO6F/Cnec1p+IUC8T+6bQtUMkPr/y1apdTOibTESolztOG0BYiOeQbjJqTHIczOMRHr54BAPT4vjjR6v4bt33AIR5PWzevbn6JsGbXlnEhC4hfJSzmLOHpzO2d9Ihve7h8LfP1/DIV2vRWhW6O0aHIQI+Vd746bGMzEjE4xH+dP4wPlm+g+gwL6lxEQxyy2t9tmInf/lsNY99vY7HZ6xjcHo8R3XrwKVjMuidEtMCR9Z0/H7ln9+s54uVO1m4Jbd6+Y0n9uHa8T2ICPWyq6CM1NjwOnvQcwrLeHdRFttzS1i9s4DNu4s5q1coV5w8GoDfvbWE//14JaUVPtLiI7h0TEazHdugtHgGpTmXcalxEcy7czIrt+fz509Xc96oLvRK3v/vrmNMOB1jwpurqcYYY1qheifIIhKnqvlAQa1Vce5EIfmq6mvS1rUiN0zsRW//VqYc1bV6WX2SY3B6yq6b0KvGshCvcPKgTtWPDzW5bUrTjunO3uIK+neKZVS3RNITIqn0K6u2F+BX5a53l7E4O595u7Yza20OX982sUVm+couKONnL8zH6xEm9kvh2F4d+XBJFpt2F/P5ip2M692RSf1S8HqE2IhQ9hSVVdeendQvhaOCeubDQjycWceNXVMGdWLKoE5syC7krQXbmLtpD8/P3sTWvcU8dcVRjWq3qpJdWEZcRGiLzo72/pIsHvp0NV0SI/nZxF5syC5k+rHda1zwHKjH3BliUbP6yYwZM6pvQnvgnCFc/u85nDMindtO7nfAccTNYUDnOJ6+cnSLtsEYY0zb0JC/WC/h9B7PxxliUburM0ZEnlLVO5qqca2JiBDuPTK+Zo0M8/LbU/rXWBbqFYZ0cXrk3v3FccyYMYPIjCFc9K/Z/O2LNfzu1AFsyy1h0ZZc+qbG0CfVGZdaXuln4kNfkxQbzpRBnTi+bzKD0w99gMaLczZz97vLqfQr3TtGVVf6EIFeyTGcMSyNh84f2mQJaM/kGG6b0g+Am19dxLfrclDVBn/1XlLu47rn5zFrbQ7gjD8f1zuJX0/pR1ZuCcuz8lm5PZ+oMC+XH9OtRsWSxsjKLeHthdtYvDWXpdvyKK/0c+KAFC4d043v1+0mPjKUWb+ZdFiGEIzu3oGV951y0FJuxhhjTGtT7wRZVae6/9ZZMFdEvMAyoF0myGZfY3p25PQhnXlt7lZCPZ4aFQnuPXMQQ7vEk5VbSlZeKcUVPh76dDWfLd/B9LHdSYoJZ2S3RNbtKqRzfET1xApV8koquP3NJVT4/Fx9XE/W7ipgUFo8i7fmUu7z88x3G0mJDefZq46mb2osK7Ly3W3iatw0djgM6xLP2wu3kbm3pN4l/Px+ZXFmLo9+tY5v1+Xw80m9iAoLYcvuYl6fv5XPV+ys3jYi1ENphZ/X5mUSGx5CaIiHC0Z14VeT+7IkM5ecwnLG900iLsIZB78iK5/cknJ6p8RQ4VNenbuVNTsK2J5fyuKtztCJrh0iOaZnR1SVD5Zs57V5mXgEJvRNPqzjay05NsYY0xY1ZIjFyAOtV9UFwL51yEy7dsawND5cup3HZ6zjmJ4dmL1hDwB3v7e8ehuvR5hx20RufW0xX67axS2vLa6xjz4pMQzvmkB2YRnH900mp7CM577fTEGZM7T9i5W76nztJy4fRV+3p3pgWlyzTct7Qv9U7vtgBX/7fA3nj+rCowtLWefdwFnD0/F6hI05RQxOjyPM6+GTZTv4ZPkOvl+/m+yCMjwCd08dyJXjAteZ047txpLMvOr6wInRYeQVV/DRsu0s3ZbHe4uyeHLmBp6cuaH6OWcNT+OBc4bwp09W8dwPm2u0TwR6J8eQGB3G2F4d+dnEXozvk1y9vqC0gncXZfHeoizOG9muC9AYY4wxjdKQIRZV9Y8jgKOAxTjDLIYC84Bjm7Zppi04eWAqT04bxfCuCaTGRaCqlFb4WZ9dyK6CUnbmOxMrJESFcebwNL5ctYtQr/DE5aP41SuLKCirZO2uQnIKy0iICuPe91cg4tSOvmFib8oqfeSXVLK3uJyXf9zCA+cMoUtiJBWVSnxUaIscc0bHKC4b043nZ2/mrYXbAJj/4Uru/zAwX06/1FgGdI7lHbeub9/UGG49qS9TBnUiMbpmubDB6fH7DDuJjwrlkqMzuAS4a+pA3luURU5RGQmRYby7aBvvLsqqrhk8/dhuTB6YyvpdhRRX+DhzWBpdEvffsx0bEVqjLrAxxhhjamrIEItJACLyFjBSVZe6jwcD9xzs+SLSFXgOSMUZw/wvVf27iHQAXgW6A5uAC1V13+r9plXyeIQpQTcbigiRYV434auZ9J08sBM3ntiHM4Z2pk9qLN/efgKx4SFkF5aRHBOOCCzblk9idGidCd65wb2dLVyS9r6zBnHW8DTySirYuX45A4eNZN6mPXjE6UF+fvZmVu8s4MYT+3DN+B7VwyEaIyLUy4WjAzeHXjS6K1+t2sWny3dwdPcO1euCe4mNMcYY03iNua28X1VyDKCqy0SkPkMrKoFbVXWBiMQC80Xkc+BK4EtV/T8RuR24HfhtI9plWrnIMC+3BM1CVlVLOnj8cdWNgK2diFRXwZixcyXDuyYwvGsC4FSpOK5PEsmx4YzMaPpphb0e4aSBqZw0MLXJ922MMcaYxiXIS0Tk38AL7uPLgCUHe5Kqbge2u/8vEJGVQDpwFjDR3ey/wAwsQTZtmEjNXnVjjDHGtC2itWdSONgTRCKAnwET3EXfAP9U1bIG7KM7MBMYDGxR1QR3uQB7qx7Xes51wHUAqampo1555ZUGtbspFBYWEhPTtieHaCoWiwCLRYDFIsBi4bA4BFgsAiwWDotDTS0Rj0mTJs1X1X0mNmhwgrzPDkTGAxer6s/ruX0MTlL9gKq+JSK5wQmxiOxV1QN+Ly0i2cDmA21zmCQBOS3wuq2RxSLAYhFgsQiwWDgsDgEWiwCLhcPiUFNLxKObqu5zE0+jprYSkRHAJcCFwEbgrXo+LxR4E3hRVaues1NEOqvqdhHpDNRd0ytIXQfSHERkXl1XGUcii0WAxSLAYhFgsXBYHAIsFgEWC4fFoabWFI+G1EHui5MUX4KT3b+K0wM9qZ7PF+BpYKWq/jVo1XvAdOD/3H/frW+bjDHGGGOMaWoN6UFeBcwCpqrqOgARubkBzx8HTAOWisgid9kdOInxayJyNc6wiQsbsE9jjDHGGGOaVEMS5HOBi4GvReQT4BWciULqRVW/PcD2JzagHS3pXy3dgFbEYhFgsQiwWARYLBwWhwCLRYDFwmFxqKnVxKMxVSyicUqzXQKcgDP5x9uq+lnTN88YY4wxxpjmdUhVLEQkEbgAuEhV20ovsDHGGGOMMft1yGXe2hsREbWgGLNfdo4Ys392fhizf23p/PC0dANaIYuJqUFE+omIvS8CLBamBjtHarA4BLH3BYhIeku3wTTcEf/GrSIip4vIB8AfRGRcS7enJYnI2SLyh5ZuR0sTkZNEZA5wDXau2DkSxM4Rh50jAXZ+BIjImSJyS0u3o6WJyGQRmQ/8tKXb0tJE5AwReRm4XUS6tXR76sOGWAAiMgr4J3APEIdz8+H3qvqsiHhU1d+S7WsObp1qD/AT4HagG3CCqs5q0YY1MzcOIcDvcW5E/W3QpDZt6uuhpmTniJ0jVewc2ZedHw4RCQFuBX4GZAAjVXWRiHhV1deyrWse7vkRCjwMjAXuUdV3gtcfgefHZOCPwF3AaCAe+FpVP2zN58cRfcUfZDIwS1U/wpmoZAdwo4jEq6rffcO3a+rwAeuAEcANwBHXQ+bGoQLwA29U/eEXkfHuTJBHKjtH7BwB7BzZjyP+/ABQ1UpgNdAfuAV40l1+RCTHUH1+lANRwDuq+o6IeERkWNX6lm1hi5gMfKCqn+C8J2KBq0QkurUmx3CEJsgicqOIPCUi17qLvgbOEJFEVS0BKoA84LfQvt/QQbG4xl30jaoWqOpTQLQ7gUu7H0cWFIfr3EVPAJ1F5BkRWQr8BmcmyKvc7dv1Hzw7RwLsHHHYORJg50eAG4v/E5GqSb4+VNVSVX0YSBGRS93t2vXFU1AcLnIX/QEYLyJ/BhYA94vIv0RkSsu1snnU8Z74HhgnIhGqugsoBby4nxWtVbv+QK+LiFwJXAq8CVwuIv8DbAI+BZ4XkVlAT5wZ/hLEqfvcLtWKxTQR+R3OsVe5C7jF/dBvtVd5h6pWHC4TkTuBMuAdIAynlOGZ7vpzRSSjnf/BuxI7RwA7R6rYORJg54dDHDcDFwHzgHvd2CQGbXYL8BCA+61Du1NHHO4RkatVdT3O+dHfXXcpsAw4R0SSWqzBh9F+3hPTcWZizsKZNflrnGFI7wKxrbljodU27DA6EXjQ7eq/FYgArlDVX+J8ZXqfqv4E5wonUlWLWq6ph11dsbisaqWqfgysBK4TkVgRuaBlmnnY1Y5DOHC9O27sOlVd5f6xXwLk4vQOtWd2jgTYOeKwcyTAzg+qe8UnAXeq6hvAzcBQYErQNm8Da0TkNqgei9qu7CcOw0TkQlV9FLhYVVeragGwCCc5LG65Fh8+dcTiFmA4MAznRt67gT+750c50KM1dywcMQly0FXKQmAqgKrOA74D+orIeFXdoqqfu9udDqxv/pYefgeIxQ9AutS8A/u3wP8Ca4FOzdnOw+0g74keIjKu1h+36UAksLdZG9pM7BwJsHPEYedIwJF8ftQeLhMUi3nAeAD3gmEtMEhE+gVt/jPgTyKyA2jT5c4aEIeVwCgR6aeqhUFPOQknOS5thuYeVvWMxcfAGpwb83qr6kJV/dDdbhQwp5ma2yjtNkEWkU7uvx6AoKuU7wCPiExwHy/D6fqv2n6CiHwD9MEZY9fmicggEYmoenyQWGwH0tzn9QYex/maaKR7NdxmHUIczhORxThfm/5MVdv8hxs0OB7t/RwZJyK9qh4fwedIY+PQ7s6RBsaiXZ8fOBc91YJisQ7na/Ih7uNvcCoUxAKIyHDgKZzhKCNV9b/N09zDpiFxiCMQh4tFZBlO5Zs7WnOvaQM0JBaxBGJxmoj8iBOLN5uprY3S7hJkERkhIl/i3l1e9UsLurpZCywHLhKn9EwmkAr0cNdvAm5Q1XNUNadZG9/ERGSoiHwL3A90DFp+sFh0d9fnAb9Q1XNVNav5Wt60DiEOVe+JNcBPVfUKVd3ZjE0/LJogHptoP+fISBH5DPgK5w971fIj7RxpbBza3TnSBLHYRPs5P44RkTeBf4jIySLidZeHuJv8CFQCJ4tIiKquwOklPspdvxsnFhe08fPjUOOwGefC8Qr3JrU26xBiMdpdvxbns+I8VW3V3zS1mwRZHH8DngP+q6rXBq0LrrNXAMzCGUP3Z3HurE0EcgDcr8iWN2/rD5s7ccownaOq2wDcD/SDxWI3gKpmq+raFmh3U2tsHKreE0tV9YcWaPfhcqjxaPPniIiEisiTwL+AR3BusJrorjtizpEmiEO7OUeaMBZt/vwAEJGJON+OvIVTuu1yINH9e1oJoKrrcL5S74VTGxycmzc3u+u3qurSZm56k2qiOPyg7aBe+iHGYpO7fq2qLmjeljdOu0mQ3cHhscBCVX0OQER6BSfH4sx89RJOr8/vcT7UZrmP2/pXP9XEqbnYEyhUp9RO1YxXCYC4j++nncfC4lCTxaOGcGAmMF5VP8D5wB/g9nj4AETkXtp/LCwOARaLmoYCc1X1ReAFnMkvCoP+nt4vIk8D83EuKI4WZ9a4PTgXF+2FxSHgiIpFyME3ab1E5Bhgj6qucRfdAswVkbtw7qTdCRSKyMNAIc4Vze/cKxxE5CogWp27S9u04FioU5g+B6cG41Scu0cjceKxUpzpHnvSDmNhcajJ4hFQ6/OiyP2Qr+IFfKpaKSICDMEZQ3q7OuWa2k0sLA4BFouAOv6ezsQpWZaFU51jJfC4iHwKbMX5rLhLVTe5z78UCFHV3GZvfBOyOAQc8bFQ1Tb3AyQAH+J81XUnzgdU1bobgcXABJwegQdx7jBPDtrG09LH0EyxuAOnQPmZ7uMJOLUHj21vsbA4WDwaGgucXnOP+//eOBcKiVXr2lssLA4Wi3rGIiZo3dHAf4Dz3MdX49x0N6y9xcLiYLGo/dNWh1hE43TX/9L9f9XdxKjqI8BEVZ2pqlWF7I/CrTsorXje70babyyAD3BuJurgPp6HMwVqKbS7WFgcarJ4BNQZC3X4xbn5apO7zfFV66DdxcLiEGCxCKgdi/FVK1T1RyAZdywtzo2LCbhl/NpZLCwOARYL2tAYZBG5QkSOF5E4dW4s+hfwGs4f9TEikla1rda8M3IUTte/z13X5n9x9YhFOoCqLgF+DfxcnJl7Lsf5mrDqBqM2HQuLQ00Wj4D6fl6IiLjHG+4+teoiQaDtx8LiEGCxCGhALMJxpgm+wX3qiTgX1qXQ9mNhcQiwWOxL3IviVsn9QOqEc1OEH6foejRwk7rlc8Qp2H8hzsDxF9xl4cCxwJ9xanXeqoExNG1SA2MxT1WfD3ruLThjg/oAN6tTdqVNsjjUZPEIOITPC6+q+kTkBWCdqt7TEu1vKhaHAItFQGM/K0RkEM4MaJ1wZkj8haqubP4jaBoWhwCLxYG12pv0gj6gYoFtqnq5OPX2Hsa5sjkXQFW/E5Gjgf4iEg+Uq2qJiJQD96szFWqb1ohY9HNj4VfVAlX9q4iEqmqbnv7V4lCTxSPgED4vKlS1atrXq1S1vEUOoIlYHAIsFgGN/KxIAMpUdbmITAc6q+qGFjuIJmBxCLBYHFyrG2IhIl4R+SPwRxE5HuhHYHiED7gJGOuuq/IUEAN8AWwSkTRV/b6tJ8eHGIvPgXVVX4u05STI4lCTxSOgCWKxMSgWbTYRsjgEWCwCmiAWm0QkXVVL2nIiZHEIsFjUX6tKkN1fyHyc2pLrcGbDqwAmuVcwVeNb7nF/qpyOMx5mETBE2/CMPVWaIBaLaQexsDjUZPEIsFg4LA4BFouAJvx7uq35Wt30LA4BFouGaW1DLPzAX4LGuYwAegB3Af8ERolzd/E7wAki0l2denulwGRVndkyzT4sLBYOi0NNFo8Ai4XD4hBgsQiwWDgsDgEWiwZoVT3IOFc2r7njYAC+AzJU9VnAKyK/dK9uuuAUcN8EoKrvtsNfnMXCYXGoyeIRYLFwWBwCLBYBFguHxSHAYtEArSpBVtViVS1zx8EAnARku///Cc60nx8AL+NMdFBdeqe9sVg4LA41WTz+n73zju+quv//82TvQBIIm7ARBJQlOHGjtVrraOterfqtbX+ttdW2ttZqrdpq654Vt+IWRUAggbBXSJghg0yy9/rs8/vjjs+9nwwCJiTQ83w88njk8/ncce65557zOu/zfr+vH1UXGqoe/Ki68KPqQkPVgx9VF0dGf3OxADQnckACycCX+tdNaG8AOxk4aPjASNmP89T1AKouNFQ92FH14UfVhYaqBz+qLvyoutBQ9eBH1UX36FcWZAs+IBSoBqbrM5oH0dJTrZP/Iw7iOqouNFQ92FH14UfVhYaqBz+qLvyoutBQ9eBH1UU36LcvChFCzEN7lzXq7gAAIABJREFUW8sG4A0p5et9XKQ+Q9WFhqoHO6o+/Ki60FD14EfVhR9VFxqqHvyoujg8/VkgjwBuBJ6SUjr7ujx9iaoLDVUPdlR9+FF1oaHqwY+qCz+qLjRUPfhRdXF4+q1AVigUCoVCoVAo+oL+6oOsUCgUCoVCoVD0CUogKxQKhUKhUCgUFpRAVigUCoVCoVAoLCiBrFAoFAqFQqFQWFACWaFQKBQKhUKhsKAEskKhUBwnCCG8QoidQog9QohMIcS9Qogu+3EhRIoQ4rpjVUaFQqE4EVACWaFQKI4f2qSUp0gppwIXApcAfznMPimAEsgKhUJxBKg8yAqFQnGcIIRollLGWD6PBbYCScBo4G0gWv/5HinlBiHEJuAk4CDwJvAM8A9gARAOPC+lfPmYXYRCoVAcByiBrFAoFMcJgQJZ/64emAQ0AT4ppUMIMQF4X0o5WwixAPitlPIyffufAYOllI8IIcKB9cA1UsqDx/RiFAqFoh8T0tcFUCgUCkWPEAo8J4Q4BfACEzvZ7iJguhDiav1zPDABzcKsUCgUCpRAVigUiuMW3cXCC1Si+SJXADPQ4kscne0G/EJKufyYFFKhUCiOQ1SQnkKhUByHCCEGAS8Bz0nNVy4eKJNS+oAbgWB90yYg1rLrcuBuIUSofpyJQohoFAqFQmGiLMgKhUJx/BAphNiJ5k7hQQvKe0r/7QXgEyHETcAyoEX/PgvwCiEygUXAf9AyW+wQQgigCvjBsboAhUKhOB5QQXoKhUKhUCgUCoUF5WKhUCgUCoVCoVBYUAJZoVAoFAqFQqGwoASyQqFQKBQKhUJhQQlkhUKhUCgUCoXCghLICoVCoVAoFAqFBSWQFQqFQqFQKBQKC0ogKxQKhUKhUCgUFpRAVigUCoVCoVAoLCiBrFAoFAqFQqFQWFACWaFQKBQKhUKhsKAEskKhUCgUCoVCYUEJZIVCoVAoFAqFwoISyAqF4n8KIcRZQojsvi7HiYYQYpAQYr8QIrKT3x8SQrzTzWO9JIR4UP9/gRCipJv7fSKEuKT7pVYoFIqOUQJZoVCckAghCoQQFwR+L6VMl1JO6osyBaKLRrcQolkIUS+E2CCEmN/NfW8RQqzr7TIeAfcDi6SUbd/1QFLKu6SUfzuKXR8HHvmu51coFAolkBUKheIYIIQI6eSnD6WUMUASkAp81MflOZpjhQM3A92yEPcWUsotQJwQYnZflkOhUBz/KIGsUCj+pwhcstctzb8VQmQJIRqEEB8KISIsv18mhNhpsfBOt/x2vxAiTwjRJITYK4S40vLbLUKI9UKIp4UQNcBDXZVLSukB3gWGCyEG6ceIF0K8LoQoE0KUCiEeEUIECyFOAl4C5hvWZ337NCHEHQFlWGf5LIUQPxdC5AA5Rl0IIe4VQlTq57nVsv2l+nU16ef/bSfFPw2ol1Ja63WMEGKNvu+3aBMA6334SAhRrtf5WiHEVMtvi4QQ7SzBQoj7hBCfBHz3jBDiP5av0oDvdVJOhUKh6BZKICsUCgVcCywExgDTgVsAhBCnAv8F7gQSgZeBL3WLKUAecBYQD/wVeEcIMdRy3NOAfCAZeLSrAgghwoCbgBqgTv96EeABxgOnAhcBd0gp9wF3ARullDFSygFHcK0/0Ms1Rf88RC//cOB24HkhxED9t9eBO6WUscDJwOpOjjkNCPTrfg/YjiaM/4ZmYbbyDTABGAzsQJscHI53gIVCiAFgWsF/DLxl2WYfMKMbx1IoFIpOUQJZoVAo4Bkp5SEpZS2wBDhF//5nwMtSys1SSq+U8k3ACcwDkFJ+pO/nk1J+COQAcy3HPSSlfFZK6enCN/da3QLcBvwUuFpK6RFCJAOXAv9PStkipawEnkYThN+Fx6SUtZbyuIGHpZRuKeVSoBmYZPltihAiTkpZJ6Xc0ckxBwBNxgchxChgDvCglNIppVyLVq8mUsr/SimbpJRONOv6DCFEfFcFl1KWAWuBa/SvFgLVUsrtls2a9PIoFArFUaMEskKhUEC55f9WIEb/fzRwr+5eUa8L2ZHAMAAhxE0W94t6NCur1ZWguBvnXqxbgJOB3cAsy7lDgTLL8V9Gs7h+FwLLVKO7dxhYr/8qNJFeqLtLdBZAWAfEWj4PA+qklC2W7wqNf3Q3kX/o7imNQIH+k80NoxPeBG7Q/78BeDvg91igvhvHUSgUik5RAlmhUCg6pxh4VEo5wPIXJaV8XwgxGngVuAdI1EXubkBY9pfdPZGUshrNYv2Q7qZRjGatTrKcO05KafjqdnTsFiDK8nlIR6c6gjJtlVJegSbKPwcWd7JpFjDR8rkMGCiEiLZ8N8ry/3XAFcAFaO4dKfr31rrrjM+B6UKIk4HLaO+acRKQ2Y3jKBQKRacogaxQKE5kQoUQEZa/I83c8CpwlxDiNKERLYT4nhAiFohGE5tVAHpw28nfpbBSymxgOfA73Z1gBfAvIUScECJICDFOCHGOvnkFMEL3XTbYCfxQCBElhBiP5lN8VAghwoQQ1wsh4qWUbqAR8HWy+RZggBBiuH4dhcA24K/6cc4Evm/ZPhZN/NegCfq/d7dcUkoH8DGaj/MWKWVRwCbnoPk3KxQKxVGjBLJCoTiRWYrm22v8PXQkO0spt6H5BT+H5kaQix7AJ6XcC/wL2IgmVqcB63ugzE8CPxNCDEYL2gsD9urn/xgwggBXA3uAciFEtf7d04BLL8+bdC/wrStuBAp0N4i7gOs72khK6UILKLzB8vV1aMGAtcBfsAfSvYXmclGKdm2bjrBcb6LVt829QggxB2jW070pFArFUSOk7PZqm0KhUCgUHaKnpksHTu2Jl4Uc5lyjgP3AECllo+X7T4DX9WBDhUKhOGqUQFYoFArFcYMQIgh4CoiTUt7W1+VRKBQnJj32JiWFQqFQKHoTPeivAs09Y2EfF0ehUJzAKAuyQqFQKBQKhUJhQQXpKRQKhUKhUCgUFo5LF4ukpCSZkpJyzM/b0tJCdHT04Tf8H0DVhYaqBzuqPvyoutBQ9eBH1YUfVRcaqh7s9EV9bN++vVpKOSjw++NSIKekpLBt27Zjft60tDQWLFhwzM/bH1F1oaHqwY6qDz+qLjRUPfhRdeFH1YWGqgc7fVEfQojCjr5XLhYKxf8o8x9bxcVPr+3rYigUCoVC0e9QAlmh+B+lrMFBdkVTXxdD0Qm5lU00Oz19XQyFQqH4n0QJZIVCoeiHXPDUWm56fXNfF0OhUCgOy9oDVTjc3r4uRo+iBLJCoVD0M4z0mzuK6vu4JAqFQtE1FY0ObvrvFr7OKuvrovQoPSKQhRALhRDZQohcIcT9HfweLoT4UP99sxAiRf8+RQjRJoTYqf+91BPlUSgUiuMZt1flp1coFMcHrS7Nclzf5u7jkvQs31kgCyGCgeeBS4ApwE+EEFMCNrsdqJNSjgeeBh63/JYnpTxF/7vru5ZH0b9Yn1vNbYu24vOpAV+h6C4en6+vi6BQKBTdwu3V+qs214kVM9ETFuS5QK6UMl9K6QI+AK4I2OYK4E39/4+B84UQogfOrejnbC+sY/X+SppPsAdHoehNlAVZoVAcL7g8mkA2LMknCj2RB3k4UGz5XAKc1tk2UkqPEKIBSNR/GyOEyAAagT9JKdM7OokQ4mfAzwCSk5NJS0vrgaIfGc3NzX1y3v5Id+siJ98FwMq0dBIiTjyX9xOhTfRk+U+E+ugpvktdNLr8Avl4r88TpU2Ut/hIiBCEBR+9bedEqYue4HisC6dXUtDgY1JCcI8d83ish0Dy6zVhfCC/kLS08u90rP5UH339opAyYJSUskYIMQv4XAgxVUrZGLihlPIV4BWA2bNny75IrK0Sevvpbl1satsPeXlMnzmH8YNje79gx5jjuk0s+xqgR8t/XNdHD/Nd6qKi0QGrVwE9e3/6ghOhTTjcXiY/uIxLTh7CizfMOurjnAh10VMcj3Xx3uYi/rFyFzsfvIj4qNAeOebxWA+BRBfUwqaNJAwewoIFM77TsfpTffSESa8UGGn5PEL/rsNthBAhQDxQI6V0SilrAKSU24E8YGIPlKnHaXZ6yK0/sZYPjgWGb1KTQ7lYKBTdxXhuFP0Dp1u7H+tyqvu4JIq+pLbFiZTQ1kPpzJqdHn66ooXV+yt65Hh9hdFftZxgLhY9IZC3AhOEEGOEEGHAj4EvA7b5ErhZ//9qYLWUUgohBulBfgghxgITgPweKFOP8/N3d/DIJgdNjmMfpZmeU8Wy3cdn+hSP8eA4T6wHR6HoTTzKB7lf4fRq/VdQkAqd6Y/c91Emf12yB9DEWnmDo1fO06yPYz0VRJtT0YTbB/9emdMjx+srjJiJNiWQ7UgpPcA9wHJgH7BYSrlHCPGwEOJyfbPXgUQhRC7wG8BIBXc2kCWE2IkWvHeXlLL2u5apN8gq0fKRGs7ox5IbX9/CXe/sOObn7Qlc+oPTk28Ec7i9pNz/NYu3FR9+Y4XiOERlsehfGBbkYCWQ+yUfbS/hjfUFALy1sZALn1pjGmd6kmanZiDz9lBWJqeuJ7JKGtha0C+lT7dwm0F6J9ZKcY9ETUkpl0opJ0opx0kpH9W/+7OU8kv9f4eU8hop5Xgp5VwpZb7+/SdSyql6ireZUsolPVGe3iBIT7qhspUdGebSSw8K5NoWLfDvqRUHeuyYvUFxbSs3vr65T1YdjoSe6uy7wu31mS+/UBwelcWif+H06Bbk4zT5UmWTw+w3T3T2lTXS5PT0ynJ/s+4q2FPPp9NicDueX7JhTOhPtCwWJ15agV7CyEp3LMREbyOl7FHB2hXGLN6wIK85UMUb6w/2yLEl/ftebMirJj2nmoLq1r4uSjusYvVY+Lte+/JGLn1m3Qnx/BwLlItF/8KhW5CPVwPyL97L4FcfZPR1MY4JRbVaf1tQ3UJ9a89OCgwXi57qx6x5g0vr23rkmH2BsVKsBPL/KEbHeKyCZ3w+eVRuCVJKvtlV1qUrSFp2FbMfWUndMbAouANcLD7aVszzqbnf6ZjGtfV3g2SZ7gdnWJ/6Ex5LB+/q5TYtpSSjqJ59ZY1klzf16rlOFNzKxaJfYVj6jlcXi6pmJxvzanrU1a2/UqwL5CueX89ZT6T26LENF4ue0gGNluD1Q8exQDYMYa0nWPtSArmbGCtrnmNkAfs0o5TTH1uF4wijZTfk1XD3uzv454rsTrcpqWulze2luK73LZuBLhZtLi+1La7vNAM3BF0/18daqi7sy2j9BWv997ZffYPl9aM9Ff19oqMsyEdObxovjncXC4fLi8cn2ZB7YmfhcLi9lDf6A/R6OntSSw9bkJtOEIFsPHutJ1j/rgRyNzE6RrfXR5vLy68/3NmrDTq3splGh8cmLroTdGBYCPKrmjvdxhBsVU3O71jKwxMokFtcHnySwy59/eOb/fzjm/0d/mYEzPR3C3J5P7YgW8VEb6+KWAesvq4LKSVbDtb2e3/o3ggw6mtcHh+LtxX3yrWV1rcx9c/LySyu7/Fjw/EfpGcIlzUHqvq4JL1LSV1br44LxvjaU4ayRsv4XtfqPm6D3JSLxf84VoGcVVLPZxmlvRp1arg/NB6h9S08RLulXVktjd8qj4FANjoSw3fLeIBqDuPe8emOkk5zQ/pFVv8WOYaLRV9kPjkcVguI29O79VjWYBXIfVsXH2wt5tqXN7J8T//OO9rbbi99wWcZJfzu4yy2FtT1+LHzKptxeX2m/2lPY/Q5x61AdvkFspSSK19Yz1sbC/q0TL1BcS/dfwPD4ttTk7xAC/eh+t5JT9fbGPXh8vhOqMm9EshHiMcrzU64vMGB7yhnkvWtLk59eAWb82s6/N0QkFYfpe7kGDRmz4bFoyNcvWhBdri9NoukcS7Dd8voqKubOz93ZaODyiZnp+X7roLzn8uzufm/W77TMbpDf3axsEZh97YY22aZSHbVLo8Fu0sbAC2qvz9zIrpYfJ5xCICGtp6Pfahp0fqKI3VJ6y7GM3w8elh4fRKXx0dyXDgldW3kVTWTUVR/XGdN6IzemiAZGCuhPediYc9wdLy6WVjH/BPJzUIJ5G4SpNeUx+czZ6mPfbOfR5fuO6rjVTQ6qWt1s62wY2tKrd7hWx+g7liQjQGiq6Xs3nSxmPzgMq59eaP52bAgG75bhhN/TbOL6mZnh0tKu3QRU9fq7lAMOw8TpOfy+NhysHPr/nOpuaw5UNWrM12H20tdq3bv+lIUVjY6OqxjmwW5F+tBSsnr6w6SkhgF9L2LhTFBiwoL6dNyHI7vmgc5r6qZtOzKo9p32e7yHnuz12cZJbS4JeUNDjYd1IwBjb3wVs3qJk1099Zk1OhXg49DhWw8/+dNTgZg1T6tXewsru/R1S1PP0jlWFhzeIFc3+o6qmBFj9dnjsE95WKRXWEPWj5+BbK/Plo7eSmYzyfN90kcLyiB3E0MFwuXR9pmqa+vO7qUZUaHG7gkJKXk7Y0F5FZqPsTWwaQ7/j0OjyGQe96CXFTTyq6ShsNul1HkfwjcAWnejNyUNc1OZj+yksueWdduf0MggxZ9HYgpkDs5/3Orc7j25Y3sKOp6KTe3Cz/t70pFJ363Pp8krxfPG8jcv6/iRy9vavd9oJU/r6q5V6xvjQ4PDrePBZMGA0cuYBxub49mWzHEQl8P5Ifju+ZZPf9fa7jlja1Hte9d72zntkXbvtP5QRPpv/4wk42HPCzJPGROaK1uYz1F9TGyIPeGi8U3u8q6bOM+n+z2SuVnGSVsyLMH4hkrj5OHxBIaLMjURYrT42P3oc77c59P8ujXe82xqCsa2tzM/Nu3R+S6dKCuZ59t0CzIcREdT369Psmra/OZ99gq/vTZrna/+3yyS6OJ9W2w1gnsFztLOeuJ1Xi8Ppocbu54c1u3XD2anR5zRcvgaARyQXULG/M6Xok+VtgsyJ34UT+fmsvlz63vloboLyiB3E2MbtHjO7yf266ShsPOUE2BrGeS8Hh9eH2SvWWNPPjFHlMYH4kFub7Vxa8/zAQO54OsHedIl5nPfjKV7z/XXtACZBbX81QHmTOMgd5YmjIeHsOFJL+6pd0+1k6j0iI0DVFjlF9K2aHQKdX9uPYeauywrBGhWrPfV9bx70dCYaOXP362q90AVt6J3+0fP9/F+f9a0yOWgr99tZc73jy8kNlV2r5DslqQa1qcXPKfdD7YUkRti6tHc2TX6BOcYQMigCMXyE8sy+aHL27osfIYk8xWl+YK1JWrj8Hq/RW8lp7Phtxqrnh+fa/5lK/PrTYHjxPhTXr7yzTrWINTsiTrECcPjwPa+102tLptwchHQ29bkJ1mHmSBlJKtBf5AT4/XZws6llITlvvLD9+/VDc7ufvdHXyyo6TTbU55eAVXvrD+sMdqc3l54NNdvJZuN9oY40ZMeAijEqLILPb3B1u7WGmraHLwavpBbnp982HPvaukgUaHh4Ka9v15RzQ7Pfxji4O3NhZ2us2bGwqO2E+6uLaVyUPizM9hwX6J8/H2Yh5dug+PV3aYc/jn7+3g1kVbO508N1uEn9UF6jeLMymubaO62cXnGaWs3FfBC2l5hy3rvrLGdi8eKz0KH+TnUnO55Y0t3/kZCqTV5eGMf6xmfTcyn9gFcsc65Zvd5UDH+Z69Ptkvc+QrgdxNDAuy5oNsv8HWzrGh1c2VL6zngy1FXR7PoXfkhtge/8dvuOalDTS02hu5LUWWy8uTy/e3sxAYPLfan1/Y2YWYNl0suiEOGjpxcwjkD5/t4hnL+Q2sWSxcHp8pmKubO7cc7CptYOygaNt2y3aXM+aBpRRUt5jlr2t1M+aBpe2sEIkxYUDnARuRocHmtXXE4q3FXPXihm65Hjyx1cG7m4uoC8jKYc/coB2noc3N+1u012P3hBX59XUHWbmvolO3ha7KbxVgGUXaUmtti4ub/7uF27oYJI4U4+1dQ+Mjga7bZUeszamiqLb1qHz9q5udXP3iBoosy67WbCrPrs7loqfXHvZab1u0jUe+3sd9H2eRWVzfa8ug17+22ZyAHs6CXN3s7NYbGvty0MnWBWKDS5Jf1cLs0QnEhIfQ0Obm8WX7TcvkjIdXMOOvKzo9zlPfHiDl/q+7vE+GD7K1feVWNpFy/9fkVHSee/v51NxuCVnTxSJI8MXOQ1zz0ka2FdbxwKe7mPXISuY/ttqcDFY3u3g1/WC34hzKdEHUlbhpdHjI7IbVbV1uNQ63r10AtN+tKJgxSTE2gdJVwKTxrByyTPa9Psnfl+6jrMH+DBiWaGOfwpoWfv3hTrNOAsmpaMInu45F+cuXe/jzF3s6/d3A2i6KaluZOCTG/GwErQPsLm0kNjyEBZMGt5ukSSlZn6u92Kkza2yzZR/rc2X8X9nkMMerxGhtDGp0uHkhLbfD57AkIM3qwKhQDtW38eaGgiN6V0B9qwunx8eXmYe6vU9nFNe28tuPMvnl+xm8kJpHaX0bf/tq72H3s04YOhPIRlKAjgTyFc+v4+J/rz3KUvceSiB3E8P1rNHhbvdQ37s40xzA95Q14PFJ6gPE1+JtxbZXfRod7qF6h7mss6OonuqAzq3GIiSrmpw8n5rHda9u7lAwOCxCqStrs9XForNBx+XxcdYTq5nx8ArueW9Hp8cC7QHt7AUQxrU1OT22IEPDx9p6DCkllU0OKhqdnDYm0XYdq/ZpS3frcqvbCXZDbDY7PRTXtprW+85EqDHZMbbz+aRp2XZ7ffzukyy2F9bZ3CQ6w6jmQMuV1YL83Opcvso6xDUv+S2hBd3wlesuk/60rMPvrb5gTQ43jRZBZfWh26xbkZ5Zncuu0gY2H6w1/RQBDlQ0cesbW47KsmwM1sMG6AL5CCx8tS0uciub8frkUVlHth6sZVthHessFhDTguz0smpfBbUtri59Yq3Ph7Hi0nIEqZi8PsmXmYeOeCm5qyA9KSVXv7iBv3x5ePHQ2XJnQ5vbnFg1OtxmGY9mIlLZ6CDl/q9ZpluIDPaX+y3IzU4P8ZGhxEWEsOVgLS+m5fHL97v3ZrdnVuUAWtxGZxh9srV9LcnUgtCWBASjGfe0yeHmyeXZ7dy8pJT837vbWb7Hfz3GcX1S8vF2zdqbfqCK97cUMSohija3l9X7K83jQue+mFYMoXmk+XrPfHw1fwhwE/h2r1beQFFqtPnIsGCGxkeY308fEc/2wtp29/yVtXl8tK24w2duZ3E9r6zN5zf6SqWBserX7PRQWt/Gda9u5rOMUtOdIxBjvCiua2XR+oNmGaQ8ckuitS9rc3sZP8gvkK3tobC2ldFJUcRFhLRb4S2qbTX7gX+vzOlwXLTu4+6gjBWNTnOiFhWuGWEe+mIPTyzL7lB0FwcY2sYkRXOooY2/fLmHJ5d3/h6DQIxyL95a3O19ABY8mcpDeh9SXNvK5vwaPt5ewsfbS/h2bwWvpucD3Yt9ch3GxUJKaQbqB04MQJu8GH19f0IJ5G5ivGo6v8q+hHTe5MGs2l/Jv/VO3FjWb2hzmw9ZcW0rv/s4i/97d7u5nyGQvT5pS4NV0WAXZdbOztrZlHUg3qyDal2rNgA+n5rLyr12vzBjYHS4fZ26glQ0OswHeMXerv3Klu0u7zRowepiYRUW1sFuX1kjpzz8Le9sLjI72jkpA/Uyeml1ecxZZ2l9WzuRZQRmPLsqh4X/XkuB7rbRmZXasKz+c8UBzvtXGmP/sJQpeg7VMssSV1dWbgMjQ1pgp1De6CA6TOsk29xe7nkvA49P8tINMwkPCaKom0uRVlr0CUBHdGRFti4J/t+7O7j7HX/7s7aVHR0Eij6+bL85uXllbT6p2VXtAkoCyS5v4uMD9pfAGBO8ofERCOEfsA5UNPH0twe6tAput5Tro+0dd/6p2ZWd+kga31snSsb5S+vb2KM/q51ZuQAetlhPjLYcOPntilX7Kvjl+xmc/UQqH261rypZLfyBIsVq4a9pdnLv4kxe0wesrJIGCmpaOXCY+wGdW3Nm/HUFty3aSkF1C9MfWsEv38/g7ne324RadwMq9+li5+1NBTz05R5zMmu0l4oW7VriIkOJjQhlr+7aFJhmsrO2EBps9L2dr7oY7exwE7DdpQ3MeXQlaw9UmX1QYN+1t6yRpbvK+WaXX1gbdVFc28p6fQVvt95+bpw3mqSYMHOiaQhL47i/+XAnt76xpcMsRMYkvMnh4efv7uC51Tmdlt3ax5TUtfHeZn978vokK/VJbU1Av9VmCUyNDvf75543eTB1re52fsh/X7qf+z7OorGtfVsI0X2wGwNWL4xnqcXp4Z73dpjX1dzJJMGYPKVlV/HQkr2k6gGlz6fmMu4PS4/IlzxQVA3UrbegCTfj96KaFkYnRhPTgUDOqdDa1g9PHc6WgtoOLevWfbz682n1WS5vdJhtyhDFByq16/R20LZL6loZFBtufh47KKZd/17W0MZ/OhHsBk0OD0FCW3kN9GnuioKaVhZtKAA0d7173s9gZ3E9k5JjWXjyEPNZ6qgPkVLy1IpsM87ncC4WRiwKaG3XivWau9OnHUuUQO4mhg9yoM/sHWeN4fIZw3hmVQ45FU1mR/H2pkJu0pfYjLa9Kb/W7HStmQ2sDaQ8QPhal8usQqYji1Rguq7CmlaeXJ7NHW/Z/VStFtjAQern7+3goS/3dLn0FRjIsCTrEGOSokmKCWu3rfHg+KR/uT04SNiW6IyME19nHWJXSSNCwKzRmkB2ur38Z2UOG/QZeEldWzsLsuH3llvZTIvLa25rnO+zjBJ+/Io/s4b1AbbWY1ZJvW12W92NIEajbzYCOA5UNJG6v5KKRgdDLNYagAe/N4WFJw9lVEJUh9HWi9Yf5KNtxTz05Z52S5gAt7yxhbOeSDU7S0M4gD9/ZnFtK5c/t471udW2136uy60mu9wvMKyiIFAgXHfaKHIqm1m5r4Imh9tMB1XZhQUP4HcfZ/JVvpslmYdodLipb3WZKwUJ0WGEhwSZA+1VL27gP6tyaHF5qWpycsFTa5jy52X6BSd/AAAgAElEQVSs1V9kEGhh/PvS/e0mIW0uL7e+sZWLnl7TYXmMIMy8qmZanB68PmkOvCv3+Sd9neXkzi5v4o31BYxMiLR9b7jTBD4HhTUt7Qa4zJJ6goMEYwfH8PCSvea921FUx9S/LDejugMFh9XF4teLM/lkRwmPfL2PZ1blsFTvQwzXkWanh78u2dPhSzI6CsQ1np/1uTWkW6zreVUtNquh8f9DX+7h2y4myYa433uokUUbCrj9zW20ujz+dJit2u9xESHERfoFWkObyyaEalpcHfZrRsaRvOoW2lxec5+nddcLj9dnisLq5s5XxUDrI6qbXdz5tt1CnJpdSVWTk/IGh7l6Yg3iNYReo8ODlDB8QCTpOVpbDQ8NYmh8pNln1uv15pWSVfsq+DSjlNTsKpbtaZ9WzTCONDncbMqv4etddiu8VfwZwqIjK//2wjpqW1xMHRZHm25UMLY1xGpUWLA5aQc4c3wSAJc/t77DF4hY24IhvHxmHIi/7Tc53BzUx8UmhxZ4dum0oUDnrx4OFEJZugvJP1ccACA9x98uDzdRC3QlCw8J4qUbZnLt7BHm/l6fpKSujVEJUcSEh9Ds8LCrpIG3NxYgpTTv2c2np9iu14rVxeKPn+3mz1/sNvcDbSXF2m/f/e520ze+oxdjldS1MXKgv28ZOyja5pMspeTXH+7k6ZUH2FfWRFp2Ja+uzW8XW9PkcHPOxEFEhAbx07e2HfFK30fbilmfW02Tw82u0gZmjIwnwTLJMCZYuZXNjPvDUvKqmlm+p5xnVufymJ7FqyMXi7ve3s6tb2yhtsVl9llg1zt1LS4ueMrff/e3LB49IpCFEAuFENlCiFwhxP0d/B4uhPhQ/32zECLF8tsD+vfZQoiLe6I8vYGxLJ8XYK0KDwnmF+eNBzQ/rD2W2Xh6TjWVjQ6bcP35ezv4wfPrWZLl9xeyiu5Ci2UxLCTIZg3YY3kwAn1eoX1+4EBrd1WTk10lDbbOrbLRyfOpuaZLwNdZZSzaUNDlS0SsSy61LS425tXw/elD8U8j/Li9PozA78ue1ZYyk2PDbRZkY5Dw+qTmf5wUbT6grS4vX1mWSHMrm9t1mEbnHOjbZFgGf/1hJpvya2l1aX7QVkF4zsRB5v/BQUG21293J4DLwLCOX/T0Wm5dtJWyhvYC2fCNHp3YXiAv31POQ0v2ct/HWSzaUMBjS7W3CHp9krTsSj0wSJsgjXlAs7AkRoeTFKNZIIprW8ksruesJ1LJKmng7ne286fPd5vHl7q/n3/lonNL251njyU+MpRv91byVVaZeb+rugjqdLi9piXx6ZUHmP7QCk55+FtqWlzEhIcQERpMeEiwOTE0LJWtTg8fbi0it7KZVpeXD7YWsbO4nseX7afN7bVFpE/583LbBGZjvjaI+mTHPpyGBTmnopmzn0jlvS1FZtu3Wkozi+v5xfsZpjjzeDV/bMMC+vrNc2xL0/e8l8EXO0s59W/fmsIxdX8ll/wnnfs+ti89Z5U0MCk5lqtmDqfF5eWS/6QjpeTJZdm4PD4z40udxSrtcHtt4nvtgSpOHTUA0Pxxv9YHm0aHh9zKJn708kbeWF/Ai3pgkFVAXfbsunZ1Yw3OtaZDdLq9doHc6qbZ6WHRhgJ++lbHwaC/eD+D+z/NancN63KqkRIzvR9oFuT4yFDzs9srTWEEsPDfa7n0mfROBW5eZTPTHlpu+vYaFvXS+jazj/0qq4zLnl3X4TKuy+MzLZVxkSHmMnZYcBD3Ls5kzqMrOfvJVHPytLu0ke2FWv1YVxnmpAzktxdPNCcxYcFBJESHmRNyI7bB5fHx8Fd7GZMUTWiw4NMdpabANChv8FuQG9rcZJc32iaC1v8venotWwtqzWAng8pGB6+m5yME/HDmCL28Wlme+vYA936ktcno8BCiLBbkaSPizf+3d/DSK+ukbctBre8xrIDWPtgq2ApqWnF7JZOGxGrlaHHZXAsNAl3yNh+ssV3rFztLzf/rWrpesQl0RwoPCWbhyUM5aagWrOd0a8+zxycZEhdBdHgIHp/k1fR8HvxiD7//JMsUsCN0wRo4YQVswrPV5eWDLcW2gP3aFhflDf52Ut/qNg1e1jrYlF9DbmUTxXWtjBjofz6MCYv1HIbV2uHx8tcle3l06T4ufSbdNnFqcngYmRDFYz+cRlmDw3Qp07JG+N2HpJQsyTykxwL5+5f7Ps6ixeXFodfT6MRou0DW+/8vd5bi9Uk9EFF7juIjte1cXp8Z2/N5Rik/e2sby/aUk5pdxd++2ssDn2ruQCcNjaO0rs0MsL/v4yw8PskDl0wm7++Xcv5Jye3qvS/5zgJZCBEMPA9cAkwBfiKEmBKw2e1AnZRyPPA08Li+7xTgx8BUYCHwgn68fofhg5xf3UyMpZMJDwkiRe8AM4sbyAsQpTmVzTbhGhMews7ietsM2WrN2pTv76hGJUTZRJrHJ82gg9oO/AWtS79CYBPrXp/kjje3cssbW3B5fObSzoa8ap5cnt3OH7CrFHBWgVze4MAnYcqwuHZJ9L0+zfdwQJTdspwcIByLalvM7fccamDa8Hgi9IdtY36NTfgeqGiyXWdSTBgFNS1IKSmta2Oy3jED+kPvL2tVU/u8yylJ0eb/xXWtfGjx4zLqvqSu9bBvTQz0Nyyrd5AcZ79Oo9MZlRBNUW2rKQTKGxz8/pMs27YhunX42dU53PLGVlt7Aa2zbnN7mTVaE04FNS1mVo6xSdE0Ojzmki/4268xQ+8sCOyec8czOjGaM8cnsflgDR9uLWbcoGiChGbx+OuSPZTWt3H1ixtsS7w7CutweXycOzLEJv5rml3mdVstyAbNTo/NerX2QDU/eN4fsT87JcG2vTVgxPD5BNpZ3H0+LTAsOEhQWt9GTYuLPaUNtiCuGbpA+O+6gyzJPGQGxry3pYizn0g1l/QTo8OYkBxrO/6vPthJk8PDS2vy+HBrEbe/uZVWl9e06kopeWuvk/ScaqaPiGdskuYXub+8iaW7ytmovyBoa0Et63KqbT7rda0u2yTurAlJ/OuaGebnkro2LjhJS5t3wVNrya9q4dRRA0jPqaKh1W2bfIP2VkqH28tT3x7gsmfTWWdpS9YIdafH186C3NmSp5SSzOJ6lmQe6tA3ODVbu6cXWAa8uIhQ85mYqQt+qxtNfaubsgYHYx5Yyp+/0CZ3Dotof29zER6fNNt1uN5HBLrY7DnUyB8+808OX0zLpbLRwa8X7+SLnVrd/PXyqebvi++abwokl8dHVkkDM0Zq5TPSeFr74dkpCcwYMcD8HBYSRGJ0mClKrXVYWNPKQ5dPZWBUGOk51SwvsPc/hnGgosmBxyfxSU2YGwQuVz+8ZC8/t8SE3PDaZub+fRXf7q0gOTaCMUma4MqpbKKguoVX1uab2w6Nj7BZkMND/P87vUZueX+7M9LxjUyINPs/I87FGNO8utAEGD84xuyDJgzW2vuTy7OZ+bdvTUH2Wno+T63Ibrdqk1FUzzbdADAwKtTm1mcVl6n7K9leWIfXJ3ng0yw+zyjF7WtvQQbMMcTh8ZqTwsGx4cTqk+7yRgchQYLF20p47BvNIBEfGUqsHkgaOFFrCrDMurw+PtziHy+aHB7TB9ngwila+7eujPz4lU1c8NRaimvbbKtT00cM4OfnjmNislZ39W1uM+/2upxq0xBk1KvPJ3XfXg+xESFcNn0YseEhpOnP3pPLs8kqaTB1QnpONb94P4N/fZvdZcrYQbHhZpAhaPc4v6rZDMJ3enymhd24Xo9XmpPfdbnVtvv3tcV6PGv0AJqcHhrbPDz17QFW7qvgD5eexJ3njOuXb6nsCQvyXCBXSpkvpXQBHwBXBGxzBfCm/v/HwPlCc+q9AvhASumUUh4EcvXj9TsMC7LD7WNkgn/WFxEaRGhwEGOTYvgqq6ydP1R+dYtNFDx+1XRzlgpap2U0aLD7OY1KiGrXkZw2Vgte+9UHO7nh9c02S5N12/GDYmyi6p1NhWSWNFDT4qKhzW2W4XN9ph748FstyIHC1+HycbDBy+XPrTMHlrCQoHb243sX78TtlQywWI0AkmPtwrGgWhMV1c0uyhocTEiOJTQ4iJAgYasb0B5Ww7oQFRbMxVOHUFjdylPfHqDJ6eGHM4fzo9kjOVu3DE9+0B/Apglke8cwxiKQX0zLI6eimSeumk5seIjpg3z2E6lc89JGuqLF5bFZ/8sbHTb/MoDEaO1zSpIW1GNMQj7fWUp9q5tvfnWWuW10WAhLMg/x75WaT2LgMqLDoyWtT0mKJiUxiq8yy8zlviW/OJMv7znDtv1Fekd9w2ubzXrsiAl65zwqMYqSujZ2Ftfzk7mjSIgO593NRbyxvoD7PspkW2GdGSQkpWRTfg1BAq6ZGGaKC9AGN8NyHh4ahNPts/mSrtxXYfP3C/QNvOTkIbbPy/dU8NbGAjKL61m+p4IwfTC05ihd+O+1PPbNPtrcXk4b4xfYpfVtZvYYgO/PGAb4o/Tf2lhIUU0reZXNNDs9fLi1mCABA6LCmJTsD/wBbbJz1znj2F5Yx+8/2cWclARuO2MMhxocbC+sY8vBWlYXadcybUQ84wb729lfvtxDclw4k4fE8lVWGTe8vpmfvOrPVf3mhkLbpPq8yYMZOyiGR688GdBclH6/cLL5++s3z+aW01NocXmZ8fAKfvXBTltZ/7pkL5MfXMYzq3LYXdrI/Z/6g7us4sPp8fH2pgLz8+7SBlL1SYghOqSUPLl8P2MeWMpLa9qnsrpFX6J+X8/ic4bFKhYbEWIGa45KiGLsoGi2F9YxMCqUpJgwXrxhlrntWxsLWZJ5yPbSIetKnNPjNcvUUTDu2gNVZOguJ26v5P5Pd9neHHfRlCGmP+0pIwfw5T1nMsrSrz9+1TSmDI0zLabWeITE6DBTnIPW91ktyIGGijPHJ/HH750EwIZD/jzcXp80LYxWv8x/rsjm7U1a+rPA5yEwZaM1ADU0RDAqQWtn//fuDs79V5qtziJCg20WZIDFd84HoFQ/v8Pi+lfd7CIiNIgzxyextaAWj9dnTjCdHu2lIFZrolV8j06MtmWQ2JRfQ0WjQ3MTCsh2dP1po3B6fKZL4v2XTLa1/+pmJ/lVzbyQlsujS/fx5PL9HKxu4f0txfy/D3e268uMe2Ok83S4feZ4Njgu3DRwVTQ6mDosjnljE/D6JDHhIYQEBxEXGcob6wsY88BSM/A7t7K5Q9eFzy2W7sLaVtvLq/52xVReuXGW1jZaDR95+/gzYmAUpw3x19t9F0/mNxdOBDS3jCC9jRq+wgYvrcnjyRWa0PX6JLERoYQGB3HKqAHtXsbx8/d24PNJ842m+8uaOg3eBW0SkRhjH7vOt7hB7CyuJ0eflBpjWKPDTWJMGPddPImfnT3Wtq/L4+Oec8czY+QA5urB94s2FPDs6lyunjWC285I6bQsfU1PvE5qOGCNoCkBTutsGymlRwjRACTq328K2Hd4RycRQvwM+BlAcnIyaWlpPVD07tPS4u/AIr1+IZSxbSslUUEEe9qobm6/bJ2esZ+WQ/5qLs/fy9wkLyW6Jmhz2GecQQIWpoSSXurG2Vjb7uFPkv7GvyGvhvveWMkV48PwSUmZJSp2SKiDdcX+h+Cxr/cQHgxOLxRWNzNtkPZQGoF4rS3NpKammttnZftzaQYBqy2/rdmwifTCNrIOOVi2QbM879u9G5fLP4ikpaXx+U6tnuqb7cud7ia7NTS/UrM6GMtVLeUFpKWVECIkHiAyBIx4kXNHhpBa7CY2DJ49L4IVBeU0OT18sFEbrOOaCrkkKYgNLg9rgZAgMPra1E07GB5jnxPWFO63fb59ajCDW/KICPKSfbCYtLQq0y/stc9XMX6Axeri8d+bjF17eTfN3vlVHbIHlm3ekA5AW6223S/fSOO2k8PZtM9FbChUZPstQzmFJeQU+nOj7si0R6ynpW/E5fFRWVrM3ERYfKAVR0sDYUGwdWP7XNXnJzayHE0MLluZyoE6rQyxYRAaJHB5Jc1uyD+wj7T6HJoq/IP8UEchA0Lc5Orte5Pl9eirU1N5fqeT7RVekqMEPmcLlwz1kalfemFFLYkRgrS0NLxOB8Vl5fz1Q7914YvNB9qVFSAsGH43O4KkplxevCCKu1dqbWNItLClfpo/LJiNh2DT1h2UZQfxYqaD/TU+MwhobFgTRu6Q/SU15vMUIrTrSogQ1Dokpw4OJqPSy9lPphKh3+KyBgexYZC+dg2+On99zB8azNUTg0mIKOMl/bspUc346rVB46oXNzA9ydJOynLJbjvIZWND+Spfy4Jz45Qwyprb2A9MTgiivEVS75TEhYl2wtNVkU9aWiGhrVr9Tx4oKN3nD7h0Fu+isdnfFu+aHs6SfBelze0nQReODuHbws4Hx+V7KvjJ5DDSS9w8tMRvrXd6fFz3zHL21nipd2rH/WZ3ObGh0KRXTYiAycF2X+WKPL8ld1/mdmr1tn+ovIIhoYKV+7Q+4qLRIThL7OmkfmFZ1ZqeFExWtf/5+mTZGnxure9Mz2yfEis6FNOfHeyrDQBr167h2fMiqXVIcyy5eLiHV2shMUJQtm87PqeD0opm0tLSqGjw92EVRXlsb/Xn7927K4v6ei9tbi8/fXE5eyzllFJrP/HA9ZPDeHe/ize/XMVbe1xIoLRJu6dWQbjlYC1bDtYy0nGQggZ7nzIgXJj1D/CjSWF8c9BFowsaWxwU7N5KkNBEYVgwWO0BaWlp5Fd6bJ8BpiQGsSO/nNWpqTRZ7DErswqJCoZkTyVNDg/3/nclydFa/9nqdPPEB6t4MVO7B1eMC2WdxfJdsHubzZXv/dUZjBtg73uvHCP57KBgZkQV7+rfJUYIBjbmEREMDr3sX67LYGWhh3qnJFhAZb1gSZpfNqxdZzde7M7cQdPBYHLLtWv9Zs0mihq1suTv2UmxXueFNa1EJQQxKTqYTYDD5SEtLY0gr39Mfv3LNJ7ern1emGI39EQE+9O1xoRCTpldmA5pO8iaNQWE4ya7oJS0tBpy6uz3s6Yoh+vHebh9WrR5Pw7WaNu88vVmMoq0h6u2xUVsGLb782JaHst2aON0WWE+aWnFxHlcbChz881K/3j9ze5y/vjWSt7fr+28Nb+KVWvtdTYsRnBI7y+KD+y2jW1GH2mw5WAtSZGCMfHBZFS2kZqayu6iNsYPCGKqKOFQgEV/bHwQs8PLmD0VCgs1n+WnVx5geIxgYWIta9bYY0iam5uPub7rjP79vlULUspXgFcAZs+eLRcsWHBMzx+3ax00arP3mRNHsaNSa5jnnHk6g+Mi+KB4O3tryomLCCEyLNhcdmwJjeekk8fBFm12fPE5p5NQUMunOZqVx+ETWN8JN2v0QF6483RAC45Zf6jAVo6F86bzaY42OA6Lj+CLPAeVxLHloF1MXzL3JNItaYAcXnj4iqn8+Ys9uHwwfEgy2yv8S7GxsTGcftbpsFyzuIbEJjJiYCMzRgzg611lzJhzOixfCcDJM07ltV2bAB+DhqfA3gPMmXUqbx/IAKdmETnzrLNh2TcAtocLYNaUcawq8qexcQSs9iw8azbTRwzAsexrAC6cOszM8fj63Rfx8Fd7KWtoY8GC2cj9lby3fytVbZJrZ4/gx9/TlqJnOdwwIJd7zhuPy+Nj9iMreX6nk4unJgP+icSVF5zFwxu/NT+fM28Wp44ayOCsdCLjIjjzrFnmdTyyycHdC8Zx30WTCAoSfJ5RCmj3cdEerfOZm5LAFn2mPm3yBD7N8Q/6Rps9R0o8A/N4cnk2nrBwXIQyNhkWLDiTTac6uPSZdEJj4jhpaBybyrTly+CEkWgLLBrjp86A9Zs4aeI4fjhzBJ89toqsKi/DB0Sa50Gvvy1/PJ/BsREkja3gtkXbSBg3g6kON2zfxoOXT2dMUrT2whG3m9NmnsLp45Nw7SnnnX3bEQK+d+G5TJrRzOJtxTQ7PTbXiqd2h7C7QhMP44YmEBPj4K4FCygP2cMn20twEszE0YNYsGAGA7PSiY+P0N07NPGS26AtzRrL5KMSoiiqbeXzn5/FlGH+hP+s/JoZI+J5547TOOfJNNNad9sFp7LxrW2MmzyVT3aUsCfAt/uWS+bxzj4tv2aN3g5/v3Ayd5w1htDgIJ7YmUqto5XbL5hORaOTv32119Yehw6MYcGCcxhYXM/ru9dz47zR/O0HJ/s3WK7V8cVnzKS+1cWiPdokJ6vay+XjQrl0/jQunjoEIQRzT/fw1Z+XM3xAJH+67hxcHh//WnGA284Yw+C4cHaVNjB79EAWbSjgka/3ERESxA3zR3PHxZMJDhJ4vD7eL9jIXeeMY8HUIXw1oQGflEwfMQCXx8eD67V2ev91F3BjfRtn/GM1gfzq8nn8PjSYZbvLzIAoKw9eNoXbzxzDjqI6Xl6Tx3mTB5NT0cxr6w6ys1qSFBNJvVOr47DgIH57yUlmurk3bz+N+WMTuT99KQCr7z2H4QMjuT9d61MuOvcsIg5Uwe4MBiYmcdXMEWx4W+vLxqaM5rKLJvN67noyiur53vShXD1zBLcu0t4GeM0Zk8myTIyGT5zGgJx9VLQ20RoSC/hXIX529ljiIkJs15cYHWZbYeto/AjPq+HVXZu47NRRnHvuybxbtI1D9W3MPX0+zmXLze3OmD1Dc/1J1b6bO3smAyua+fhAFt8WehiZEMnl4weafZZxrlNb3Sx+ZAXZ3sHkNfifIc31yNeunAsWLNAmoxv9YvDxa2dyp15ni26dw4JJg7lPfyvp5GEDueC8+aTsSCO/uoUZIwfy2k1zmPHwCvN44Xk1sGMTIUHCLFe2yOOxb/ZzT6rTtrpZ0iz5+5XTuO60URSTyacZJXxv2lCgDJcXimUCoFnl//PTi5j4p28ASepvF2grcyu/No/VGBxPyvjhkJFpXucVk0J5+k6tDPeu0bZd/8eLiQgN5oKKHWbsSYWMp96pGVW8EhpdEm+8vz+cdupsSE/33595cxk/OJbgnCqe37mFJ7b63Ze+f+E5ZJU08EyGJhBHDhnE9+ePZnH2FjxSq6PhBzZS3KRnJIkYBmhj/cDBQ4kpO2Ra9a+eM4p3Nmn3cVRSnJmdxeDC884FYOje9YSFBTNn/mxu+cty2zaXLZhHwe6ttvaYXNbI41vT+SLP7gf924VT+cuXe7hm1gjuWziJ33yYaa4gzDllKgumD6M1sYyvD+5gc+tgoMDc91vLe2haPbC6JhZoY3RiFEkx4SycOoRH9YC7S889g1aXl0c2ayJ76a/P43efZJkTzgWTBvHPa2bweUYpW7/ex0kz51O9fBU3nzmOBQsmUN/q4g/r/GPq/100jQWzNN/4hlY3f9mgtcc/XnEqF+jBnFbS0tI6fD77gp4QyKXASMvnEfp3HW1TIoQIAeKBmm7u2y+wuseMsgSeGEu8MbpfU0pStOlXNiYpmqziBpsfbGJMGKMT/cutD19+Mr+z+J+ePcEfNGYNUDI60QnJsZw/eTBbCmp59rqZXPXiBtbn+i16g2LDuXHeaE6xLHODJtzm6e4ZxvHs1ye4/xO/oK5qcjAmKZpzJg7i611lNj+iikanOSM3AnNCg4WtjvZbgjAWTh3CMkvE+OAAFwuA5Dh/4N7ohGjbb9alz6AgwUMW/0GrD7G1XmMjQvnDpdqyptVXe0dRPclx4fiktjwUH+D+YfinxUWE0uRwt0tJ82JaHgerWnj++pl8llHKwHBBncWi88Clk7nyBc1mGR0ewqNXnsyOwnrO131GQUsZ+PNzxzMyIcr0/b5sutZRDImP4NSRAyhrcNgin7fpvppGgJ8RpBkZFkJSTDgXTx3CV1lltuCKOSkD2VpQZy4pThuutYk1ByrN/6cOi2PqsHgzeMhYgjUCDAfq/uPjB8fwh0tPwuXxsXRXmbmMvLu0kTFJ0RysbrFZwaLDg2l1e3F4vOZyXVRYMCV1bWbwVkFNK06Pj+kj4k2BfNsZKbyxocB8UYzB2vvOJSEmjJjwENLuW2D65I3XfR1fXptne8W5VvZQWxCM0Qyiw4MJ1d+wde3skTy5PJu5KQkMjovgw61FHKhoZvKQWPaXN5n1OSE5huAgwcAoe3sxGJsUTXiIX9DHhIdwcUooC0/2DwBRYSHcNH80CyYNIjxEC1q0tuU5ur/1rWeM4brTRhEWHGSmlwQICQ7is//zu86cPNwfZBUWEsSdZ49luu4bG6UvM580NI4Xrp/J1oJa4iJCzX3uOW8CizYUMDIhyqy3J66ezrWzte545qiBvHzjbMCfX/Xt2+eyt6yJB/Xgz6tnj2DhyUP4dEcJPz17rM2dArS0VQAPzotg4KhJxEeGmtlpfjJ3FAsmDWbqsDj2HGokTPe5X3znfErq2myuTwCnjhpo++xwewnXl9C3B6Qp/P3CybbgQ4Dnr59JbmWzLXA1kClD45gyNI5r9DqICQ9mb1kjV79ot7YlRofb+k/DxcLg9ZvnMDE5lja313yuAeKjQjltaIg+sfZzzsRBps/mjJEDTGu3y+Nrt6x/8dQhDIuP4FCDw/RrT4oJ56UbZjFbT405fGAk+dUtRIeHEB8Vyg9nDmeu3rai9fy8IZYMOD87eyxDB0Ty6Y4Sm0vbTfNHc91powDNuJJRXGcLmDYyE3x0l+amMSk5ll2lDTaRDXDG+ER2H2rgoql+f/SJybGAX7i+/9N5NDs9pt/wD2cOZ+muMq44ZTifZbSXBNa4nUB3AcO3et7YRJ6/biaNDjdbDtZS1tBGRGgws0cPZNygaPKqWogJD2nX1uIi/M/4t/v841aLnsvbEMizRyewraCOvKpm040M4IpThrHTklEmOlxLK9dRXv2hAyIsMtZfN786fwIOj5eX1/h9yH80Z6SZZQPghRtm8vG2EuIiQ01f/2n6871oQwGx4SGm62RgylKjjT125TROH59Emh68GhIkGBgVRmyEf0xLjgvnrdvmknK/NolZdAwiwrQAACAASURBVKvmBWu4EBrC2YjTsNbf6nvPsdWvNYuNEUTZn+kJgbwVmCCEGIMmbn8MXBewzZfAzcBG4GpgtZRSCiG+BN4TQjwFDAMmAId//VBfYBmorD7IxsNoiJABUWGmP9cZ4xN5Z1ORGeU7J2Ug4SHBphM+wLVzRvLPFdmmj9QFUyxBLRbxlhwXQXmjg1EJUbx+yxygvX8awP0LJ3PVrBF49KhSI6Du/ksn24LGwkKCeOraGfxmsf5qarfP1hFVNjkZPziW788YxrubC82E4qC93cx4fGw+yJY6MoJ/Vv7mHKLDg20COTnO7t8EcOb4QXyyo4TJQ2KJDxAhQwe0F9QG1s7YKqStBAUJPrl7PqMTo82sDw63lxanx/TxMogJ184dFxlCQXVru6CLX5w3nmdX57I2p4r0nCouHaMtmwOk/+5c28AZHRbC96YP5frTRndYrstnDOP3H2fR5vbayp4QHUZGsSbkhw+IpLRe8wUOCRL8/cppXP/aZnNiYkQOX3/a6HYC+bWb57CntMFMkzUoNpxLpw1h0foCbj1jjHadRmem39Ao3Y/Q8BX98Rzr/FW7z9+fPsz0kbz+tFHcMG80l/wnXRc/FWa5vD6JF/9bpa6eNYLf65Ow8ycPNl+WMn14PJ/u0NrelTNHcIteNivWSWlcRKiZRsoYdDKK6jl9XKKZ4g80UR84EQT75PDuc8bx4zkjTRE/ITmWAxXNzBubSFRYMJP0Tj8qLIS3bpurD+x+3r3jNBZvK2ZQbDhCCNb9/lzOfDyV6+eNIjq0fWq0h684ud13HWENoOouD+gTQtBywT5x1XQWTBrE4LiIdiIAYMP95yMETPijZnm+RrfyBHLVrBGcNTGJofGRZvaP2PAQ/nzZFCJCg/ninjNt2799+1xbOxw3IJgFenaFYQMiKfjH98zfjImKYWgIDQ6ylXXpL8/iUH1buwmTw+019w0kOEiYrzY3OGXkAOaNTexSIMdHhbLUEgdgGD2qmp3865oZPLF8PxWNThJiwmznDg8JIsEikAbo/derN81ud45zR4awrtQulG6an2IK5AtOSjbFy5aD/owVf7h0sjnZe+3mOby2Lp/hlr5vocVX35j0R+vP/VPXnmL+ZvQFoUH+8gshuHzGMGLCg02BfMeZY7j/Er+fe3R4CE9cNZ2r9ViMh74/hceXZXPHWWPMid2iW+dQUNPa7r5cNGUI63NrbAGfWpYLfz3MH5do2+e8ycls+9OFxEeGEhIk+Gi7/VXcVgNMS0BcSbilLX1Pn6D8ZO4o8/egIMHlM4bz9MoDhIcGMyzeLuiNYSwmPMT2Mg/jZTdG0Hh8ZCi/PH8CG/KqTV/csJAg/v2jU2xjYXRYCBWNjg4zQ3X0nAcHCX594UQqGx2mQH7x+pnm5MEgLiKU286095UjBkYSHxlKQ5ub//zkFG5bpGWfCRJ+A8GFU5LN7DuGQcQ6RgQFCcIs46JxLWvuW2ArryGQ39pUQGiwYL5ugLOOqWMH2WM3rPUyMmAi1R/5zkF6UkoPcA+wHNgHLJZS7hFCPCyEuFzf7HUgUQiRC/wGuF/fdw+wGNgLLAN+LqU8snfRHiOsEa1WMWN07IblMT4y1EwKfuZ4zRps+Gz+U49ENxqjgdHw3//pPNusKtZiQb71jBR+v3CyLdIzMrT9w2V01CHBQUzXo/RX/PpsZo4aSHxkKP/vggmANks1UgIB7V4CUdagBZlFhgXz6s2zzVcFA2bgDvjTzQUKkXW51YwfHMP4wTHERtgF78CArBagiZmVvzmbLwKCy8Av1jrC2hkHdrJWZo1OMMUxaHUeGIgA/kExVrcgW1MMDY2PMAeDj7eX4JMwf5j/Ho1MiLIlqTesNV1hBNFY7/v5JyVT2+JibU61OQi2uryMHxxjClrDxcBoA/PGJjBjRLzNLSE+MpTTA6x6D1xyEhJ4Pi2X2PAQhut1a7RZQyAnxYSz+Q/n89uLJrUr8+8vmcwnd5/OmvsW8OiV0zhpaBxf/eJMfnuxf1trZ26IpWtmjTRfAGMVPNMtqx0x4Uc2Z4+yBAbdGiCsTxk5wNYhG1g7+aAgYWsHN84bTXRYMHNSEvjwzvk2C+8Z45PaBV6eMT6J//z4VPM8IwZG8cHP5vHrCyYe0XX0BtfOGcnguM4nl2EhQbbnp6O6Am3ANp5/Y5I9eWhsuwHb4KwJg5g6LL7D3zo6NtCp2J0yLI4LpiSbfaZhwXe6fe0CV39x3ngzKDMwg4xR1iBhT+3YFcZLNc6fPJirZo0wV+UCVxHCgoNtUf8DItv3bwZj44OYEmA5Gzsomvd+ehrXnTaKH80ZyS/P1/roG17fzMfbS5gxcgA3zksxJ4VThsXx1LWndBr1bwrkDvof47vg4Pb7Wvv4700fSkjAPbGKnZvmp5Dx5wv5lV5WgMSYcHOFwIpRb5stGZomDYltt10gCdFhBAcJHr9qOncGBH5ZCcy13J3JZUK0Vkdur4+gIMHIhEh+pK8cGH3xMz85xbYqWtviso3JcZHaRP2RH0wz++EhcRHtnqPo8BBanN4uU6d2xKBYLZD38aumcUkHrggdIYTgB6cM44Z5ozhvcjJPXj0dsLf5ey/y901GYKXRjw6ObT8mGoxOjLalLjVWgneXNnL2hEE2w9aw+AjOmpDU7hiAOeYEtq/+SI/4IEsplwJLA777s+V/B3BNJ/s+CjzaE+XoTay5Fq0C2eikjAcnLDgIr77t9BHxxEWE+NMSWR7c8ycPNiNbjWjbAVGBy/3+zxeclGyzXFvPbcXaUZ8yagCbD9baskj8vwsm8qvzJ3Q6GFoxHpbBsRH895Y53PLGFsoaHJQ1OBgWLTjUIi0uFkG2bBeb82v5yVytw4kKGEhDOuick+PCGT+4405zeBcCGeCPl56ET0qbAD5ajLLGRYTS6PCY9+iy6UP55fkT/j975x0eV3E97Peo27LcuykGDKYZU0wvMR1CEkISkgAhJKEkIZB8IQ0IHUILEAKBEGro5QemBAPGGBts495t3GRb7rZ6l7bO98cte3e1klbSSruSz/s8fqzb5569M3PmzDln3HRPXxWWMnpQb0b1EV74+bHsa/823o4+PwFlz/EbP8yj2J572DCO3qc/i7dUMqRPrutec8iIvvTKse7vpA1ytkWEd689uYlFPJa9B/bmpm8ewq3vreTQkX3d8x0Xi3zP4C1WyXDok5vVpCP0Tvdb5Yr85o4CmpEh/O2icXz/319x3H6DeGbmJrIyJEphaGuqH+9g8wCP0n3GwUP5QxzlHiL1LR4n7D+IVXed16YyxLtHd+Ka0/aPGvS2xNhhBVx3+hh+FDOz0F6cNFY5cSz9sSy85Swa/CFOfXA6vmCIBn/IrSdA1O/dnPK+4d5vJtT2AeTZ7bUzff6PHx3JlvL6JgaOnKyMKGW0pXcREX520mhunLTctegNKchlZP9enHSApVA4g0iAf/74SC48Mm7cerM4CnJsOb3vtG+c2TavJTVe2+XtRzIyhLyMlhXR164+nsr6AGOHF5CVIawvriU7U7jkuH0459BhrFi4scXrvc+6/swD+c+X8c+PzUyU20L9dnDez3ELm/nnM9xj150+hp+dNJr+vXM4dvRAt/9eurWSMw+OuMp5++s8j4Lc9FmZ1PuDFHtcLAb3yeHEA+IrkA4iwif/77RW3yWWOz2zVBdP2JuR/XsxenC+G5MwdliBG+vhWJCd9npIHPfH5vAaC741PlqB/+qmM5u9bsrvT2uyyFK6kv4qfJrgTfAez9rRy26MsjLEtcbl52ZFpbzyWlmf+9mxrj/hxcdYnc2gmJXovKPVRC1r3qnNnxy/L78788AmVq9EOwjvdWOHFzD9jxPd7SOHWuXxulhkeO7rD4Vd62Ws0paV0VR+8fySHZpT1ByuPm1/fvmNA1o8pyXW/+189+8Mz4Cn1hd0FeL7v38EBw0rIMf+7SvqA65CfvrYoU2mkiBa2WyOq+wpstEe/2kRcdNCDcjPdhvzQ0YUuIOsne7qWJFntKYcO1x23D5cctzerr8pwNjhlpLqVWw7gnd2wztoO2hYAUtvO4ezDx1GTmYGY4c3b4lMBK9C7bWW3nvRuGbv2x73hZ7Mzd88hKk3fCOhczMyhD+eO7bJYL29OL9fIgry4D65rlLSGAhT77fSHOZlZyRsFU607YNIvvd8zzT0wcOb+k3mZGW0aebj4gl7MfMvEYUstj/xWqATtcR7cVzz4r3qgPwcHv3RkTx7xbFxrou8Qzx3tUTbF4eTDhjMN8eNIC870/VPHZifw10XHh539q4lvCnknNzBjqterA9yTgKWSed7i11cCyzLppO7/7yYNJN9PH1y7IwkNM3xD9Z3U+cLRa0tMO/ms3j8kqNaLWcyOHnM4Cgjk4jYwerQx+4/nL5qqMf98fWrT+DRHx1Jc/TNyyI3K4OcrIyofOet0Sc3q8naCOlKt8likWpil+ONxXHByMoUnvrJMTw7axMFuVkctc8ANx9xc53AVafuxyXH79OkkfU6uydijYRIrl2wrIW/P7v9U72xirVX4Rg3OJOPiwKuBTknxoKcIXDCfvEtaVlxGtp4fskObZ12byvxBjxOJ7O1vIHsTHEbaO+51jnxlymGxMr91wsO4cbzD27S+Ryz70D+/oMjGL93f2asLaG8zpr6c36DWetLycqQJpbbRMjIEO773hFR+/77s2NZuaOqQ8qql15xXCwcHKVoSEGu67Ly9OXHuLk124tX3rHBl4AbtBLPL1lJDa25WMTiLv4QsBYB6pWdydd3nhdXGVx629lsq2hI+N6xODEeBa3U49j4i9YQEUb178W4Uf3irvjnVVK8KxEmiqMgNpfr/LtHxbdIiwgPXzyeA4b2SVo74HD4yL6s3lmdcD8Wr2wOR+8zgK3lDYzo14vd1b4mPsiJKPJOOVqzNn/v6L3471dF7uJH3jt7g+gdw8LwOP1Yfk4m/lCYbZUNjOrfi9k3ntHknK7gmH0HuHmYf3P6GI7aZ4DrFtE7t6mLRUsui2D9JqMH5TNmWFM3yp6CKsgJ4jQ2k661UrDlZGZEJWF3VibLyhBOO2iIu1CFs0QsNPXTdRCRuMqU14KciIUFOmYB/Pb4kSzeXOEGIcTzRzp0hJXO5oD+GRjPEr/ZMQuFHD6qX5NgO4fMDKF/7+yohPrxfCWH24GJqVhhx2n85m8qY0DvHLeB9na28ZQwL70T8EEWkbguJ4AbTe+M7r0KclVDgOP3G5i0wcOA/BxOPTAxK1wi5OU0ryA7vP3rE10ZnnPYcM45LO5pbeKpnxzNi19tjutGsf/QPizbWhm1yIOSWhxlJtFBS3ZmBpkZQmPQyjvcKzuzWYWof++cDlmqxu/Vj9fmwWGtDEITsVjG4/3fnEw8FXZY3zxe/MVxhMOmXX6a2XZ70ppRJx7fbyZQs6McPqof/7doW0Kzas3xv+tO4d9fFHLWIcN4f+kORvTLY+nWpj7IiXDagUP47ZkHcsWJ8QOoHfr1yua+i8Zxqb3AkjdVoFdpdwwC8WY7HWW8qLSuRUNQZ/POr09y/+7fO8f1aQfLGHf3hYdxRhuXen75quPiuvL0FHrumyWZUNhw4shMjrbTDc38y+lRq1A5U1JjY6bgvFHvbW3sunpUdubBQ7n8hH3d1atiLchgRajvrGqkdH300tSxKalOivGveuonR/OrV6wcsdmZGTx3xQSe/nIjy7dVUVHvjxqNO3x6w2k0trAkZmcyYfRARg/qzYaSuij/4GyPMtuagpws5bV3biZDC3IZ3Cc3ynfrtASnlVNBnseNoTlr1Ih+yY9iPu/wEVGp1bwcMCTfUpDVgpw2ZLXRggyQl5VBY8BaSTJZLkHx+OGEvTnpgMGtupM4bcL0P06Mah9aoyVLZ6IuI/HItF3YQs0sJ98RTj1wcLPLj7eEM9OVSOByc4zbqx9PXnYMxdWNDMrP4ah9+vPxyl0tLpvcHJkZ4q5Y1xoBz0CjrDb+jKGjIMdr05x3LiqtS6oRItlcfuLoNl/TkmtkT0AV5AQJhY0bUALWSNE7Wjz70GG88+uTOHqf6PzDw1qICm2NgjhKY7J565cncuV/F1DjC3LYyL5Rltx4Ct6gPtYylDPWR+/PyYy2IJ88Jnp6xpsjNTNDOGbfgfzn8oGc+fAMcrKaRv6CNap13EzOO2w4pzQTFZsM3vvNyVFTkvsNzufzP0xk3qbyKEW4qYtFU846ZCifrS5OmiJ20gGDXF+5rMwMsjOFQMh0qBPtbDpTcYnlD2cfFOUb2BwH2H7iLQXpKV2LE7eQ0QYXhbzsTMrr/BjT/OArGYhIQr7WTtsVL5VeKnDcMg5KIFNEW3n5ythFchPj0BF9yZDE4jJaY2jfPBbdejaLt1j5r2NdLJLNkXv3Z0hBLiU1Pr571MgmC4JAZMZseL+m/b1jYa3zh6LcZ5T0RxXkBAmGw7Q20x8vxU1HUpl0ZuPvcNx+A7nmtP15fvYm9h/SJ8qdoTW/OmchCrCsIWceMpSNMzdx0/kHc3KMBdkbmOf1Qc7LzoxK1dUcT11+TELv015iF1YB651i/bCys2JcLOLM7j1x2dFU1AXa5JfYEn869+Co7bysTPrmNU0XlU44Suj5MUEuncH1nlRTLXHKmMG8v3Q7wzvBcq20D6ct8AZBt0ZuVgbz7NSZ6VwHUsVJYwbz7rUnMX6vpm1aquhlp06MzWfdERzXlnh+3MmkX69sFvz1LPzBMNmZwr0frWnyHqP655GTlRG1WJWD19DUUho1Jf1QBTlBQmFaVZC7K1eftj8XT9jbVY7v/M5hUf7BzfHsFccy/s5P3e0bzz+EX5yyX9xpJq+frffvX37jgLj5nNOVJi4WcWYbc7MyGd6v895pUJ8cJowe2Oao8q5k7LACHr/kKM4+tG0+bZ3B6WOHMH1tCeP37s+nv08sW4PSNThtTnMBZfHIy85kY2kdmRnirh6nRBO78mA68PrVJyS1zXJm6JZsqWRgfg5H7t0/KlNEsnHigJbdfk6T2cHTxw5l/s1nxvV59xqAWspLrqQfqiAnSCgBC3JzHLl3/6ilJzuD688YE9eCnQh52dEKnXc5y5aIdcHwLigQi9dq7LUmf2f8yDaUNPV4V6Dqm5cVV0HubF656vhW/Z9TjYjw7TT5bZ/+6QQ3ZZeSXmS2x4JsD6gPH9Wvx0bP90SSPaB30jXW+oJ8Y98hPP+zpqnrOoN4ba+INBsQ6k1ppxbk7oUqyAkSDBvaEH8Rxf/96sQ2WUi8nHrg4CZLYXr578+PZc6GsmYXRehM2pJdwutu0FzWhu6A18UiPzeL1u3sycdZclZJjOzMjHan+lI6F2f2qA36seu+c2KKF2S57vQxzC8qb/1EpVPwZnZyVo1NR7yZK3p6UFtPQxXkBAmHTZsCSbxYHXT7nttaUMTEsUOZOHZoi+ekG5lJ8s1NBV4Xi7zszJQoyIrSU7jx/IPplZMZlXKqNZwMKa3lae1svEurK12PV0Ee14588F1FlA+yBul1K9SskiDBDijISjTp7DvbGl4Xi+7kO60o6ciA/Bzu+M5hCed5B2txh6wMYUI7XcqUnoH3mxkfJ8g6XfDOng7sJivIKRZqQU6QsGm/i4XSc/Aq912ZykxRFIuj9h5A/17Z7V6VTekZOFkshhbkxl2gIx3pzsahPRFtYRLEsiCnuhRKOqEWZEXpen53VmJp/ZSejePuls7+xw5XnrIfW8s7Nx2dknw6pCCLyEDgTWA0UAT80BhTEee8K4Bb7M17jDEv2vtnACOABvvYOcaY4o6UqTMIhw3G9Nw0bx3hk/93Kr5AuPUTeyCqICuKoqQGEeGoffpzzqGdn2u9o9z6rUNTXQSlHXTUgnwjMM0Yc7+I3Ghv/8V7gq1E3w5MAAywSEQ+8CjSlxljFnawHJ2KAX564r4M9u9KdVHSjoOH77mJ+vNy1IVfURQlVbx77cmpLoLSg+loD38h8KL994vAd+Occy4w1RhTbivFU4HzOvjcLiUzQ7jrwsM5Yoh6pCgRcjR1mKIoiqL0SMS0JQFl7MUilcaY/vbfAlQ4255z/gjkGWPusbdvBRqMMQ/ZLhaDgBDwDpb7RdwCicg1wDUAw4YNO+aNN95od7nbS21tLX369Ony56Yj7ZHFzz6pA+C/5yVvudFU4H0P/SaiUXlEUFlYqBwiqCwiqCwsVA7RpEIep59++iJjzITY/a2aREXkMyCek89fvRvGGCMibdW2LzPGbBeRAiwF+XLgpXgnGmOeBp4GmDBhgpk4cWIbH9VxZsyYQSqem460SxafTAbo/jL0vId+E9GoPCKoLCxUDhFUFhFUFhYqh2jSSR6tKsjGmLOaOyYiu0VkhDFmp4iMAOIF2G0HJnq29wJm2Pfebv9fIyKvAcfRjIKsKIqiKIqiKF1BR50oPwCusP++Ang/zjlTgHNEZICIDADOAaaISJaIDAYQkWzgW8DKDpZHURRFURRFUTpERxXk+4GzRWQ9cJa9jYhMEJFnAYwx5cDdwAL73132vlwsRXk5sBTL0vxMB8ujKIqiKIqiKB2iQ2kZjDFlwJlx9i8ErvJsPw88H3NOHXBMR56vKIqiKIqiKMlG85YpShv57IbTUl0ERVEURVE6EVWQlS7j9m8fSmMPWHVvzNCCVBdBURRFUZRORBVkpcv4+cn7pboIiqIoiqIoraJLgSmKoiiKoiiKhw6tpJcqRKQE2JyCRw8GSlPw3HREZWGhcohG5RFBZWGhcoigsoigsrBQOUSTCnnsa4wZEruzWyrIqUJEFsZbjnBPRGVhoXKIRuURQWVhoXKIoLKIoLKwUDlEk07yUBcLRVEURVEURfGgCrKiKIqiKIqieFAFuW08neoCpBEqCwuVQzQqjwgqCwuVQwSVRQSVhYXKIZq0kYf6ICuKoiiKoiiKB7UgK4qiKIqiKIoHVZA9iIikugyKks5oHVGUltE6oijN053qhyrI0ag8lCaIyFgR0W/DQuWgRKH1owkqCw/6bYCIjEp1GZS2s8d/uAAicoGIfAjcLSInp7o8qUREvisid6e6HOmAiJwtIvOAq9jD64rWkQhaRyy0fkSjdSSCiHxHRG5IdTlSjYicJSKLgF+luiypRkS+LSKvAzeKyL6pLk8i7PFBeiJyDPBv4A6gL3AG8JUx5r8ikmGMCaeyfF2BPeWRAfwcuBHYFzjDGDMzpQVLAbYssoBbgUuAvxhjJnmPmz2s0mgd0TrioPUjPlpHLEQkC/gD8GtgH+BoY8xSEck0xoRSW7quwa4j2cCjwEnAHcaY97zH97Q6IiJnAfcCtwHHAv2A6caYyelcP/b4UT9wFjDTGPMR8D6wC/itiPQzxoS7k79MezEWIaAQOAq4FtgjLWS2LAJAGHjb6fxF5FQRyU5t6VKG1hGtI4DWjxbY4+sIgDEmCKwFDgZuAP5j798jlGNw64gf6A28Z4x5T0QyRGS8czy1JUwJZwEfGmM+wfomCoBfiEh+uirHsAcqyCLyWxF5RkSutndNB74tIgOMMQ1AAKgC/gI9+2P2yOIqe9cXxpgaY8wzQL6IXGmf1+O/E48srrF3PQWMEJEXRGQF8GfgOeAX9vk9tsPTOhJB64iF1o9otI5EsGVxv4j80N412RjTaIx5FBgqIpfa5/XoAZRHDj+yd90NnCoiDwGLgXtE5GkROTd1pewa4nwTXwEni0ieMaYYaAQysduLdKVHN+qxiMjPgEuBd4CfiMhfgSJgCvCyiMwE9gfuB/qLSH6KitrpxMjichG5CevdHW4DbrAb/LQd4SWDGFlcJiK3AD7gPSAHuBj4jn38eyKyT0/t8LSORNA6YqH1IxqtIxZi8XvgR8BC4E5bNgM8p90A/B3AnnnoccSRwx0icqUxZgNWHTnYPnYpsBK4SEQGp6zAnUgz38QVwBpgB/CWiEzHckN6HyhIZ+NC2haskzgTeMA28/8ByAN+aoy5HmvK9C5jzM+xRje9jDF1qStqpxNPFpc5B40xHwOrgWtEpEBELk5NMbuEWFnkAr+0/cauMcassTv85UAllnWop6J1JILWEQutH9FoHcG1ip8O3GKMeRv4PXAEcK7nnHeBdSLyR3B9UXsUzchhvIj80BjzOPBjY8xaY0wNsBRLOaxPXYk7jziyuAE4EhiPFcx7O/CQXT/8wH7pbFzYIxRkzwhlCfAtAGPMQmA2cJCInGqM2WKMmWqfdwGwoetL2vm0IIs5wCiJjr7+C3AfsB4Y3pXl7Apa+S72E5GTYzq3K4BeQEWXFrQL0DoSQeuIhdaPaPbkOhLrMuORxULgVAB7wLAeOExExnpO/zXwoIjsArp1urM2yGE1cIyIjDXG1HouORtLOW7sguJ2KgnK4mNgHVZg3hhjzBJjzGT7vGOAeV1U3HbRIxVkERlu/58B4BmhzAYyROQ0e3slltnfOf80EfkCOBDLx67bIyKHiUies92KLHYCI+3rxgBPYk0RHW2PhLs1HZDF90VkGda06a+NMT2hcWuLLHp6HTlZRA5wtvfUOtIBOfS4+gFtlkePriNYAx8XjywKsabJx9nbX2BlKCgAEJEjgWew3FGONsa82DXF7TTaIoe+ROTwYxFZiZX95uZ0tpq2gbbIooCILL4pIvOxZPFOF5W1XfQoBVlEjhKRadjR5c4P5hnZrAdWAT8SK+3MNmAYsJ99vAi41hhzkTGmtEsLn2RE5AgRmQXcAwzy7G9NFqPt41XAdcaY7xljdnRdyZNPB2ThfBfrgF8ZY35qjNndhUVPOkmQRRE9p44cLSKfAp9jderO/j2qjnRADj2ufkBS5FFEz6kjJ4jIO8ATInKOiGTa+7PsU+YDQeAcEckyxnyNZSWeYB8vw5LFxd28jnRUDpuxBo8/tYPUui0dkMWx9vH1WO3F940xaT3b1CMUZLH4B/AS8KIx5mrPMW+OvRpgJpYP3UNiRdUOAEoB7OmxVV1b+k7jFqw0U5eqbAAAIABJREFUTBcZY7YD2I15a7IoAzDGlBhj1qeg3J1Be2XhfBcrjDFzUlDuzqCjsuj2dUREskXkP8DTwGNYwVUT7WN7TB1Jghx6VP1Iojy6fR0BEJGJWDMkk7BSt/0EGGD3qUEAY0wh1pT6AVj5wcEK4NxsH99qjFnRxUVPKkmSwxzTA3Kmd1AWRfbx9caYxV1b8vbRIxRk2zG8AFhijHkJQEQO8CrHYq189RqW1edWrAZtpr3d3ad9XMTKt7g/UGusNDvOilf9AbG370FlobLYQ2WBpdh8CZxqjPkQq7E/xLZ2hABE5E56vixUDtGoPKI5AlhgjHkVeAVr8YtaT596j4g8ByzCGlAcJ9aqceVYg4uegsohwh4li6zWT0lPROQEoNwYs87edQOwQERuw4qi3Q3UisijQC3WaOYme3SDiPwCyDdWZGm3xisLYyWlL8XKv/gtrMjRXljyWC3WUo/7o7JQWeyhsgDq7AbeIRMIGWOCIiLAOCz/0RuNlaqpx8hC5RCNyiNCnD71S6yUZTuwsnOsBp4UkSnAVqz24jZjTJF9/aVAljGmsssLn0RUDhH2eFkYY7rVP6A/MBlrmusWrMbJOfZbYBlwGpY14AGsCPMhnnMyUv0OXSSLm7GSk3/H3j4NK+/giSoLlcWeLgssq3mG/fcYrIHCAOdYT5OFykHl0QZZ9PEcOw54Hvi+vX0lVtDd+J4mC5WDyiL2X3d0scjHMtVfb//tRBJjjHkMmGiM+dIY4ySyn4Cdc1DSeM3vdtKsLIAPsYKJBtrbC7GWP20ElQUqiz1aFsYiLFbgVZF9zjecY9DjZKFyiEblESFWFqc6B4wx84Eh2L60WIGL/bFT+fUwWagcIqgs6CY+yCLyUxH5hoj0NVZg0dPAW1id+vEiMtI510RHRR6DZfYP2ce6/Y+WgCxGARhjlgN/An4j1qo9P8GaInQCjFQWKos9VRZOejKx3zfXvtQZJAh0f1moHKJReURogyxysZYJvta+9EyswXUjdH9ZqBwiqCyaIvagOO2wG6PhWAERYayE6/nA74ydOkeshP0/xHIaf8XelwucCDyElavzDybiP9MtaaMsFhpjXvZcewOWX9CBwO+NlXKl26KyiKCyiNCB9iLTGBMSkVeAQmPMHakof7JQOUSj8ojQ3vZCRA7DWgFtONYqidcZY1Z3/RskB5VDBJVFy6RlkJ6ncSoAthtjfiJWrr1HsUY13wMwxswWkeOAg0WkH+A3xjSIiB+4x1hLoXZr2iGLsbYswsaYGmPMIyKSbYzp9su/qiwiqCwidKC9CBhjnCVff2GM8afkBZKEyiEalUeEdrYX/QGfMWaViFwBjDDGbEzZSyQBlUMElUXrpJWLhYhkisi9wL0i8g1gLBH3iBDwO+Ak+5jDM0Af4DOgSERGGmO+6u7KcQdlMRUodKZEursSpLKIoLKIkARZbPLIotsqQSqHaFQeEZIgiyIRGWWMaejOipDKIYLKInHSRkG2f4xFWHklC7FWwwsAp9ujF8e35Q77n8MFWL4wS4Fxphuv1uOQBFksQ2WhsoigsojQo2ShcohG5REhiX3q9q4rdfJROURQWbSNdHKxCAMPe3xcjgL2A24D/g0cI1Zk8XvAGSIy2li59hqBs4wxX6am2J2CyiKCyiKCyiKCysJC5RCNyiOCysJC5RBBZdEG0saCjDWqecv2gQGYDexjjPkvkCki19sjm72wkrcXARhj3u+BP5rKIoLKIoLKIoLKwkLlEI3KI4LKwkLlEEFl0QbSRkE2xtQbY3y2DwzA2UCJ/ffPsZb8/BB4HWuhAzftTk9DZRFBZRFBZRFBZWGhcohG5RFBZWGhcoigsmgb6eRiAVgO5IABhgEf2LtrsFYAOxzY5Pi/GJOmOeqShMoigsoigsoigsrCQuUQjcojgsrCQuUQQWWRGGljQfYQBrKBUuAIezRzK1Z6qllmD3EOt1FZRFBZRFBZRFBZWKgcolF5RFBZWKgcIqgsEiAtFwoRkROwVmr5CnjBGPNciouUMlQWEVQWEVQWEVQWFiqHaFQeEVQWFiqHCCqL1klXBXkv4HLgEWOML9XlSSUqiwgqiwgqiwgqCwuVQzQqjwgqCwuVQwSVReukpYKsKIqiKIqiKKkiHX2QFUVRFEVRFCVlqIKsKIqiKIqiKB5UQVYURVEURVEUD6ogK4qiKIqiKIoHVZAVRVEURVEUxYMqyIqiKN0EEQmJyFIRWSUiy0TkDyLSYjsuIqNF5NKuKqOiKEpPQBVkRVGU7kODMeZIY8xhwNnA+cDtrVwzGlAFWVEUpQ1oHmRFUZRugojUGmP6eLb3BxYAg4F9gZeBfPvwdcaYr0RkLnAIsAl4EXgMuB+YCOQCTxhj/tNlL6EoitINUAVZURSlmxCrINv7KoGxQA0QNsY0isiBwOvGmAkiMhH4ozHmW/b51wBDjTH3iEguMBu42BizqUtfRlEUJY3JSnUBFEVRlKSQDfxLRI4EQsBBzZx3DnCEiPzA3u4HHIhlYVYURVFQBVlRFKXbYrtYhIBiLF/k3cB4rPiSxuYuA643xkzpkkIqiqJ0QzRIT1EUpRsiIkOAp4B/GctXrh+w0xgTBi4HMu1Ta4ACz6VTgF+LSLZ9n4NEJB9FURTFRS3IiqIo3YdeIrIUy50iiBWU94h97EngHRH5KfAJUGfvXw6ERGQZ8F/gn1iZLRaLiAAlwHe76gUURVG6AxqkpyiKoiiKoige1MVCURRFURRFUTyogqwoiqIoiqIoHlRBVhRFURRFURQPqiAriqIoiqIoigdVkBVFURRFURTFgyrIiqIoiqIoiuJBFWRFURRFURRF8aAKsqIoiqIoiqJ4UAVZURRFURRFUTyogqwoiqIoiqIoHlRBVhRFURRFURQPqiAriqIoiqIoigdVkBVFUZRWEZFzReS9Fo7PEJGrErzXKhGZaP99h4i8ksA1uSKyRkSGJFxoRVGUdqIKsqIoeyQiUiQiZ3XyM2aISKOI1IpIqYhMEpERCV77XxG5pzPL10b+BtyfjBsZYw4zxsxo4zU+4HngxmSUQVEUpSVUQVYURelcrjPG9AHGAH2Ah7rioSKSlcR7HQv0M8bMTdY928lrwBUikpviciiK0sNRBVlRFMWDPZX/qIjssP896lXIROTPIrLTPnaViBgRGdPafY0xlcB7wJGeex0sIlNFpFxE1orID+391wCXAX+2rc//s/dHPctrZRaRiSKyTUT+IiK7gBds94W3ROQlEamxXRsmeK7/i4hst4+tFZEzmyn++cAXMXI623Z5qBKRfwHiOXaAiHwuImW25fxVEenvOR7Xei8ik0Xk+ph9y0XkIluG24AK4ISWZK0oitJRVEFWFEWJ5q9YCtiRwHjgOOAWABE5D7gBOAvLIjwx0ZuKyCDge0ChvZ0PTMWyig4Ffgw8KSKHGmOeBl4FHjTG9DHGfDvBxwwHBgL7AtfY+74DvAH0Bz4A/mU/fyxwHXCsMaYAOBcoaua+44C1nncZDEzCkstgYANwsvd1gfuAkcAhwN7AHQmU/0XgJ57njAdGAZM956zG+l0URVE6DVWQFUVRorkMuMsYU2yMKQHuBC63j/0QeMEYs8oYU09iSt9jIlIFlGIpk46F9FtAkTHmBWNM0BizBHgHuLgDZQ8DtxtjfMaYBnvfLGPMR8aYEPAyEeUyBOQCh4pItjGmyBizoZn79gdqPNvfBFYZY942xgSAR4FdzkFjTKExZqpdjhLgEeAbCZT/A+AgETnQ3r4ceNMY4/ecU2OXR1EUpdNQBVlRFCWakcBmz/Zme59zbKvnmPfv5vitMaYfcAQwANjL3r8vcLyIVDr/sJTz4R0oe4kxpjFm3y7P3/VAnohkGWMKgf+HpeQXi8gbIjKS+FQABZ7tKDkYY4x3W0SG2ffbLiLVwCtYg4MWscv+JvATEckALsFS6r0UAJWt3UtRFKUjqIKsKIoSzQ4s5dVhH3sfwE4iCi5YrgMJYYxZAdwDPCEigqVQfmGM6e/518cY82vnkji3qQd6e7Zjlel417RUpteMMadgva8BHmjm1OXAQZ7tnXje3X4fryzute83zhjTF8ttQkiMF7EGCmcC9caYOTHHDwGWJXgvRVGUdqEKsqIoezLZIpLn+ZcFvA7cIiJDbF/b27AsoABvAT8XkUNEpDdwaxuf9yIwDMsv+EMsd4LLRSTb/nesiBxin7sb2D/m+qXApSKSaftDJ+K2EBcRGSsiZ9gBiI1AA5aLRjw+innWZOAwEfmeLbPfEq2sFwC1QJWIjAL+lGi5bIU4DDxMjPXYvtdAINXZNBRF6eGogqwoyp7MR1iKofPvDiwr70Isq+kKYLG9D2PMx8BjwHSsYDtHUfMl8jDbl/afwK3GmBrgHKzgvB1YrhAPYPkFAzyH5R9c6Vmg43fAt7FcDC7DyorRXnKx8hqX2s8eCtzUTLkXYym7x9vbpVi+0vcDZcCBwGzPJXcCRwNVWMr0pDaW7SWswMDYBUQuBV60cyIriqJ0GmK5jimKoihtxbb2rgRyjTHBVJenMxGRc4BrjTHf7YJn/RS4xnb/cPblYrlWnGaMKe7sMiiKsmejCrKiKEobsHPyfoTlC/wiEO4KpXFPwXZd+Rx40hjzUqrLoyjKnom6WCiKorSNXwLFWLl/Q8CvWz5dSRQRORcowfK/fi3FxVEUZQ9GLciKoiiKoiiK4kEtyIqiKIqiKIriISvVBWgPgwcPNqNHj+7y59bV1ZGfn9/lz01HVBYWKodoVB4RVBYWKocIKosIKgsLlUM0qZDHokWLSo0xQ2L3d0sFefTo0SxcuLDLnztjxgwmTpzY5c9NR1QWFiqHaFQeEVQWFiqHCCqLCCoLC5VDNKmQh4hsjrdfXSwUZQ/lw+U7mPr17lQXQ1EURVHSjm5pQVYUpeNc99oSAIruvyDFJVEURVGU9EItyIqiKGnI6Bsn89CUtakuhqIoSqtU1QfoaVnRVEFWFEVJM5yO5l/TC1NcEkVRlJaprPdz3L2fMW11z1rgMikKsoicJyJrRaRQRG6MczxXRN60j88TkdH2/tEi0iAiS+1/TyWjPIqiKN2ZULhnWWIURem5VNYH8AXDbKuoT3VRkkqHFWQRyQSeAM4HDgUuEZFDY067EqgwxowB/gE84Dm2wRhzpP3vVx0tj5JeLNlSwU2Tlve4qRdF6UwCIa0viqJ0DwKhMAB1/lCKS5JckmFBPg4oNMZsNMb4gTeAC2POuRB40f77beBMEZEkPFtJc2auL+X1+Vup9QVTXRRF6TYEwuFUF0FRFCUh/LaCXO/vWf18MrJYjAK2era3Acc3d44xJigiVcAg+9h+IrIEqAZuMcbMjPcQEbkGuAZg2LBhzJgxIwlFbxu1tbUpeW46kqgs1m/0A/DZjJkMyOt5Lu894ZtIZvl7gjySRUdkUeOPWJC7uzx7yjexvSbM4N5Cbmb7bTs9RRbJoDvKwhc0bKgKc+igzKTdszvKIZaNVZbleN3GzcyYsatD90oneaQ6zdtOYB9jTJmIHAO8JyKHGWOqY080xjwNPA0wYcIEk4rE2prQO0KispjbsAY2bGDc0ccyZmhB5xesi+nW38QnkwGSWv5uLY8k0xFZFFc3wufTgOT+PqmgJ3wTjYEQB9/6CWcdMoxnr5jQ7vv0BFkki+4oi1fnbebv01ay5Naz6d87Jyn37I5yiKVPUTnMmcPAISOYOPGIDt0rneSRDJPedmBvz/Ze9r6454hIFtAPKDPG+IwxZQDGmEXABuCgJJQp6ZTV+li0u2dNH3QFjm9Sra9n+SYpSmcS0CC9tMIXsNqxeRvLUlwSJZVU1PkxBhoDyXGBqqoP8LNP6pi0eFtS7pcq/K4Pcs/SkZKhIC8ADhSR/UQkB/gx8EHMOR8AV9h//wD43BhjRGSIHeSHiOwPHAhsTEKZks4vXlzI40t8VDUEuvzZby3cyrMz01IsrRJ0Kk6SfZDrfEHCqkQoPZRAUH2Q0wlf0BrgZ2Ro6Ew6cu4/vuSHT80BoLoxwMKi8k55To3djwWTFCNQWFILwItfFSXlfqnCCSqu1yC9aIwxQeA6YAqwGnjLGLNKRO4Ske/Ypz0HDBKRQuAGwEkFdxqwXESWYgXv/coY0zlfdgfZWm6lL3Esol3Jn99ezj2TV3f5c5OB3644NY3JU5BrfUEOu30KD32qiygoPZNkdcBKcvDZA5ZMVZDTkrW7a5hvK8UvzCrikmfm4u+EQWat3Y8Fk5Rlxhl4LdtWxccrdiblnqnAGdAn2xCWapISNWWM+cgYc5Ax5gBjzN/sfbcZYz6w/240xlxsjBljjDnOGLPR3v+OMeYwO8Xb0caY/yWjPJ2B0yxqtrK2EegEC3K1bcWftDjWkye9WLa1knG3T6G4pjHVRWmRYBcM+gqLayip8XX6c3oKmuYtvWgM2Bbkbpp8ad7GMpZtrUx1MbqEDSW1BEKmUzIq1LoW5GQpyJG2d2ZhaVLumQqcAX1DQC3IeyROVrqekMC/wR/ii3UlXfKsoOuDbDUsz87cyHWvLe7QPZ1fIJzmo5Xl2yqp8QXZWZl+CrI3L3VXKGPn/3Mmx/7tsx5nYegskmWhUpJDxIKc4oK0k3smr+Yv7yxPdTG6hM32bO/HK3clfVBQl2QXi3pPbM72ioak3DMVODPFPa1976bVvetxZta6ysWist7PtNW723xdYyDEH/9vGburm1fKPlqxkyuen98lq944ypejIC/eUsGXHVTOO2PqrDPYWWX9Br40LK/XAtLZ8gyFjfsdbCyp69Rn9RT8KXDlUprHsSBndlMLcq0vyJpdNeys6r5KWKJsKbPamJsmreDCJ2Yn9d41SXaxqG6MxDRtr+y+v43jYqE+yHsoEqMgd7ZS8caCrVz10kJqPBUokdXoPl9TzNuLtnHn/1Y1e46jrO6q6nzLpj/GglznC1HdGGxVfmW1Pspq40/JO35b6W5j21XtKMjp12h4Z0I6WxnzulakoyzSka5we+lJGGP4aMXOTjNgOFkLumuQnmPZm7G2a2YOU0VVQ4CK+s4LpHf6sWTNJFd7gv63VzR02xVnO8OVMh1QBTlBHN+zQMiws6qBcXdM6bRIWYDiah/GEJU1IxFFJtueA2xoYSTnKCnFXeATGpvFwvELK6tr+dnXv76E37+1LO4xJ+VSurclzgDEl6SUQMnEq0h09qyI12qVamt6VUOAmyYtT/uGPFk+junEtop6Ln1mbqf4oq/cXs21ry7mi05SAJ02s7sG6Tn9wfQ1xYDl/lVe509lkTqFLWWdOytam2QXC2/wekMgRGUnKvedidOHqA/yHkpEQQ6zZmcNvmCYrR10Ufhk5S536i6WcluBjKpACUxf5GRZP2lLiohjvS1uwQ0jWbguFo0RCzJAWW3zjXMwFGbxlgo2l8Wfjo+8W/uUiOLqxk5vSMGjIKeji0Wo61wsdnpmKpr73ruKJ6YX8vr8rfzfwq2tn5xCUpEtp7N5bd4WvtpQxqodVUm/tzNb01l5WB0Lcnd0sTDGUG/Xu1mFpfiCIS57dl6PzAK0ubxzXbiSncXC62IB3dfNwunnAyHTbVwgE0EV5ARx2sVg2LDFDgJ4YvoGdrTzg95SVs+vXlnE+0vjZ2Ios0f33imYREZnji9QS0qZc6ykGReGjjD1691RHWCsi4VjQS5t4dkbSupoDIRtK3rThsh1sWhnG3Xmw19w2t+nt+/iBDHGuIqhP5R+o2qvhbKzlbGX52x2/071YMGpTzlZyVsqtjPoaVkswmHD+0t3AFCdxJSPDo47VmcNwLpzHmR/KEwobDhm3wHU+0PMLiylpjHI3B646MnmLrMgJ6d+xvaD27ppoJ63D+mM7CGpQhXkBPFakB0FubC4lkufmduu+9X4rI66qJkK7Ux/eS3IiTjAN9oNeUu+nhELcvIV5KtfWsgFj81yt2OzWNT5IxbkV+dtZs6Gpo308m1W5HFDIOQmZvfilL+5JmpDSS2/fmVRsxZ3555VnTidVd0QdAc0qXSxeGH2JhbEcQXyThF2ptIaCIWZs7GMC8aNsJ+V2sGC8/3lZad309dRH+RHpq7jm/+c2a5rT3tweruv9VLvD/Kdf81ifUWIeZvKXetYTWPy652jaHTWt9xdLMihsGliVHDawVPGDAZg7karPdhYUtequ0tNYyAhv1hjDG8u2NKi4aMraG1msMEf4skZha6rSVvwB8Pu9+VVkGsaAyzaHGlji0rrEpbZos0VUfvaa3BLNV4Fua6Zfnd7ZQM3vLk0oZnwdCG9e4k0whuk5x2lNqfgtobT4DrKtkNVfYDRN05m1Y5qIKJIQ2IuFlvLrQrWklLWXgvyY9PW85tmUrQZY+IqP4GY9C/1vogP8l/fXcklcQYYK7ZHLNDx3EBa6wQf+XQdH6/cxdRWsoAs397xFEDBsIkb7LizOr7fbWFxLTdNWpGUaajNZXWs313T4jl3/u9rLrZXmPLinSL0BcPc9v5KVmxL/tR3hT3QGz24t/WsNg4WFhSVJ3WVKef7a4si1RgIUdMYoDEQ6hT3gHh0dKnpx6at5+ud1e26dkt5fbuv9bJqRzXLt1WxriLEe0u2u4OS6obkW5hKbZetdLEgV9T5Ewrk8gfDfO/J2cxa33wO3C/WlbBkS0Wzx738+Ok53P1h9KJSjmFlRL88BubnsHRLpN1rKY6m1hdk3B2f8vCn61p97oaSOv7yzgr+t2xHQuU0xvCvJY0tphstr/O77UeiFJXVsc/A3nGPbSqt45xHv+DBT9by7KymK9N+VVja4u/gjVsIeQwMv35lMd//9xzqfEEWFpUz8aEZvLmgdReuzWX17I4xUrXHxeKVuZv5zauLOyXAb0FReUJGDb+nP6lvJr7jpkkrmLRkO3M3dZ+ZC1WQE8QbpLe1vHmlOBQ2XP/6EuZvajmAz2c35M69Plm5i8VbKlgbo/B4O5N6f4jSWl+zU+KfrNzFA5+sse7foouFHaTXRgvyI1PXMXl5/NV+/vPlRsbd/mmT/U5Za+yloR1fuNIWfJCXb6si1/aldhqQqoYAz8/aRDgcUcTL6/y8PKeoScMwuE8O0PxovF+vbCAymIilqiHA7ASTtr/8tZ8T7pvWZFrJ63frbWDO/+eXvD5/C2t3tazYJsI3/j6Ds//xZbPHW2owvRaQ9btreGnOZqavLealOUXN/sbtwfmdR/bvBbTdwvfE9EIetL/ptmKMYc6GsqglyR0f1TpfkGVbK3l82vpW73PZs/MYd8en3DxpBRc8NqvTrGTn/3Mmv319CZC8LBapjIpfYyvZVT7DjHXFnH3ocLIzherGAFX1Afd3eXfJtmZdzcBqI1v7Jl0LsmcAFg4bPl6xs8Ul6RNdst61IGdY5fnZC/Mpr/OzvbKBF2Zv4pGp69z7NPhDHHX3VO6Z/HWr991Z1cDiLZUtKsBXPD+fi578qtV7FZXWsaCogjW7ogc3joLcKyeT/Qbns3RbREGe34KC7Cinz8yMViarGppalVfaRg3HR9cYw7aK+ma/vx1VjSzcHWLW+uYV5KPvnspRd09t9ng8tpTXc/DwAne7IC/L/fvdJdvZXtHA/kPyqfU1Vfru+N8qrn11UVRgvJdaj+LndYGaZfcVu6sbXYvwGk/73pwMNpbWRm1niJXJoqTG1yZL8pwNZUxesTPKsNQRdlVZMTobSmq5+Kk53PZe8xmxHKJdLOIr1EWlln94eZy+f3ZhaYfTv3YGqiAniGtBDoabWH29S0RuKq3jf8t28NWGlhUsxxXCudevXlnE9578ilpfdOWsqI98THW+IBPu+Ywrnp8f955en7KWLCmOktJaFovZhaU8/OnaVq0Xxhge/Wxd3Cwb3vQvjcGQ6zfcnJIRCIX5emc1x44eCER8Rh/9bB13ffg1n369O6oTvPX9VRQWRzc0WXYmj9j9Dk4kenOZDI6/9zMue3ZeQi4Y83Za96iNuZfXquwLhAmHDW8t2Oo2rMkMJnlj/pa4+xtbsNZ6FbCFdqP+7pLt3Pb+Kv7yzvKoFHvhsGl3wn3HVchRkNti4QuFDYuKKqjzh9plGVyytZJLnpnL557pVCdItN4f4ukvN/Lw1HWtWvOdTs9Z6aqzIs1X76zmA9sC11oQ0H++2JDQ0rRdkU/ZGMNr87Y0qQOOklDtN1TUBRjVvxd987LZUl7P+Ls+5fHPCwH4/ZvL+N0bS5u9/yXPzOU3ry1u8Rtw2pNGz2D0zYVb+fWri3l9Qfz6EQyFOez2Kdz+QVMFYOX2Kio9ba93Jb2X525mxtoSpq3ezRkPzeDO/33NY9PWu4qn02a/s2hbs+V1cAbSsbJrjdmFpU3at0+/3gU0DYB2Zh5752Sx76De7vdekJcV15Czu7qR8jq/qyh6B7U7KhsYf+enPDdrU9Q1jnJWaw9A//HZek55YDpLm2k31tpKfDLqklcB3VXdyMEj+rrbXiv+5rI6RvbvxSHD+1Ib4+ZT5wtSWFxLdWOQ52PezcHr7hhvdmBXdaMbO+QYaT5ZuZP9bvoo7poDsf7G+wzszfbKBo7922ecdP/nzb5vLE6g3xsJWK29fLWh1FVaHT5YtoMT7pvGaX+fztUvLgRgwebWs3UFo1ws4n/LTn2K52d92bPz+Gkzek0qUQU5QRwL8q7qxibBcn96ezkbS6zGypmC9Z5T02i5TbzuUWQc5aWyPhAVybqrKlpx9DZ264utDuerDWVx/fi8o7hKe5S/u7qxyblOg1de52t2GrC8zs9lz87j8c8LW7VeLN1a2awyFnGxCEWNLL0WZH8wzL0frWZ3dSPrdtfgD4Y5bj9LQXY6PMf3b2NpbRMrpJNNZPqaYm57f6XbQTU3ChfPde8v3c6jn63j/o/X4AuGqKoPuO+SyBLRTlFi3V92VjW6g6qHp65j/5s/4s/vLGf/wflAcoNJbpy0Iq6VwtvpTlq8LUqR9lqQHWv5JruxrPWBrBggAAAgAElEQVQFXeUF4JV5m7nwidnu8eYIhQ01/uhyOOn8RvaLtiAHQ+FW00yt3VXj+ouXtSMl1WrbgumdlXHqZU1jgNn2ILalchQWR651/DWbszDFY3NZHWc8NIO/T1nTJp/3WMV2U2nEX7SqPsDfp6zllXmb410aRV0cSxlYK1rO2VCGLxjitvdXMvrGyby1cGuUEpqIZRWsAdbN767g9vdXUVRa5353joJc2mDwh8L07ZVFQV4WM+wBy8tzixK6v9OhtvT9RVwsInJzBqneaew6X5CX5hTR4A+517w8N1qO1Y0BvvfkVzw5Y4O7z/lufYEw7y6xrN2LNlfgC4b53ZkHkpUhfPa15dLlfB9O27p0a2WzrgxOGasbg8zZUBb1vcXi/T0ue3YeZz3yRdTxKaus58em0HRmt3rnZNK/V467f+LYoazeWd2kfzj+3mkcc8/UJhkWIKLQx7pSOBbkOl+Qp7/cwGP2zExzRhjn23h/2Q5G3zjZVSALi2t5eU5R3Guaw2vNNQb2GtDL3W4MhNy2saisntGD8umTm9VkQPL1zmrCBoYW5PL8rE1RgyMHr+Ln9LXedre42ufW0XmbymkMhHh+tvUuG+IskLS1vN6dKQU4YEifJn2WMabVwZOjuH+wdEeb0lde+sw8Jj40A7BiVX758kK+Kiylb14W4/fqx0a7vjU2YxEuq/W5g61AlItFPFfLsNuWx2b/8s6wplvqQVWQE8RxPdtQEj1qf+D748jOFH76/HxqGgN8bfsOPztzk2t5chrimyatcBUpb0fkddnYFeNz623slnh8x+I1PF4F2R8MU1Lr4/h7p3F+TMCNY4ENG5osxrFqRxUbSmpbnEaOVcbeX7qDnKwMN8VcvDLV+oLu9BvAbo+F9aMVO3n6y43c8t5Kt6F1LMgN/jBfrCvhWXtUv62ioYnFb1NpvV2O7bw0Z7ObC9WpbGW1PuZ5rOuOkvTSnM387o2lPPrZep76YgOTFm+PqryJ+GgHbVHEKiK7qxoZ0ic3at/vzjyQqTd8gyEFuXFT2FU3BqhpDLCrqjGuwvvFuhLuiGPt8r5rOGyYsmoXDf5QlNvHPZNX8/SXkalSr4VyZ4wP9V4DevHK3M1sLqtzrYNAqysvPjm9kOs/r4/6np0B3tCCXLIyxG0Mb31/FUffPRV/MIwxhulri/lg2Q63U95WUc+HyyOd8Mn3f95EYTPG8K3HZ/L3KfFdMBwL2waPpc15/oKiCtd61dy3Xu8P8uOnm/rIt8Uv8ot1JWwsreOJ6Ru4/Pl57v46X5BHpq5zlZNY66jXIvPukm2c/tAMfvSfOeyubmTq6t0EwyZqkLWrqjGuW0a8DtMYwz2TV3PJM3OZXVjKS3aWkUc+XReVNcexBhYW17So3DttWmFxDRMfmsHVLy7EGOO6Ee2ss8rVNy+bvr2y3SCeQCg6oKw5t5Je2VbGkdhVGLeU1bvfZiRIr+WZhpnrS7ntfWsqfXtlRH5eZfCLtSX4Q2F3gAWR32ft7hpKanyIWK5gYFn+9h3UmyK7TjvfVcgYymp9fPeJ2fzgqTlxffydulfTGOBPby/jnsnR/sNe+bTUHhXXNLJ4SwW9czIpj/F/dtzaeuVkkp8byd5yxsFDCBvLQh/7+xoTnUHJyWWenWl1hF4jRThs3JiZOl+If8/YwNhhBfZ2fIXN+TacttzxRb7yxQXc+v6qqMFQa25CsTmJe+dkut9M2ESUt81ldew7qDd98rKobQxGxc04A5WbvnkwNb4gU1btavIcb/+1aHMFy7ZWRhl9dlU3unKaub6UG95aGpnZiDP7sa2igVEeZX7/IflNDAFPf7mRw2+fQkmNj8ZAKK6yXNMYYGS/PGp9QR79rHV/8Vgq6/28Pt9KwbhkSyVH7zuAQ0f2c487308wFGbS4m2Ewpbh7Zh7PuPhqVaqQH8cC7J3YFhS43Nnj2NdVP/m+eaXbk3M176rSIqCLCLnichaESkUkRvjHM8VkTft4/NEZLTn2E32/rUicm4yytMZiG13jB0J7je4D/d9bxzbKixfspW2BTkUNnz/31/hC4bwhnX88D9z2FZRHzW15I283R2jrHgtrQs9Ea/xOunYaVmnQ4md0vB+zMU1vqhI5Qsem8WZD3/RYnSzt3EMhQ2TV+zkjLFD6evx93Lwjiz/bVtk+uRmRQUj7LAblaqGAMu3VVGQl+X6kTUGQlHTeVvK6pt0gs40kXNPp5FxZHfxf+bwo6fnEgobyw/a06g5lmrnXbyVtyU/6VgcZfT3by5lwj2fsbO6kRH98qLOOfGAQWRmCKMH9W4S3Fle5+eIOz7lmLs/44T7prlKi5crnp/Pf78q4hlb0fXef2tFA1UNAb79r1n88uVF/L83l0R9Y46/pPM7B1pIdH/LBYcQDBv+t2wHy7dVudaelnzWjTE89YX1+z762XreXrSNl+YUUV7nJzND6Ncrm9ysDHdw5sym1Nmd0c9fWMBvX1/CU/Y3csoD06MseGD5I3s7/g0ldazcXs0T0zfEtXa6CnJJLY9PW8+aXdWuhdE79VtS63MHtl7mbCijtNbPwxePj7L0vPDVJup8Qf71+fqoDvDPby9r0kEt21rF4D45XH/GGJZvq3KXj39m5kYem7bedf/wulKFwybKwv/Xd1cCsLG0juPvncZHtmvFjsoGAqEwby3YyskPfO5a7bzc/8maJgqG1wI+zzPF7g+Fo445fsJnPfIllz0XP1vP3I1lzLODbpbZCuCcjWVsKLEsyblZGdTZt+zbK5u+edlR5fC2TY99Xhi3g++V4yjItbwxf4vrj3z58/O4+d0VVNUH3G/9lblbWowRqWqw5Dx9bQlXv7TI3X/TpBU88+VGnpheyGf2b7Rsa6WrtHstigN6Z3PRUaPcQMacrAwG5ee6g0GvBfnvUyK5hmfFiWvYZbd9tb4gFXV+lm2tjPq9vG3tP6ett1zV4ihb01YXYwxceORIwiZS3sLiWndQ3Tsnk945kTb6hP0HAdYiKy/OKWpyT2/8i+OK4Si0XiNFUVlk1qC4ppGK+gCnHGhlzGhNQXZYssV6b2fQ95HHfai1oM7YlGu5WZmsvvs8brngEMCahaz3B6msDzBqQC/65GZR5w/x0KdrOfn+z1mxrcodIB219wAAyuuaDgi9GZVemrOZ619fEmXx3F3dGOVa99GKXW7fFK+/3lpRz94DIgGFY4f3jToeCIXd1Ig7qxr409vLOfz2Kfzq5UVR59U0Bjn1wCGcdtAQnpm5yZXt1vJ6Zjbj4+39xo68ayrrdtdS7w+xoaSWQ0b0dV1EIOJT/PqCrdzw1jJen7/FTd25qMjSSQLBsGtELK72sXhLhTswnLR4G2c+bM129M3LiqrzHyzbwUtzNpOXncG1Ew9oIoNU02EFWUQygSeA84FDgUtE5NCY064EKowxY4B/AA/Y1x4K/Bg4DDgPeNK+X9rhTJdvLKnFm+knNyuD4/azGpq1u6rdkbTD+t21UQrpiu1VnPLAdO76MBLAsd5j4Vrs8fcdmJ8TZeH1Kq3xpiJiR5exPmrPz9rEb15djC8Qcjv81TurGXfHp02UkZYUZK87wabSWkpqfJx16DAkTgqkQCjsWpbftBdnGG6Pdh2cDi0UNqzYXsURe/VzO8WdVQ1RAXOrdlQ1cedwLDfbKxrIyYx80hX1fsJh4w4Uyuv8UT6KAIeNjFTIrAxh9a6mU+qJ4FjF3l2yndJaH7uqGhgeoyA7jc4+A/OjLMjGGP789nIgMnhxOqSV26s4+u6pUdk8/vbRairr/QRCYY4dbTXoW8vrmbG22P3+pqzazYVPzI56vi8YdpX+5lxrRODMQ4Yxfu/+fL6mmDcWbHV/v+IaHzurLCX7qw2lUZ3B5rJ66vwhsjIsi+cf/28Zt72/irI6PwN6Z5ORIeRmZzZxj6nzB920U2B19Fe9uMDdHjcqYsl4eOq6qOjwGWsjvsWb4yhFjuV49c4aHp66jncWbXODYwF3QPfynM1887GZrvK6cnsVd3/4tfv7H7//QA4c1se9bnZhGec++iUPfbqOJ6YXUlbr49Jn5vLWwm1RHfuOWmv244i9+jPWHvBd+eJCiqsbeW6mNehzBtwVng65ujEQNbDMzszgoYvHu9tfrithaEEuYQM3vrOCP79jfTsfr7SsXl4FavLyne7AeuX2Kj5cviNqlmqeR/a+QIhKj4JcWR9wZ1RWbm86gKj1Bbn6pYU8MX1Dk2NTbXeDk+3UYmDJ26kD/XtbirI3zdVj09bzz2nreWXuZncmKRw2riVz9oZSbpy0ws2k4yjFscFOpz44nWc9gWWOPOZuLOMv76wA4JLj9nHb0J+dNJrJy3fyt49W8/cpa5mxtoSsDKG6McjfPrKsW97B8rmHDeeqU/Z3t3OyMhiYn+Pez1HCAyHDmwu3ctUp+5GdKTzwyRqKqpq6YgFU1Aeo84eoqA9Exbh4B/OvzdvCY9PWc/Ctn7j7Zqwt5ifPzuOmSSvok5vFiQcMjirvz16Y7yqdg/Jz6eOxII/oF7FexjPSegdLTnvktL3eb2yl3eb0yc1idqE1WHIsyB8u38nDngVJdlU1srW8vslM7NyNZVEzIl7/be8saihs3LarsLiWWl+wiWHI6duc/xsDIXdwP7Qgzw3c+3pHNaW1fn789Bx3Ce6hfXPJycyI60ZVG5O/e0t5PTM8gWV1vmCTGWCnmS33DLAuf24ev3p5EVvK6tl7YOQ3cFJhOlQ3BMiyLfY7KhuZYtfvT1btihqwVTcG6Nsriwe/fwQA09ZYde/0h2Zw+XMRv94dlQ2MvnEy8zaWxXWJDNkD82EFuQzMjyjI/qCVR9uZmd1e2cAy29/e6acDoTB97eD3ez9ezfc8bpn/+rzQnbWdMHogO6usgf3GklpunrSCY/YdwMo7zuXP5x3MqP4ReaQDybAgHwcUGmM2GmP8wBvAhTHnXAi8aP/9NnCmWNrUhcAbxhifMWYTUGjfL+1wfJC3VTQwvG9E8cnNthrHIQW5TF9T0iToYFNpXVRQ2aXH7xN1vHdOJo9MjVhNvMryvoN6N7FijhlqddRvL9rmdkIOXqW5X6/sKOtQYXEt9328mk9WWav3OVM7TnBFrE9ZS/63DYEQ/pBh8vKdNPjD7vNi1eOFReVUNQQY0Ds7ar9XfhAJVPQFQ6zZVcOhI/q6jdu7S3ZEKXMV9QEWeoIGTjtoCJtK6/h6RzU7qhq55Li96ZObRWaGEAobHvBMvxfXNDaJsB09KN/9+8ZJK3hs2nrGjepHVoa41sEHPlnDuS1kiwArtY230ygqrW/ynoPyc+1n9mZ3tc8daHy8chefrd7N1afu557bv3c2u6sb+dbjsyiv8zM3JpjGFwzT4A9x0LACcjIzWFhU7n57T19+TJPvbKStrP/fIkvBbC4TyoPfP4LszAzG79WPZduq+N+yHXz7iJHk52Qyq7CEE+/7nOdnF3HpM/P4rkcBdwJE/zQhz53eBMu9xXnv3KyMJtavjSV1/NeTxm3t7ho+Wx1RfA/3KMgAD05Z437n3uA7b+f15boSCotr2VHVyPC+ee6gY3tlQ5SC/k27Q3Lu88AnawiFDR8u38lzsza5lsRB+bkcNCwSGQ9WOzCiXx5vLdjKxIdmsGpHNeNG9WN7hTWAqKjzc/OsBkprfYwb1Y/9B0cU7Ns/WEWtP0hBbhaPTVvPtx6fyV/fWxF1b+/vc9nx+/Dt8SPcehQMG647YwwA7yzexkVHjeIP5xzE+uJabnhzKSfeNy2qrI9NW8+9H63m1vdXct1rS/ihJ+2f15LuC4bZ5Jkh213dGBWN77B2Vw2vztvM6/O2RAUuARy1T39XlgBnHTLMPda3VzbDbaXspAMG0Sc3i4Wby12DwwVHjMAYuOW9lXzr8VmEwoavNpS5FkLvQMoY47YR8YJxH/+80B2EP/3lRl6fvyXKXeb3Zx3o/v3XCw7hB8fs5W5XNQS44zuHAZHZN68bzqj+lhXSIScrg4F9ctyZK28fYAxcd8YYzj/c+tY+3BjdPzgK1XaPVW1WYan7vFgLbGxw3JUvLnQt04P65DCqv1XP/zW9kGtfXRRlrRuUnxNlQQb49viRUeXwurlUNQTIEKuNjSjITp5967yi0jo388pBnkHk/kPyyRBrhuLxzwvZVlFPKGw44b5pnPrg9KgB4NhhBWyraHADVC86apTr/wqWoSMUNlTW+/n5fxdw2/srKa/zc9YjX3DifdOauOa4CrLdDvkCYdclcWhBrqsg76r2Map/L3rnZjH1691kZwq9sjPp2yubVTuqeG7WpihLazxr+Euetqu4xheleA7onc3k355Cr+xM14IcDhtmri/lk1W7qG4MspfHgtwrJ5P5N5/JXRda315lQ8DVO16fvyXK0HbkXVNZtaOKQChMYyBMQV42w/vlMXZYgftbOfXGce1xXDSfm7WpxRUnh/bNY1CMe+DdH37ttocN/pA7gHUGHv5QmAG9cxjcJ4fBMdd6f8tjRw8kbKwUkD96ei5ZmcJjlxzlBtanG8ko1SjAGz65zd4X9xxjTBCoAgYleG1a4DWO7u3Js+hYLEcP6s2cOCsTbSqti3IJ+M74kVxzWsT6MKB3TpNrHEb0y2syknVcAj79ejfXvrrI/VAhWkEev3f/KMvrze+uIBCyRt87qxrdkZozlZ8RY/31Wk+zMiSqoWgIhJixNchvXltMYYnVgWZnCrEG5B/YHXFedvSkwNC+0RXIsRys3F6NPxhm9OB8RIS87Iwm/qFDCnLdjvKVK4/nyL37s6OywZ1GPG6/QXz021O56fyDAfjPFxFLUkmNr0kAwejB+VHbPz1xX9765YlR1vt/z9jA2t01TaaqoxpPv5Xr1cEfCtMv5rd10svtaz/TyQe5bGslOZkZ3Hj+Ie65obDhEU/+0YLc6I6twR+iIRBiYH4O5x0+nElLtrO9ssG1AN970bio8397pqUQPPjJWsIeK0x2ppCbleFaU/Pt5wzvl0cobAWI/OSEfRhSkOtah5ypfKdTnV1Yyj2TV9O/dzYHDcjgylMj33d5nd+1RuTZFuT/fBGxOLaUvuuQEX254eyD+NtFh7v7ahuDnPbgdMbd8f/bO+/wOKqrD79ni7TqltVsucuWe+822JYbEFpCCM0UQyAkEEJNgCSEEEI6IYQUEvjoJfkIhPJhwJCAKMbgAtgYXHAH94ot2er3+2NmdmZWK1uyZDWf93n8WDs7u3v3t3PvnHvuOefO5d01uxja1TKgnQH/3dU7uejBBdEEphMGuQbapj1+A/nMUV1JsT0gWSkJrNpWwrhf/je6dP7fFduteMaEYNQj5nDN9EKeuWIipRXV7C+r4urphZw+LJ/SimrOu/89X4jMwPx0CnLc6+zlZVs5ZUhnxth9ecWW/b78gvPuf89Xj3VwlwwSQ0Eeu3QcYE12Zo11J0A//9pghne1DNN/f7iJYMA/rL/92U7ue2stH27cS++clDp3squqMfzk+WX0zEomHBR+PufTaHxgeiTEyq37efCddZx491v8+Nll/N0T0+5wuee3d767Q3okTL5twAUDAUZ078Dj723EGJg9oQfXz+zre23RnW9wwQNW3HbPLH9t2x0l5STadZXjJUB9ebDSZ0z+Mia2Nzc9wr3nj+TiiT2jHvqf2UZxQjDAGSO6MLJ7h+gk1jsOdUxNiH42QGIwQHZKAnsOVLCzpLxWMmGH5AR++fUhzByYx8c7rZraL328hTdWbo96kL3v/+NnlzH6jv8AtSsCxIYTeGv+VlTVRCdi/7dkMy997I+jDQTEF4MM8KfzRjC0a0Y0PM2bS/HFngOkJ4UZX9CRz7aXsGzTl56NqGr4Ys+BaJJXWmLId6/qmpnsM3pe+3RbNBTHoXOKdcNwxqa7XltFOCh8z578OWzYdYDb/+8Tht/+Gp9u3sfC9bujHuj9ZVW1aoY7hrFz3ymvqo46fHLTE0lNtMbh5Vv2kd8hwgkDrTEiEgoiIqQnhXj7s538/MVPWbWthFue+5irnvwg7qZVjkMrHJRaFSGKvz+VQfkZ9uqCpU3se3TLTOYXxyVFvb+56ZHob7r3QEU0bOHNVTtq3V8ve2QRK7ZY91/H6B/SNYNlm7703ZtO+/M7rNi6L7ry8uXBylr3weQE97rITUskK8V/7/I6MZ54fwN7DlTSITkcjYv/fPdBumYm8c5N03hg9mjfa9MjIRbfMoMnLxvHMHu8/s5ji9l7oIInLhvX6rzGXmoHjbZSRORy4HKAvLw8iouLm/XzS0vcmXhihbvc+OGiBWxMClBRanVAAZLDROPu3l22htBet3rA2k+XcHC3e3HuKfHHB2cmCrdOiLD9gGHe5toxa4kl7qBXWW247MF5XDEskU931bDtS0+cXPVeXxzVgnW7GZoTZOmOarbvL6dHir+jlpaW8Pob7vbLy1a7ba6uMbz6enH08dvvvs+y7eWA8N5H1o1n+bKPqSh3P9/7+2yOzVrd49/FaFNMjPTez1dTfHBd1PPep0OA1Xutv68bFuDXCyAcEKo2LaNsRxU1xqrn2SsjQNKuFazdLYTspcxLBiWwp9zw3OpKnir+iH4d/cbDttUf+x53qd7G++/uJGQqWPv5FoqL3SXgKb98he8OTyQvxXqPDfvc3/Efby1j1W7/oLPtC38c8VtvWUZboMKQmyx865GFXD4kkcVbq+iYaHj7rTe5eFACD39SwcoNm8lNckfE1xcs8b3XG/Peo8bAls83MDAzyAtlVTw5fy2pIXj7LX92+3n9E8grXcOpBWFeXFvJUy+/wbYDlp6DswKkhoUPttsJWSs+oXjXSvZudq+PvWs+YmTHSjbssnYv9N4IH37+v/zy/TIqaqzfqbS0gkERa6IQCcLnO/bSIz1AcXExlWUH2LS1jC3b3JWP1z/5ghRPfwmJlfh4+dBEJuZX88ni+XTy3ABnDwzzwDL3OuufcoClwPuLP6T4Pfjb0pgJVYXbX1ZttSaTg7ODFHUNUbp+KWmhGkorYEZXmLdJ+KKkPFqP0xhICdZQXFxM+Q5Ljx7pAa4ZmUjH8GZWfeSuupRtX0+JbXu/t3Y3yz7fTUaCISspSNXm5by3YwV/KEriuuKDCDAxfS97ygyvA98cnEBWRHh5XSXTuod4cnmFrz5txeblFO9aSWmlQYAhmVW88/ZbnNwrTGWNYdH8d9hX7mp05/Ehlu8SfrOw9irQzM5VFKaEeGV9fCM5LwluGAYvrg0yd/0B8lOEgowAa7+s4sS7/asoO0vKGZ0XZNE267ofkRskuN1dsflanzCfL/8w+njZhwvYvMsSacvWbXROdfviti2bWP+xP14y2bi/Zd/UCtZ77KtnX5tHdbldMWD5+lrfwxnrHGINk+LiYpKAonR3rNpt94F+mcLC+e9QcaCMvV8aXn/jDV81oS3rPmPRPndy8MnHS9i1rwZjiBq2sZ8FMD69mteq4XdPFfPop/HzGwR3h9Di4mJW7/GPKRM6B5m/xTrWp0OAa4caVu9N5O4Pytl/oIwlC98lNQwllZCfIgzLDfHyukr3/XZWRT/HaVdydRnvrq7mmvtfjY5tYCVfD8kJ0r3iczIThUsfmMeMHpZxWVZRxa1Pusnft08Ic8s8y0As6hZixYfv+eKUX128km05rrkRFPjuwBq2VEZI2uVeM+f1C7Pxk0V0Twuwcb/1+hfmf0Lx51a7d5aUs6e0nDlvu3G4b77j3wjp448+YO+aAKu3Wa+5/rF50Wvhs6WLWesJcykv2UdahnV/2l9eRXFxMVLh3o8efeU9nlhh/VYn9Aj5fh+rX1ht7JBQe9OvD95/BxEhVFPO6s+38Pobu/n1An+f3LbuU3KDB0ktXUOxHea4dq/VvosfmM9+z2UyPCfIh9ut587oE2bOujJO+7O1a+0X61ZTXLmByIFKdpZUcO+//WXivv+4G/Lw/rrdPPSyP/xuaBa8Z/sq1n76Ed6F1osGJviu16pqwwUDEiitNDy7uoLXXn+DlVsPUNQ1xHvz3mZ3md+jPzYXPl5k/UY77PvO1n1lnFoQZseqDymOSTsoKSlpdvuuLprCQN4EdPM87mofi3fOFyISAjKAXfV8LQDGmPuA+wBGjx5tioqKmqDp9Sdj2Tuwz7rBjh1YwNubrF91yqTjyE5N5N9bPmTJjs30yk6hpLyK0spyQgFhe2WEAYMGwkIrrvKU6ZPI37iHxz61Hg/u1tFXi3LG4C6ccZIVb7hzzqe89YV/Se3UyaN5cuV7lFfVcGVRb/5avIafvlv7Rvi1ycN5fo0by5keCfHTb4zhzHutC7Vb504s3OpKnZ6WRkbBIMDqSIGUDozsXs3JQzpzx5zl9Bw0Gl6zbpADhgxnzSJruTI7vxusXMPY0SN4bNWH7Cm32jJ49AR4xbpZSCAAnqSwMYMLmbPOjcGODX87fdoEunVMxrwyB4DjB3ZntT2DnXXqNCZNPMD2/eWM6pFJxsY93LfUavMJw3oybarrhT335Goi4SAHK6p57tZXeGldJS/FlLg8feYUbnzLjek7fvxoBuVn0OnTeSQmBBk2ZiS8YhWr37i/hl8truJvF4xifEEWv5jzKWC94WLbSPj51wbzk+espKohA/ryvyutv9MiIbzX7MTjKrj80UX8dYllgE/um0NR0ViKgFX3W79vp/x02GAZ2aWRHLxdo1f/ITB/IQP7FXLJcT3517o3WbOjlD65qRQVTQEg+OpLVNcYbjxrCpkpCeT2+5IX73mHSH4/BiQEYfFifn7OBAZ3yWDobXOhsooJY0YypmdHEtfs4r6l75GcEGTq1KlMnQq/qa5h65dlTPqtO5G6bb577eV0zCQ1tYyioiK+XbGcR+av52BNgAG9ulBUNJisZe+QmpxASXkVGUklfHmwkh0HDZMKs3nb9pjOHNSJl5dt5dJTjyfPE6JyVeVKxhdkcXxhNiOXbol6Q2afOI6nVr5DKGvvLQQAACAASURBVLsnj73hlqYDa+Xj/JMn8/vF1u/n5PqcMb4flx5vhbN0Xzmfret2c96MMfwoK4Vht1ub3SSFgxysrCY/O4OiouMo3HuQuxa/zsyhPfj6SZ4UC/saPb1oHCXlVdy7xLoWSyrhlnFJXHbG9OipNTWGny14jen985h1qtXHLzq1kjQ7ce3b9nmXllfxxPsbKMhOZVxBx+jzAJkFOxnSJYO0SJjYIfDqN+bQv1MaRUWTGbi/jN8s/C+piSEunNCDe4vXMKxbB649azyRcJDqGkPvH73ke312aiL/vmYS2amJnGonTHXJTOLOuSv5+1trOWd0N1ISQzw4z7rmB3RO58bTB3H23+czsnsH/n3lcdYbvWZpcvdlJ2CM4bFP57KPZE6ZcTzZa3fzt6XvM7RPd66e3of/u936bQp69mD6tP48XbCb/1uymWtn9CUzJYGeN1vvNWvaCF59yB3P+gwYTIfPV7G5dF/UaHD48CczWbB+N9/2JDNdOL4HLy/bGvXUxrt/5G/bzx8/eItzjh9A0fgePLVpMSu27Gd3eh8M7gR18riR1srFf61xY9yYUeTtOsAT9mTgttMGMn1AHpN++wZDu2ZQVHQ8AFOM4eFPXmHhngjgGhw9spKjq2hDu3WI1hyfMmUKgc92wvtuHOmDV8xkwK3W595/2WR6ZadQWV3Dv9YW88OT+1M0NJ9+y99l8YY99OrckXsvG0/Pm+fQpUMSRUVFpG3YDYvmEw4Fohr0GlLKlU98wAtr9/likfM7JPHQt48jKzWR3MLdnHvffJ5YbrW7ysDmyiRgPxdP7MkZJw3iumLrt/rjJdPISA5H+0bnjAg7q0L07N0LllgOid65qXTNMlxgt+Hr2z9i/a5Sbr/IuobOrvmMO19dRceUBD6OqZBXbWArHQFr8jt4+Eh4xzX4jhs/loKcVPrsOUDxjg/sCb2l76kzi9hZUsEfFlv3pm75uZw6uTd/W/JO9Lp4aO0C1nxpTdY2VqcD1tjUIacTGTu2RUNoZk8ZwG9fWUFpRTW9OmWyIyYMburUqdb3XzWfGgMDR45g1Vx/+NPXZkxi6cJ3fdfjkJJy7vzgDVIiYfZXuOPr7y88ng837mXmoDzSI2FOW7GNbz5s1So+e8Z4+nVKI23DHh5f/i6PrIzZyGWnv488vtz6Dg9fMoa0SNgK43vUeq/TZ06hvLKGW+ZZY+Gt50/n3G0lnHyPNSF68erjGZSfwZPvb+TZ1R/ToWAYFa/OZ+qoARSN7U55VTXXF1vX6Dmju3H1jMKol7iyuoYfvPUyAN88aQwju2cSS3Fxcdz+2RI0hYG8ECgUkV5Yd/BzgVkx57wAzAbmA98AXjfGGBF5AXhSRO4C8oFCoPVViwZfAlp3z3KfE++Uai9xZKclRjNij+uTzZurdvjiedMjIQo9y7X3nj+SUR6vw+S+OZ5z3RtjVooV49YnN5VHvjmWjbsOMGNgXq3kumtnFDJrXHfCMcusFx/Xy5eU4cROO2EZInDmve4sc/u+cgpyUhhfkEU4KFz7v24h/yVf7I16/PbYg0U4GPBp5CT/nDykE2eP7sbFnptbbPIawNieHaNes9jqD7GPu3VMjoa59PKESHSPWYZ1ltiSEoKcOrQz3TomU5ibSkCEvPQIn2z+slb4R5q9/JaeFI5WfvCSlZLAhQ+8z5s/mMoLSzYzPCfIR7Z34gcn9mOSJykpNTHEkp+egIj/twQrAfPxy8Yx+KdzqaoxdPOU++mYksAnm/ex+0Al6ZEQ+8qq+MBOZrrnvBFc/Y8Po1UPkhOsZcHzxnbnjjnLfckVf7tgFH8tXh1NnuiXl0aXDkk89O76qIHoJIE4N0YnfjgnzQqD8S7hhoMBunVM9v1Wzvf+3dyVVHvurpFwkLJKKz6uox2D3Ds3lTlLt5AYCtAnN5UP7LCCIV0yogby90/sx+nD8n3GsXPc4ZShnTlp8MlUVNVEDZ7fzV1ph7C4N4Ke2SlxK6t4K1Lc+Y1hPP3BFwztkkEgIEzsncW7a3bxlcGdeOWTrWTbeuZnRCjqlxMNi3CYMSCP/yzfRreOyUTCQX575lBufGYpY3t1pE+m35sdCAgvXT2JLE+GeFrMdQFWmMvlk3vXOg4wsXd23OMA8384Lfp+zvV201f6c+H4Htx4Yj+McbdKDgaEv184ivRIOLrd+/s/mh7dREdEouFHF4zvQWW14caT+ll5D7YtcttpAxnTM5N/fGt8NPYYYEzPzOgYJyJcOTxCUdFkAI7rk8VdZw/jK4M7k5QQjMa6O4mgo3t2ZHRPV+PZE3rw/rrdtWLAy6tqfGEOXjJTEny1cAFuOKEvt391EL1++FLc1wD0zUvjsUvHRqs7pCaGWLuzlO//awn98tJYv6uU8qoaOqYk+JKBrSoW7m86fUAe3Tom8/I1k3x5CCLC1G4hHv3Un/B44fge0fJu/fPSogZySXmVL+41KyWBpIQgsyf04JH5G6IhW+FggHk3T/OdB0TjjV+/YQodkv3HQp4ts3tkpTDn6kk89+Em3zj/P7NHR2NRx/bqyHUz+vJ7O18mPyPCiq37OXlIp2i89r3nj+TJBRst49jDSYM78ci7631hJFa1Ajc88K5zhvteM2tcD0rKqzl1aOe4G0h4qzPElth0Qiy6ZibzwlXW5GTbvjLW7SxFRMhJS+SKot7cW7yG1ISQ7x4CbigcWJVsHErKq8hMTogayHnpiZw8pDNvrtrhi0l/7brJvrKBKQkhtu4ri1tOMjY/ByArNZFlt53I8q37OOUey3Dv0iGJgpxUCnLcOO9p/fNY/+tTfK8d2DmdgFi1v88b292394IXJwY8JTHEqB6Z0XDMtEiISDjoGyNDwQAD89P5/gl9yUpNZJBdAi7Xvkc4oYVOQnViyL2n/uYbQ32fG/b0GyefqjXTaAPZGFMlIlcBc4Eg8KAx5hMRuR1YZIx5AXgAeExEVgO7sYxo7POeAj4FqoDvGmMavmVWM+Cdj3mNBudicGJEM5PD0TixSYWWgbxgnWXcPPrNsYhINGEKrM6QnxFh85dlTCrMZuZAN2bSu03mwPx0tn5ZRkZSmPEFWYwvyIpb87MwN43cNOv9nXJiZ43qylVT+xAQq6Nt2nuQSDjIvJumRb0Rm/f6vdBbvyxjfEEWg7tk8MszhvADu8oCwBsr3MHJyaaNrYE8b81OUhND3HPuiFpx1DlptQ3kUT0z6Z2bwmnD8msF7Hc+RIxSB0+cb2ycqJc/zxpZ69iE3lm1jjkTnbRImPU7S30JNwmhALecMpBLHl7Isx9uYtu+cs4cnhg1kL87tY9/YEwM+QbbWCLhIOFggKqaanp7Br5e2Sm8vGwrxhi6ZCazb8s+1u86QHaqe+N3qh44WcRnjuzKb+eu9JXnmTkwz3c9hYIBrp1RyA+eXsof/7MKEaJlhmqMO2ACFGSn8O0pBb5YV4erpvXhd3NXMrRrBreeZnlTV23bz3en9mHz8sW+doEVswmWIT13mZWcUpDjGshDu7rGVZcOST4t6iIYELuuq9tHvjWpF3d64rYLslPiJn94J0Xds5J9sa8ju2fy7ppddM1M4u5zhpNt3wREhIcvqZ0//KfzRrD5y4PR9zx9eD4vLdvC96YVsn/dklrn5x/FeDvvBDgSDvpuniK1cwROHNTJ9zgYiDnBplvH5Ojv7LS/f6c0xtmGZGw/+td3JtbZRhHh6yPdhDjnM8N1JOn87KtW/HlsGb/D7azo1QKs/hyvyk4skwpdB4UTqzq1Xw4PzB7DyDteo7yqJlqVxSEcDPgmpk6FjgGeHd0cJuSHeHq1f9OkyX1zGLZ0C0s+38vVMwqj1X5m3f9+tGTXOzdNjRrbPzl1IJdNKvB9phdnQuwYbV6jKsU2kOP91t6avP97+fha7T9jZJeogTz3usk8+f5G34TtK0M685WYSgxgTeoemrfeV6a0X14qXgM5lo4pCdxs55E8+a1xnHS3v5Z/qUe/g5X+8JnEOPX489Ijvkm3Y5gajG8MAXxJo94cif1lVVFtwdL5p6cPYldJOb99ZWX0fQtj7kPJiSEOVFTHTXyv65oMBITCXOt9emYl88q1k+OeF0tSQpC+eWnsPVDJD0/uHzWQHRsDrInMFU9YK3BO7LEzXud6xrtYrppW6HvsOFGe+eALundM9lWEqg+xTqPWSJPEIBtjXgJeijl2q+fvMuCsOl77C+AXTdGOo4l3gPZWPnAKpzuDUUpCKHruhN5ZiBBNTnBmqrEXn3Nz/fEpA3w3b6936SenDqx1c02Ic1PxDprDu3Vg/a4DXD29MGrAPvvdicxZuoVp/XN9Rkzs7HZ/eVW0A5w1uhtrd5ZG6xjPX7uLhCBUVLsZ27E3uLdW7WBsr46EgoFaA1AkjuenU3qEm07qX+s4EM3MrgvHyzqqR+3lmobiJLGkR0LsL6vy1aedPaFH9Hs+/9EmUhNDDM8J0jcvlSm259+bTJeS4PdOx8Mpf+MdXGZP7MmD76xj/a4DTOufy8qt1i5P/TulRz28zsTEuV4yUxL4y6yRtbztsXxjVFdeWLKZtz/bSUFOSvS3cS5vp82BgPBDT9Kgl8l9c3wrHQB/PHcEAJvtXChvJQvHC9s5I4nrZvbljjnLfUawk2gH8W9uh8KbXDKlb67PQP6WJxnWy6E+4+rphfTISqaoX270+j8USQlB33eJhINRQ7o4/o61bRonWe6MEU2TS+0Yaof73QMB4ZZTBpAeCXPjM0ujqxNe5t08LdovYj1zzuc8MHt0rdWJunBKohXkpBIICP9z0Wgee29DrcTqhGDA1+9TE+u+rSaFhK8O7+Lz7HXKiPDsFRPZVVpBTloi9180mm89uoiPN33JiYPymD2hp6/aQcheyakLZ1KeHGf8ccbeUBwD2Tt2xI7Z4Fbhcb7jt6fEX+VwGNMzk483fRkd25yauQGBUT06Uv553GjKWvTvlM6CH09n7C/+G/f5Wh7keowhzo6CTpz0Py8fH/W8XzyxJz2zUrhyam8WrtsdrYCxfV+5b0zISAqTmhgiNTEUHYfjXVupiUFKy6sOWUc+HgmhAP++ciLd7dWp+nL3ucMJipAeCbP+16dw2SMLKeqXyy126N/kvjkkhAJUVNVEJ0zO/7lxnFd14STbl1XWcOrQzj675onLxtXpHLrvwlFHtDNqS9BmkvRaGm+psUyPEepcFI7nMRiQqLHRKT1Cn5zUaKard0lwztXHR70I2amJrN1ZSuzeDV4Pcge7M3qJN8vzLt9O7pvDf5Zv9x3LTYtwyXG9ar0uHt7B4Acn9GNIlwyutGeeg7KshAEnxCIhGMAb1fHFnoNcPLEnUHvACgXizfDrNkZivUGx/Of6KbaH7PAeonj87YJRfOdxy/MZXRGIhNlXVhk1kP9z/WQKslNZaIcWbNh1gMK8VBKC1bx63ZToe3nbEO8mE0t2agI7SyoY4DGQs1MTuXxyb/7wn1VkJieQkhBif3kVAzqnRQdKp66m1xD1eovrQkT41deHcOIf3opWPgDXg5xUD6O+PngnQd5J28UTexIMCKcNy+c3r6wgOzXRd2Nu6G/ovba81VFeunqSr4JCXa+JJSEU4KzR3ep8vj3y9o1T67WtOlgrXp/87MS4xteRcDgPspfLJhWw90AFNz5jVSYoq6zm9GH50fJgXTokRWMd67qOpg84fB9xcMZxZxyODf9wSAwF4t4T6uLKot4EBJ6wdwFMSwxFl/7B9UADXHp8gW8zo/rgeOa8S93R52yj5foT+tV6zmvcxfNOe8eG+vTTp749gRpjGcROOF9mcpjXbygiMyWB4s8P+xZRvJOSSDhAWWUNyQlBDsTsGArxv3cszr3YCTVwwmoARnTPZIQdG3vCoDwef8/6nVZu2+8Lx/BOGJISrPeLFz6YnGB5kL2VoR66ZAz5h7mvAXFjdA9H/5jNNv5n9hiAqIGckhji+D7ZvG5X6bHaaHuQPWPo8G4dfGUgY/F+/1OG+lcOvPXPYzkhZuWqNaMGcj2pa2MFB2eADwWFMT0zeWPlDlISQwzv1sE1kD0dd5BnK8c/zRrBk+9vZEBn/9KMdzknuR7GFvgHtjNGdOGkwZ1q1b6sL96tkgMB4SuD3Qt7mJ1R63hsEkOB6G6DDs7Sa+xg6sS9+j7rEDPXupYSHXLr6RGqi5MG1+6w6UkhKqtNdDOMHlkpBAISXbIvr6qpFfMaS2xJpXj841vjWbRhT63lpssm9eKZD76gf6c03lm9wzaQ06OG58f2xg35h/Gux6NrZjIvXj3JN8O/42uD+dXLK474WonF6/HwTtBCwUB0gpacEGRo1wxEJBr601C815Y3DvRQnvTEBnhjjgW8Mf31oT4Tv/riGMjxtqmPhzOGllVadcCTwkH+fuGoWrVXAX5xxmD+8vpqRhzhypJTR/lQHmGw2l4fA9+hW8dkfnHGkKiBHDs+er3fhUcQp+mMOzVxdv+IDb3xEg4GKMhJoXvH5CYJBRIRnKF+UH46b3+2k5TEkG8yUV+8+g7t0oEF63fTOSPCmh2ltTzI4Tj3l1gSPOP4ofjq8C5RAxkg2TOme+9LjqMitvY9WKtypRVVbLMnoXedPYyp/XIP28ajyayx3dm892A0RNGZ/HgnSU9/ZwKHMnucDXIyksIMjBNO1B5QA7meOAlIEwpqx62CW2A9GBD+PGsk63eVEgkHGd69A/+ydwWqy3OVlx7hupgaoOD3ICfX86bunWmLSKMMnth6xd6BfFBWkHBQonU8rSQ999wOyWEG1LFtZCggJAQDvsLnh/IgN3TZvSlwwls27D5AWiQUHaC9YS2WUVu3560+hkRhXlqtmDXntW98v4hgQHhywUag3DKQbQNhyed76ZQeqVe8bjxiE1POGt2tST2nXs+219Pg5ZLjejK6h+Ude+XaSb4dGo+EUDAQ9XqkxUnOi8bft8D1pMTHqb8eL1wsHt7d0Q5WVpOUEKwVS+1w/rgenD+uxxG3zYlzjncteamvcR/LE5eNi7v5RNfMZAZ3SScxFGyUMVl1iO3k6+LVayfXGYveGAbbibgpjbgfTeufy+srtjO+oKNtICexZkdpLQ9yfbzb/W2DbubAQxuqY3p25I/nDueaf1rJi97fy/u7Jx0ixCI5MYQxsHH3QQpzU30x+M3J09+ZEM2PmjEwjxmeFcf0SJiOKQk+Q7c+m3dcenwvemQlH/HqbWtHDeR6Ul1jGJEb5NFLrfjCG2b2je5gBG4B91DAirl1PMTDPMvY9b0JOHi9ioF6DlqNGdxuOqk/mclhbv63VYonXgzmH84ZxksfbyU7ab9vN6SEUMDnP55QkOVrs7OznfP31P45zP1kWzQWKt5n/em8EXy2vaRFOp8TNzt32VafNyUccttyqAQ8oNHeWOe3TE6wJiO9c1J9XqHjC7Nb7cDkXY6tS6cfnOjGnKdFwnErOjSURy4Zy9qdJXEH9z65qWzae1A9yK2IaIhFPY3MQEBICAUoq7IM5IbEZjaUa2f05UBFdXS3ubpwxvVzRnejQ0r9r+G6lqEj4SAvfm9S/Rsag6Pp4VY943G0djQbbN8P67OqVhf3XTiKFVv3c7CymnteXx0NZ4jdHbU+9MpOYdnPTqxXnojX6N1VEj921hlT4oVYOJ+xfmdpreoqzUm88CCHhFCABZ4qNvXlu1P7HP6kNowayPWkqqaGSII7O//e9EK+N93N6jxtWD6PvbeB2XbcrYN36bK+Rq5Dc2R59stLY+U2K1N6UH66r4PH8/ydMaIrZ4zoWquQdzgY8O3GNzEms33xLTMYbtc8DQUC/PHcESzfso9r/vkR+8sq48aNxd6YjqYnuX+nNN9AO3OgtRvdPxZs9CXQeeOn0w9jINdn8K0PaZEQfXLTSAgFfDskTSqsO86rpfEaLg297htDRnI4Gj8YS++cVN5ctaNFViSU+DjJYgn1WBZ3SAwFOFhRTUVVjW+loqnplBHhnvNGHPY8x6iMLWnVUjiaVlU33EA+HM9cMcG3AVV9GdzFGkMbE54TCgYY3CWD6hrDj07uT2FeGk8v/uKIDGQ4fOiMgzdkozpO2AocOsTCcZRs3H2AkZ5yiK2N1rrdc0uiBnI9qamB4CG8dXnpEd78wdRaxw/nZTwUqYdZ2msKnr/qOG55bhlPL/6CgfnpvhCNhiwdhoOC14VcFBNj5Z2ZhoJCJBxkRPdMIuEAyQmHj6N99sqJcWfnTUVsGZ1QMMCscd2ZNc5f5sy7ClDXb/vYpWN5ccmWJhtwfviVAdEygyLW1tDlVTWHTIRoaaIhKc1gjL5+w5R6fY6z3fPRNKqUhhG7xX19iISDrLc31shsgMf2WGH6gDxy01Zx6aT6JWM3hFE9GpYw6NC9YzJpkVCTJHcGA8Llk3tH60Xvr2Pr9KZiZPdM/jJrJEu/2Mu5Y7sz1d5e20u8GF4Hr9e8sfkySvOiBnI9qaqpoRkdYUDjwiXqSyQc5JQhnRGIm+hyKLyxWSLC788axl2vreKB2WNqGSzeJAtviaGctMTo5hyHoi6vYHPjTTBMj4QgTuWeSYU5vnqqjWVYN7/XISkhSJ/c1Ab/Xs2JU03gd83gVSuoZxz26cPzMVg7lymtAzccoP6vSQwFeH+tVTqzKUo7tjdy0hJZ8OMZLd0MHyJWmb6mrAPu3GOWb9mHCNTh3G00IsIpQztHKzVcN6MvPbP9Y8jE3lmcObJr3M0vvKF2ufUoHam0HtRArifVNabZDeSGEm9XnvowtX8uU/u7Ht//3jClXglTsWXFRnTP5LFLx8U9NxgTj+zwx3NHHNIz39rwGvrpSeG4BvLRZsaAvFZvGOSkJbLuVye3ihjpBy8ezVurdpIeCXPh+CNP2lKaHif8piEJZZFwkPKqGtIjoVolrZTWyzljam861BicsXjF1n30yk7hZ6cPipYdPZpcM6Ow1rEeWSn8/uxhcc/3JnnWp7a60npQA7meVNcYGhAm5+Mvs0ayZkdJ0zbIpkNymL0HKvm/q44nL6NpOl99KyM0ZKna6zX2xvG2Zi9oPLzxaIfLbj9a3HlW/IG4tdEajGOwtmSd1r/+9W+V5sMZF+KVJKsLp9Th2F4dm2WVTWmdOLkENcba5rgpV+2aEq9RrAZy20IN5HpS1QgPcmwR7YbwtwtGWUv5dfDKNZPZuPsAQzy7kTUXDTGAvOfGq4PcVvB6kJPCoZZwICtKu6GvXeIwJ7X+sZlOQm9DN9Boap7/7nFsPoLa3UrT4A3jG5zf/Pe/+uI1ihuyU53S8qiBXE+sEIvmN+zibWLhpVNG5Kgmrx0N2lJIRSxeAzkSDqiBrCiN4DtTejOiewcm9q5/wqnjQR7XK35N+uZiWLcOtfIDlObDmzA9uEvrNZC9FZrUg9y20Loe9cQKsWi7hl1rojnLfjU13hCLptqWWVGOVYIBaZBxDBAJBUlJCPrKLyrHHl4P8qAubeNaONRqsNL60F+rnrSFJD3l6OMNFYnEqd2sKMrR5YyRXZjYJ1vrth7jOAZyz6zkZtkzoCloLXkZSv1olIEsIh2B/wV6AuuBs40xe+KcNxu4xX54hzHmEft4MdAZcAK5TjDGbG9Mm44WjYlBVton6kFWlObn1KGH3tlOOTYIBQQRGNSKwysc/nTeCHaVaEBeW6OxHuSbgf8aY34tIjfbj2/ynmAb0T8FRgMGWCwiL3gM6fONMYsa2Y6jSo2zRbIayLVY+OMZR7SlaXvgaG5zqyiKotSNiHDG8C6NSoJvLg63XbnSOmmsgfxVoMj++xGgmBgDGTgReM0YsxtARF4DTgL+0cjPbjYM8MOv9Cewe31LN6XVcSwnHTjJQoqiKErzc9c5w1u6CUo7prF3+DxjzBb7761AvGKjXYDPPY+/sI85PCQiH4nIT6SVBugEA8K3p/SmMFM9hopLgsZAKoqiKEq7RMxhCrSLyH+AeLXGfgw8Yozp4Dl3jzHGt8WXiHwfiBhj7rAf/wQ4aIy5U0S6GGM2iUga8AzwuDHm0TracTlwOUBeXt6of/7zn/X+kk1FSUkJqan120SjvXMkWlz8SikAD5+UcjSa1Gx4v4deE35UDxfVwkJ1cFEtXFQLC9XBT0voMXXq1MXGmNGxxw8bYmGMqXNTdxHZJiKdjTFbRKQzEC/BbhNuGAZAV6xQDIwxm+z/94vIk8BYIK6BbIy5D7gPYPTo0aaoqCjeaUeV4uJiWuJzWyNHpMUrcwDavoae76HXhB/Vw0W1sFAdXFQLF9XCQnXw05r0aOwa8QvAbPvv2cDzcc6ZC5wgIpkikgmcAMwVkZCIZAOISBg4FVjWyPYoiqIoiqIoSqNorIH8a2CmiHwGzLAfIyKjReR/AOzkvJ8DC+1/t9vHErEM5aXAR1ie5vsb2R5FURRFURRFaRSNqmJhjNkFTI9zfBFwmefxg8CDMeeUAqMa8/mKoiiKoiiK0tRoGr6iKIqiKIqieNCtphWlgdx19rCWboKiKIqiKEcRNZCVZiMhGKCiuqalm9Fovj6ya0s3QVEURVGUo4gayEqz8dFPZ3KYstuKoiiKoigtjhrISrORnKCXm6IoiqIorZ/D7qTXGhGRHcCGFvjobGBnC3xua0S1sFAd/KgeLqqFhergolq4qBYWqoOfltCjhzEmJ/ZgmzSQWwoRWRRvO8JjEdXCQnXwo3q4qBYWqoOLauGiWlioDn5akx5a5k1RFEVRFEVRPKiBrCiKoiiKoige1EBuGPe1dANaEaqFhergR/VwUS0sVAcX1cJFtbBQHfy0Gj00BllRFEVRFEVRPKgHWVEURVEURVE8qIGsKIqiKIqiKB7UQPYgItLSbVCU1oz2EUU5NNpHFKVu2lL/UAPZj+qh1EJE+omIXhsWqoPiQ/tHLVQLD3ptgIh0aek2KA3nmL9wAUTkFBF5Efi5iBzX0u1pSUTkayLy85ZuR2tARGaKyPvAZRzjfUX7iIv2EQvtH360j7iIyOkicn1Lwl3h6AAADa9JREFUt6OlEZEZIrIY+E5Lt6WlEZHTROQfwM0i0qOl21MfjvkqFiIyCrgXuA1IB6YB7xpjHhaRgDGmpiXb1xzYSx4B4BLgZqAHMM0Y83aLNqwFsLUIAT8BzgNuMsb82/u8OcY6jfYR7SMO2j/io33EQkRCwA3AFUB3YKQx5iMRCRpjqlu2dc2D3UfCwN3AROA2Y8xz3uePtT4iIjOAXwK3AmOADOANY8yc1tw/jvlZPzADeNsY8xLwPLAVuFpEMowxNW0pXuZIMRbVwGpgBHAlcEx6yGwtKoEa4Gnn5i8ik0Qk3LKtazG0j2gfAbR/HIJjvo8AGGOqgJVAf+B64O/28WPCOIZoH6kAkoHnjDHPiUhARIY5z7dsC1uEGcCLxphXsK6JNOCbIpLSWo1jOAYNZBG5WkTuF5Fv2YfeAE4TkUxjzEGgEvgSuAna98Xs0eIy+9Cbxpj9xpj7gRQRudQ+r91fJx4tLrcP/Q3oLCIPicjHwI3AA8A37fPb7Q1P+4iL9hEL7R9+tI+42Fr8WkTOtg/NMcaUGWPuBnJFZJZ9XrueQHl0OMc+9HNgkojcCXwA3CEi94nIiS3XyuYhzjXxLnCciESMMduBMiCIPV60Vtr1oB6LiFwMzAKeAS4QkR8D64G5wGMi8jZQAPwa6CAiKS3U1KNOjBYXisgPsb67w63A9faA32pneE1BjBbni8gtQDnwHJAAnAWcbj//dRHp3l5veNpHXLSPWGj/8KN9xEIsrgPOARYBP7O1yfScdj3wOwB75aHdEUeH20TkUmPMGqw+0t9+bhawDDhDRLJbrMFHkTquidnACmAz8JSIvIEVhvQ8kNaanQuttmFHienAb2w3/w1ABLjIGPM9rCXT240xl2DNbpKMMaUt19SjTjwtzneeNMa8DCwHLheRNBE5q2Wa2SzEapEIfNuOG7vcGLPCvuEvBfZieYfaK9pHXLSPWGj/8KN9hKhXfCpwizHmaeA6YChwouecZ4FVIvJ9iMaitivq0GGYiJxtjPkTcK4xZqUxZj/wEZZxeKDlWnz0iKPF9cBwYBhWMu9PgTvt/lEB9GrNzoVjwkD2zFA+BE4FMMYsAuYBfUVkkjFmozHmNfu8U4A1zd/So88htJgPdBF/9vVNwK+Az4BOzdnO5uAw10UvETku5uY2G0gC9jRrQ5sB7SMu2kcstH/4OZb7SGzIjEeLRcAkAHvC8BkwSET6eU6/AvitiGwF2nS5swbosBwYJSL9jDElnpfMxDKOy5qhuUeVemrxMrAKKzGvjzHmQ2PMHPu8UcD7zdTcI6JdGsgi0sn+PwDgmaHMAwIiMtl+vAzL7e+cP1lE3gQKsWLs2jwiMkhEIs7jw2ixBci3X9cH+CvWEtFIeybcpmmEFmeKyBKsZdMrjDHtYXBriBbtvY8cJyK9ncfHah9phA7trn9Ag/Vo130Ea+ITxaPFaqxl8iH24zexKhSkAYjIcOB+rHCUkcaYR5qnuUeNhuiQjqvDuSKyDKv6zY9as9e0ATREizRcLU4WkQVYWjzTTG09ItqVgSwiI0Tkv9jZ5c4P5pnZfAZ8ApwjVtmZL4A8oJf9/HrgSmPMGcaYnc3a+CZGRIaKyDvAHUCW5/jhtOhpP/8lcJUx5uvGmM3N1/KmpxFaONfFKuA7xpiLjDHbmrHpTU4TaLGe9tNHRorIq8DrWDd15/gx1UcaoUO76x/QJHqsp/30kfEi8gzwFxE5QUSC9vGQfcoCoAo4QURCxphPsbzEo+3nd2FpcVYb7yON1WED1uTxIjtJrc3SCC3G2M9/hjVenGmMadWrTe3CQBaLPwCPAo8YY77lec5bY28/8DZWDN2dYmXVZgI7AezlsU+at/VHjVuwyjCdYYzZBGAP5ofTYheAMWaHMeazFmj30eBItXCui4+NMfNboN1Hg8Zq0eb7iIiEReTvwH3APVjJVUX2c8dMH2kCHdpV/2hCPdp8HwEQkSKsFZJ/Y5VuuwDItO+pVQDGmNVYS+q9seqDg5XAucF+/nNjzMfN3PQmpYl0mG/aQc30Rmqx3n7+M2PMB83b8iOjXRjIdmB4GvChMeZRABHp7TWOxdr56kksr89PsAa0t+3HbX3ZJ4pY9RYLgBJjldlxdrzqAIj9+A5UC9XiGNUCy7B5C5hkjHkRa7AfYHs7qgFE5Ge0fy1UBz+qh5+hwEJjzBPA41ibX5R47ql3iMgDwGKsCcVYsXaN2401uWgvqA4ux5QWocOf0joRkfHAbmPMKvvQ9cBCEbkVK4t2G1AiIncDJVizmR/asxtE5JtAirEyS9s0Xi2MVZR+J1b9xVOxMkeTsPRYLtZWjwWoFqrFMaoFUGoP8A5BoNoYUyUiAgzBih+92VilmtqNFqqDH9XDJc499S2skmWbsapzLAf+KiJzgc+xxotbjTHr7dfPAkLGmL3N3vgmRHVwOea1MMa0qX9AB2AO1jLXLViDk/Pc1cASYDKWN+A3WBnmOZ5zAi39HZpJix9hFSc/3X48Gavu4ATVQrU41rXA8poH7L/7YE0UMp3n2psWqoPq0QAtUj3PjQUeBM60H1+KlXQ3rL1poTqoFrH/2mKIRQqWq/579t9OJjHGmHuAImPMW8YYp5D9aOyag9KK9/w+QurUAngRK5moo/14Edb2p2WgWqBaHNNaGIsasRKv1tvnTHGeg3anhergR/VwidVikvOEMWYBkIMdS4uVuNgBu5RfO9NCdXBRLWgjMcgicpGITBGRdGMlFt0HPIV1Ux8nIvnOucafFTkKy+1fbT/X5n+0emjRBcAYsxT4AfBdsXbtuQBridBJMFItVItjVQunPJnY3zfRfqkzSRBo+1qoDn5UD5cGaJGItU3wlfZLp2NNrsug7WuhOrioFrURe1Lc6rAHo05YCRE1WAXXU4BrjF06R6yC/WdjBY0/bh9LBCYAd2LV6rzBuPEzbZIGarHIGPOY57XXY8UFFQLXGavkSptFtXBRLVwaMV4EjTHVIvI4sNoYc1tLtL+pUB38qB4uRzpeiMggrB3QOmHtkniVMWZ583+DpkF1cFEtDk2rTNLzDE5pwCZjzAVi1dq7G2tW83UAY8w8ERkL9BeRDKDCGHNQRCqAO4y1FWqb5gi06GdrUWOM2W+MuUtEwsaYNr/9q2rholq4NGK8qDTGOFu+ftMYU9EiX6CJUB38qB4uRzhedADKjTGfiMhsoLMxZm2LfYkmQHVwUS0OT6sKsRCRoIj8EviliEwB+uGGR1QD1wAT7ecc7gdSgf8A60Uk3xjzbls3jhupxWvAamdJpK0bQaqFi2rh0gRarPNo0WaNINXBj+rh0gRarBeRLsaYg23ZEFIdXFSL+tNqDGT7x1iMVVdyNdZueJXAVHv24sS23Gb/czgFKxbmI2CIacO79Tg0gRZLUC1UCxfVwqVdaaE6+FE9XJrwnrqp+Vrd9KgOLqpFw2hNIRY1wO89MS4jgF7ArcC9wCixMoufA6aJSE9j1dorA2YYY95qmWYfFVQLF9XCRbVwUS0sVAc/qoeLamGhOrioFg2g1XiQsWY1T9kxMADzgO7GmIeBoIh8z57ZdMUq3r4ewBjzfDv80VQLF9XCRbVwUS0sVAc/qoeLamGhOrioFg2g1RjIxpgDxphyOwYGYCaww/77EqwtP18E/oG10UG07E57Q7VwUS1cVAsX1cJCdfCjerioFhaqg4tq0TBaU4gFYAWQAwbIA16wD+/H2gFsMLDOiX8xppXWqGsiVAsX1cJFtXBRLSxUBz+qh4tqYaE6uKgW9aPVeJA91ABhYCcw1J7N/ASrPNU75hgJDrdRLVxUCxfVwkW1sFAd/KgeLqqFhergolrUg1a5UYiIjMfaqeVd4CFjzAMt3KQWQ7VwUS1cVAsX1cJCdfCjerioFhaqg4tqcXhaq4HcFbgQuMsYU97S7WlJVAsX1cJFtXBRLSxUBz+qh4tqYaE6uKgWh6dVGsiKoiiKoiiK0lK0xhhkRVEURVEURWkx1EBWFEVRFEVRFA9qICuKoiiKoiiKBzWQFUVRFEVRFMWDGsiKoiiKoiiK4kENZEVRlDaCiFSLyEci8omILBGRG0TkkOO4iPQUkVnN1UZFUZT2gBrIiqIobYeDxpjhxphBwEzgK8BPD/OanoAayIqiKA1A6yAriqK0EUSkxBiT6nlcACwEsoEewGNAiv30VcaYd0XkPWAAsA54BLgH+DVQBCQCfzHG/L3ZvoSiKEobQA1kRVGUNkKsgWwf2wv0A/YDNcaYMhEpBP5hjBktIkXA940xp9rnXw7kGmPuEJFEYB5wljFmXbN+GUVRlFZMqKUboCiKojQJYeDPIjIcqAb61nHeCcBQEfmG/TgDKMTyMCuKoiiogawoitJmsUMsqoHtWLHI24BhWPklZXW9DPieMWZuszRSURSlDaJJeoqiKG0QEckB/gb82VixchnAFmNMDXAhELRP3Q+keV46F7hCRML2+/QVkRQURVGUKOpBVhRFaTskichHWOEUVVhJeXfZz/0VeEZELgJeAUrt40uBahFZAjwM/BGrssUHIiLADuBrzfUFFEVR2gKapKcoiqIoiqIoHjTEQlEURVEURVE8qIGsKIqiKIqiKB7UQFYURVEURVEUD2ogK4qiKIqiKIoHNZAVRVEURVEUxYMayIqiKIqiKIriQQ1kRVEURVEURfHw/5t9Ow0Ze8SiAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
}
],
"metadata": {
"colab": {
"collapsed_sections": [],
"name": "07.02-Geometric-Brownian-Motion.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 0
}