{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "*This notebook contains material from [cbe30338-2021](https://jckantor.github.io/cbe30338-2021);\n", "content is available [on Github](https://github.com/jckantor/cbe30338-2021.git).*\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "< [2.2 Properties of Scalar First Order Linear Systems](https://jckantor.github.io/cbe30338-2021/02.02-Properties-of-Scalar-First-Order-Linear-Systems.html) | [Contents](toc.html) | [Tag Index](tag_index.html) | [2.4 Model Identification for the Temperature Control Lab](https://jckantor.github.io/cbe30338-2021/02.04-Model-Identification.html) >

\"Open

\"Download\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# IMPORT DATA FILES USED BY THIS NOTEBOOK\n", "import os, requests\n", "\n", "file_links = [(\"data/Model_Data.csv\", \"https://jckantor.github.io/cbe30338-2021/data/Model_Data.csv\")]\n", "\n", "# This cell has been added by nbpages. Run this cell to download data files required for this notebook.\n", "\n", "for filepath, fileurl in file_links:\n", " stem, filename = os.path.split(filepath)\n", " if stem:\n", " if not os.path.exists(stem):\n", " os.mkdir(stem)\n", " if not os.path.isfile(filepath):\n", " with open(filepath, 'wb') as f:\n", " response = requests.get(fileurl)\n", " f.write(response.content)\n" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 1, "link": "[2.3 First Order Model for a Single Heater](https://jckantor.github.io/cbe30338-2021/02.03-First-Order-Model-for-a-Single-Heater.html#2.3-First-Order-Model-for-a-Single-Heater)", "section": "2.3 First Order Model for a Single Heater" } }, "source": [ "# 2.3 First Order Model for a Single Heater" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 1, "link": "[2.3 First Order Model for a Single Heater](https://jckantor.github.io/cbe30338-2021/02.03-First-Order-Model-for-a-Single-Heater.html#2.3-First-Order-Model-for-a-Single-Heater)", "section": "2.3 First Order Model for a Single Heater" } }, "source": [ "![Comsol model of Temperature Control Laboratory](https://jckantor.github.io/cbe30338-2021/figures/arduino_comsol.png)" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 2, "link": "[2.3.1 Learning Goals](https://jckantor.github.io/cbe30338-2021/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.1-Learning-Goals)", "section": "2.3.1 Learning Goals" } }, "source": [ "## 2.3.1 Learning Goals\n", "\n", "Mathematical modeling is an integral part of process control. Process models come in many forms for different purposes, ranging from the barest of information about a process to sophisticated simulation involving millions of computational nodes. \n", "\n", "Our purpose here is to demonstrate simple approaches that provide with insight about the qualitative nature of process dynamics. We show how to construct simple models from first-principles understanding of the processes, and how to fit those models to experimental data.\n", "\n", "In this notebook we will:\n", "\n", "* Construct a first-order lumped model for a single heater/sensor assembly on the Temperature Control Laboratory/\n", "* Relate this model to the previously enountered first-order linear systems\n", "* Demonstrate how to estimate parameters from step test experiments." ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 2, "link": "[2.3.2 First-order model for one heater/sensor assembly](https://jckantor.github.io/cbe30338-2021/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.2-First-order-model-for-one-heater/sensor-assembly)", "section": "2.3.2 First-order model for one heater/sensor assembly" } }, "source": [ "## 2.3.2 First-order model for one heater/sensor assembly" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[2.3.2.1 Energy Balance](https://jckantor.github.io/cbe30338-2021/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.2.1-Energy-Balance)", "section": "2.3.2.1 Energy Balance" } }, "source": [ "### 2.3.2.1 Energy Balance\n", "\n", "We'll be begin by developing a model for one of the heater/sensor assemblies located on the Temperature Control Laboratory. The basic outline of an energy balaance is given by\n", "\n", "$$\\fbox{Rate of energy accumulation} = \\fbox{Rate of energy in flow} - \\fbox{Rate of energy outflow}$$\n", "\n", "In the absence of any material flows, changes in kinetic or potential energy, or any chemical changes, changes in sensible temperature is the only form of energy accumulation. If we assume the heater/sensor assembly is at single uniform temperature $T_1$, has mass $m$, and a constant and average specific heat capacity $\\hat{C}_p$,\n", "\n", "$$\\fbox{Rate of energy accumulation} = m \\hat{C}_p \\frac{dT_1}{dt}$$\n", "\n", "For the purposes of this model we will lump the mass and specific heat capacity into a single parameter representing the overall heat capacity of the assembly\n", "\n", "$$C_p = m \\hat{C}_p$$\n", "\n", "The final expression for the rate of energy accumulation becomes\n", "\n", "$$\\fbox{Rate of energy accumulation} = C_p \\frac{dT_1}{dt}$$\n", "\n", "


\n", "\n", "**Study Question:** What are the units of $C_p$?\n", "\n", "
" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[2.3.2.2 Energy inflow](https://jckantor.github.io/cbe30338-2021/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.2.2-Energy-inflow)", "section": "2.3.2.2 Energy inflow" } }, "source": [ "### 2.3.2.2 Energy inflow\n", "\n", "The flow of energy into into the heater/sensor assembly is controlled by variable $u_1$, the percentage of maximum available power to the heater. As a safety feature to protect both the user and the equipment, the maximum power available to the heater is set by an Arduino parameter $P_1$ specified as an 8 bit integer value between 0 and 255. \n", "\n", "The actual power delivered to the heater is therefore proportional to the product $P_1u_1$\n", "\n", "$$\\fbox{Rate of energy in flow} \\propto P_1 u_1$$\n", "\n", "where\n", "\n", "$$\\begin{align*}\n", "0 & \\leq u_1 \\leq 100 \\\\\n", "0 & \\leq P_1 \\leq 255 \n", "\\end{align*}$$\n", "\n", "An experimentally parameter $\\alpha$ is introduced to establish the actual power delivered in units of watts\n", "\n", "$$\\fbox{Rate of energy in flow} = \\alpha P_1 u_1$$\n", "\n", "
\n", "\n", "**Study Question:** What are the units of $\\alpha$, $P_1$, and $U_1$?\n", "\n", "**Study Question:** How would determine $\\alpha$ experimentally? What experiments would you perform? What equipment would you need in addition to that delivered with the Temperature Control Lab? \n", "\n", "
" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[2.3.2.3 Energy Outflow](https://jckantor.github.io/cbe30338-2021/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.2.3-Energy-Outflow)", "section": "2.3.2.3 Energy Outflow" } }, "source": [ "### 2.3.2.3 Energy Outflow\n", "\n", "Energy flows out of the assembly primarily through convective heat transfer to the surrounding environment. At the relatively low operating temperatures of the device, the amount of radiative heat transfer is neglible. \n", "\n", "$$\\fbox{Rate of energy outflow} = U_a(T_1 - T_{amb})$$\n", "\n", "Parameters $U_a$ and $T_{amb}$ are the overall heat transfer coefficient and ambient temperature, respectively.\n", "\n", "
\n", "\n", "**Study Question:** Do you agree with the assumptions embedded in this equation? What other considerations might apply?\n", "\n", "**Study Question:** What are the units of $U_a$?\n", "\n", "**Study Question:** How can you determine $T_{amb}$ in experiments you do with the Temperature Control Lab?\n", "\n", "
" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[2.3.2.4 One-state model](https://jckantor.github.io/cbe30338-2021/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.2.4-One-state-model)", "section": "2.3.2.4 One-state model" } }, "source": [ "### 2.3.2.4 One-state model\n", "\n", "Putting these terms together in the energy balance yields a first-order model for the response of the heater/sensor assembly on the Temperature Control Laboratory.\n", "\n", "\\begin{align}\n", "C_p\\frac{dT_1}{dt} & = U_a(T_{amb} - T_1) + \\alpha P_1u_1 \\\\\n", "\\end{align}" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[2.3.2.5 Estimating $\\alpha$](https://jckantor.github.io/cbe30338-2021/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.2.5-Estimating-$\\alpha$)", "section": "2.3.2.5 Estimating $\\alpha$" } }, "source": [ "### 2.3.2.5 Estimating $\\alpha$\n", "\n", "As it happens, the parameter $\\alpha$ exhibits a mild temperature dependency due to the intrinisic properties of semiconductors. The following experiment sets to P1 to a value of 200 in rgw arbitrary units of the Arduino hardware, then sets U1 to 50%. The power delivered to the device is measured after reaching operating temperature. " ] }, { "cell_type": "code", "execution_count": 87, "metadata": { "nbpages": { "level": 3, "link": "[2.3.2.5 Estimating $\\alpha$](https://jckantor.github.io/cbe30338-2021/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.2.5-Estimating-$\\alpha$)", "section": "2.3.2.5 Estimating $\\alpha$" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAFNCAYAAADPQlGdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABBmklEQVR4nO3deXxddZ3/8dfnZt/TJk2aJm3Tje50ZV9MKcouCAgyKssPp8oPRh11sKK/EQdF1FGZ0WGUGXVAR4ERsciwgwFZBFpI6Q7pnrVpmn3Pvd/fH+ekvS1dctub3Czv5+NxH+fcc84953u/pMmb7/d7vsecc4iIiIhI/wViXQARERGR4UYBSkRERCRCClAiIiIiEVKAEhEREYmQApSIiIhIhBSgRERERCKkACUygphZiZlVxLocIiIjnQKUSIyY2Q4z6zCzVjOrNbNfmVn6IF37Dv+6rWbWaWbBsPcbBqMM0WZmN5rZK7EuR3+YmTOztrA6/8+wfZ8wsy1m1mRme8zsATPLPMq5FprZGjNr95cLw/bd4G9rNrMKM/u+mcWH7S82syfNrMHMaszsp+H7ReTIFKBEYusy51w6sBg4BfjGYFzUOXe3cy7dv/bngNf73jvn5g5GGSIxGH/UYxAcFoTV+WfCtr8KnOWcywKmAvHAtw93AjNLBFYBvwHGAA8Aq/ztAKnAF4Fc4DRgOfCVsFPcB+wBCoCFwIeA/xuNLycy0ilAiQwBzrlK4ClgHoCZnW5mr5lZo5mtNbOSvmPN7CYz22RmLWa2zcw+e6TzmtnnzWyjmRX1tyxmNsvMnjOzfX5LyDVh+/7LzO4zs6f8lpNXzWy8md3rt2JsNrNFYcfvMLOv+WVo8FvZksP2X2pmZf73fM3MTj7ks181s3eBNjOLN7OVZrbV/+4bzexj/rGzgZ8BZ/jlavS3l5rZZ8LOeVArld8SdKuZvQ+8f6wyDQbn3G7n3N6wTUFg+hEOL8ELWPc657qcc/8KGHCef65/d879xTnX7f+M/TdwVtjnpwCPOOc6nXM1wNPAkAvQIkORApTIEGBmE4GLgXfMrBD4X7xWh7F4LQaPmtk4//A9wKVAJnAT8GMzW3yYc/4/4EbgQ865fo2LMrM04Dngt0AecB1wn5mF/1G9Bq+lLBfoAl4H3vbf/x740SGn/SRwATANOMn/LH6Zfwl8FsgBfg48bmZJYZ+9DrgEyHbO9QJbgXOALOBbwG/MrMA5t4mDW9Ky+/N9fVfgtc7M6WeZ9jOzd/2gdbjXfce47st+t9kfzKz4kPOebWZNQAtwFXDvEc4xF3jXHfxMrnc5cgg6Fwjvov0X4BNmlur/3F2EF6JE5BgUoERi649+a8krwEvA3cCngCedc08650LOueeA1XgBC+fc/zrntjrPS8CzeKGij5nZj/BCyzLnXF0E5bkU2OGc+5Vzrtc59zbwKHB12DGPOefWOOc6gceATufcg865IPAwsOiQc/7Ub1XZB3wHLxQB/C3wc+fcG865oHPuAbxAdnrYZ//V/2yH/93/xzlX5dfLw3itRqdG8P0O57vOuX3+NfpTpv2ccyc757KP8DpaV9iHgGJgFlAFPBHeheice8XvwisCfgDsOMJ50oGmQ7Y1ARmHHmhmNwFLgX8O2/wSXthqBirwfs7+eJRyi4hPAUoktq7w/9hOds79X/+P+GTg4+GtGcDZeONUMLOLzOyvfhdbI16wyg07ZzawAi8YHPrH9VgmA6cdcu1PAuPDjqkNW+84zPtDB8LvDlvfCUwIu9aXD7nWxLD9h34WM7s+rHutEa/LM/y7H4/wa/SnTCfMOfey363WCHwBrytt9mGOq8RrEXroCKdqxWuJDJeJ13K1n5ldAdwDXNTXPWhmAeAZ4A9AGl49jgG+d1xfSmSUUYASGXp2A78+pDUjzTl3j9+V9CheK0K+31X1JN64lz4NeC1JvzKzsw49eT+u/dIh1053zt1yAt9nYtj6JLwWl75rfeeQa6U6534Xdvz+rikzmwz8B3AbkON/9/Uc+O7h3Vh92vAGUvcZf5hjwj/XnzLtZ2Yb7MCddIe+fna4zxyB4+D/huHi8bo/D2cDcLKZhX/2ZMK66czsQrx6u8w5ty7suLF4/21+6o+fqgd+hd/SKSJHpwAlMvT8BrjMzC4wszgzSzZvfqciIBFIAuqAXjO7CPjIoSdwzpXitRw9ZmanRXDtJ4CTzOzTZpbgv07xB2kfr1vNrMjMxgJ34HXzgfdH/XNmdpp50szsEjP7QPeTLw0vaNTB/i6peWH7a4EiO3AHGkAZcKU/xmc6cPMxyhpRmZxzc8PupDv09bnDfcbM5po39UCcedNW/BCoBDb5+z9pZpP860/G6/Z84QjlLcUbZP55M0sys9v87S/65zoPb+D4Vc65Nw8p+15gO3CLeQP0s4EbgLXHqCMRQQFKZMhxzu0GLscLG3V4rSL/AASccy3A54FH8Fqa/gZ4/AjneQ5vkPnjZrakn9duwQtkn8BrKarB69I57CDqfvot3jitbf7r2/61VuONOfqp/13K8Qa9H6lsG/HCxut4YWk+3i3/fV7Ea3mpMbO+u9h+DHT7xz+AFyaOKNIyHad8vBDZjFcfxcClzrkef/8c4DW87rlXgS1+mQAw7w7IO/zyduMNgr8eaAT+D163cLd/+P/DG3D/ZFjL2FNhZbkSuBDv56wc6AX+PrpfV2RksoNv3hARiR4z2wF8xjn3fKzLIiISTWqBEhEREYmQApSIiIhIhNSFJyIiIhIhtUCJiIiIREgBSkRERCRCg/r08dzcXFdcXDyg12hrayMtLW1ArzHaqE6jS/UZfarT6FJ9Rp/qNPoGo07XrFmz1zk37nD7BjVAFRcXs3r16gG9RmlpKSUlJQN6jdFGdRpdqs/oU51Gl+oz+lSn0TcYdWpmO4+0T114IiIiIhFSgBIRERGJkAKUiIiISIQUoEREREQipAAlIiIiEiEFKBEREZEIKUCJiIiIREgBSkRERCRCClAiIiIiERrUmchFREREDuWco6G9h4qGdiobOnDA/MIsisakYGaxLt5hKUCJiIiMcm1dvWypbaGioQPn3IBeK+Qce5q7qGjo8AJTYwcVDR20dwc/cGxueiILirJZODGbBROzWVCUTVZqwoCWr78UoEREREaJYMixs76NzTUt3qu6mc01Leza1z7oZclKSaAwO4XinDTOnj6OojEpFI1JoXBMCsGQY21FE2W7Gllb0cgLm/fs/9zU3DQWTMxmflKQkkEv9QEKUCIiIiNMTzDEzvo2yve0sbWulfI93uv9PS109oQACBgU56YxvzCLjy8pYub4DIpz04gLDGyXmQG5GUlkJh+9Jenkomw+ffpkAJo7e1hX0UTZ7kbKdjfySvlepp40oMU8JgUoERGRISoUclQ1dVC+p5Wmjh56go5gKOQvHT3BEMGQozfkaO3qZZsflnbWt9MbOtAVV5CVzPS8dD552mRmjc9g1vhMZuSnk5wQF8Nv13+ZyQmcNT2Xs6bnAt6YqT+Xlsa0TApQIiIy6jnnaO8O0tjRQ2N7N43tPd6ro5uAGZPHplKcm8b4zGQCA9BC093b12Lktxb5QWhbXRsdPR8cG3Q4cQFjck4q08elc8Hc8UzPS2d6XjpTx6WTnjSy/tybGYEYDy4fWTUqIiJyFK1dvWysamZ9ZRPrq5rYVN1CXUsXTR3d9ASPPXg6KT7A5JxUJuekUZzjhaqiMal09Xjhq8kPXQ3tB9Yb23vY29hO4psv0ht0+1uReoNey1Gv36IUrjA7hWl56Zw2JWd/EMpNTyQhLkBcwIiPMxICAeL6lgEjPmADEu7k8BSgRERkWOoJhujsCR4URPrW+7q59rV1s6GqiXWVzWyobGJ7fRt9N5mNy0hi7oRMFk7MJjs1geyUBLJTE8hKSfTepyaQnZJIbyjErvp2tte3sbO+ne1729hZ38bL79XR1Rv6QLniA+afJ4Hs1ETGZyaTHmqjsGCsH34CJMQZcQEjIS5AfMBI9IPZ9HEZTB2XRtoIazEaifRfSEREhqSu3iBVjZ375wbqu+29oqGDysYOapo76e8d94XZKcydkMkViwqZV5jJvAlZ5GUm97ssRWNSOdMff9MnFHLUNHdS2dhBSkKcH5gSSE+K/8DcRaWlpZSULOz39WToU4ASEZEBt6+tm801zWyubmFLTQtbalto6ujZ32oU3q3VEwr5A6QPTkdxAaMgK5miMSmcOS2XwjEpZCTFEx/ndV/F+91bXutOgISAkZGcwOyCDHLSk6L+nQIBY0J2ChOyU6J+bhn6FKBEROSYeoIhdu9rZ2d9Ozvq22jvDu4fd9MXXsKX3cEQ5Xta2VTdzJaaFva0dO0/19i0RGbmZzBxbOphPm/7x/mkJMRRmO3NDVQ0NpX8jCTi4/QEMhkaFKBERISu3iD1rd3sbe3inT29bH1lOzvr2/zxPt5s0cFQZDNUJ8YHmJGXzjkzxnm3zhdkMHN8BuPSk4bs4zlE+qtfAcrMdgAtQBDodc4tNbOxwMNAMbADuMY51zAwxRQRkeMRCjn2tnaxO2z8UG1zJ3tbu9jb4gWmutYuWjp7D/7g2xvJSI5nij/r8xULJ3h3nuV6d6BlJid43W8h5w/c9rrf+uYmigsYhdkpajGSESuSFqhlzrm9Ye9XAi845+4xs5X++69GtXQiIgJ48xTVtXaxp7mLjp4gnT1BOntC/jJIZ2+Irp4gbV1Bapr7Blx3UNnQQXfw4DvFMpPjyc1IIjc9idkFmZyTnkhuetL+bbvfW8/HPnwO2akJR20pSkThSEYv689DA/0WqKXhAcrMtgAlzrlqMysASp1zM492nqVLl7rVq1efYJGP7Htvfo+/bvsr2dnZA3aN0aixsVF1GkWqz+gbSXXqgO6eEB09vXT0BOnoDu5f9vazCy0hLkBSQoCk+DiS4gP+y19PCBxzAsKRVJ9Dheo0+tLb0/nJlT8Z0GuY2Rrn3NLD7etvC5QDnjUzB/zcOXc/kO+cqwbwQ1TeES6+AlgBkJ+fT+kATr1esa+CYDBIY2PjgF1jNFKdRpfqM/qGW50GHfQEHT0h/FfYetARnpPiA5AYZ6QnQlIgQEIAzLznmBl9MzJ76wHz9nnxyAF+t1wI6Iaubuji2IZbfQ4HqtPoS7TEAc0Ux9LfFqgJzrkqPyQ9B/wd8LhzLjvsmAbn3JijnWegW6Cgb66NkgG9xmijOo0u1Wf0xbJOO3uCVDS0s2NvOw3t3bR19dLa1UtrV5DWrh5aOw+sN7T1UNnYQWvXweON0pPivafQZ6cwJTdt/8zT0/PSyU5NHPTvpJ/R6FOdRt9g1OkJt0A556r85R4zeww4Fag1s4KwLrw9USuxiEiMOefo6g3R1ROiszdIU0ePdwv/3jZ21Puvve1UNXUcdjLHxPgA6UnxB17J8UzKSeXM6Tn+rfmpFI1JYeKYVDJTPjjxoogMbccMUGaWBgSccy3++keAfwIeB24A7vGXqwayoCIi0dLY3s3mmhY2Vzezpdab2HFfW7c3KLvXG5Td1Rs64izX2akJTM5J45TiMUzOKdp/Z1puWhLpyfGkJcWRFD88nnIvIsenPy1Q+cBj/v8dxQO/dc49bWZvAY+Y2c3ALuDjA1dMEZHIdfeG2FrXun8G7M01Xliqae7cf8yY1ARmjs/g5KJskhMCJCfEea/4AEl96wlea1LfA2Rj0a0mIkPLMQOUc24bsOAw2+uB5QNRKBGRSDjnqGrs8IJSTcv+x4VsrWvdf+daYlyA6XnpnDktx5/QMZNZ4zPIy9CkjiISOc1ELiLDTnVTB2t3N/LO7kbW7m7k3V3ttD/z4v79hdkpzBqfwfLZecwq8ILSlNw0EjSpo4hEiQKUiAxpLZ09rKtooqyikbJdjaytaKS22bsZPyHOmFOQyakF8SxfPJNZBZmclJ9BVkpCjEstIiOdApSIDDlVjR08u6GGpzfU8Ob2ffvnRZqSm8YZU3NYODGbBROzmTMhk6T4OO925jOKY1pmERldFKBEZEjYVtfKMxtqeXpDDWt3NwIwIy+dW0qmceqUHBYUZWnwtogMGQpQIhITwZBjfWUTL2zyQtN7ta0ALCjK4h8umMkFc8czPS89xqUUETk8BSgRGRTOOXbta+cv7+/l1fK9vLa1nqaOHgIGpxSP5ZuXzeEjc8dTmJ0S66KKiByTApSIDJj61i5e21rPq+V7eaV8LxUNHQAUZCXzkTn5nD0jl7Om55KbnhTjkoqIREYBSkSiorMnyMbqZtbubqTMn15gR307ABnJ8ZwxNYfPnjuVs6bnMiU3TXMviciwpgAlIhELhhzb97bybkXT/rC0sbqZnqB3u1xeRhILJ2ZzzSkTOWNqDvMLs4jXHEwiMoIoQInIUfUEQ5TvaWV9ZRMbqppZV9nExqpmOnqCAKQmxjG/MIv/c/YUFvnTCxRkaRyTiIxsClAisl8w5Nha10rZrkbKKhrZUNnEppoWuntDgBeW5k7I5NpTJjJ3Qibzi7KYkZdBXEDdcSIyuihAiYxitc2dvOPP7l22q5F1lU20dvUC3ril+YVZ3HhmMXMnZDKvMIvinDSFJRERFKBERpVQyPHmjn2sKqvkz5vrqGnuBLxHoswuyORjiwpZODGbhZOymZKTRkBhSUTksBSgREY45xybqltYVVbJ42urqG7qJDUxjmWz8lgyaQwLJ2UzpyCT5IS4WBdVRGTYUIASGaEqGtpZVVbFqrJK3qttJT5gnHvSOFZeNIsPz8knNVH//EVEjpd+g4qMIO3dvTy5roZH3trNmzv2AbB08hjuumIel8wvYGyaniUnIhINClAiw5xzjvWVzTz01i4eL6uipauXKblp/MMFM/nogglMHJsa6yKKiIw4ClAiw1RTew+r1lby0Ju72VjdTFJ8gEtOLuATp0zilOIxmulbRGQAKUCJDCNdvUFeK6/n8bVVPLmumq7eEPMKM7nrinl8dMEEslISYl1EEZFRQQFKZIhr6+rlpffqeHp9DS9u3kNrVy8ZyfFcs3Qi154ykXmFWbEuoojIqKMAJTIENbZ38/ymPTyzoYaX36ujqzfE2LRELplfwIXzxnPm9ByS4jXtgIhIrChAiQwRLZ09PLOhllVllby2tZ5gyFGQlcx1p07iwnnjWTp5jB7IKyIyRChAicRQd2+Il96r449llTy/sZau3hATx6bwt+dM5aJ54zm5KEuDwUVEhiAFKJFBFnKON7fv449llTy5rprG9h7GpiVy7SkTuXxhIYsnZSs0iYgMcQpQIoOkubOH376xi/94qYP6Z14nJSGOD8/J54pFEzhnxjgS1D0nIjJsKECJDLDa5k5++ep2fvvXXbR09TJ7bIBvXH4yH5kznrQk/RMUERmO9NtbZICU72nh/pe38dg7lQRDjovnF/DZc6dRX/4OJYuKYl08ERE5AQpQIlG2Zuc+fvbSNp7bWEtyQoDrTp3EZ86eyqQc75EqpeUxLqCIiJwwBSiRKOjsCfLkump+/dedvLOrkezUBD6/fAY3nDGZnPSkWBdPRESiTAFK5ARs39vGb9/Yyf+sqaCxvYepuWncedkcrjllIqmJ+uclIjJS6Te8SIR6giFe2FTLb/66i1fK9xIfMC6YO55PnjaJM6blaAoCEZFRQAFKpJ/2tnbx4Os7eejNXexp6aIwO4WvfOQkrlk6kbzM5FgXT0REBpEClMgxVDV2cP/L2/jdm7voDob40EnjuPu0ySyblUdcQK1NIiKjkQKUyBHs2NvGv5du5Q/vVOAcfGxRIbeUTGPquPRYF01ERGJMAUrkEJtrmvm3P2/lf9+tIj7Om4ZgxblTKRqTGuuiiYjIEKEAJeJ7e1cD9/15K89vqiUtMY6/PXcqN589hbwMjW8SEZGDKUDJqNYbDPHMhlr+85Vt++dv+vvzT+KGMyeTnZoY6+KJiMgQ1e8AZWZxwGqg0jl3qZmNBR4GioEdwDXOuYaBKKRItLV09vDwW7v51as7qGzsYHJOKt/66FyuXlKk59OJiMgxRfKX4gvAJiDTf78SeME5d4+ZrfTffzXK5ROJqt372vmv13bw8Fu7ae3q5dQpY/nmZXNYPjtfd9SJiEi/9StAmVkRcAnwHeBL/ubLgRJ//QGgFAUoGaI21zTzkxfKeWp9NQEzLjm5gJvPnsLJRdmxLpqIiAxD/W2Buhe4HcgI25bvnKsGcM5Vm1lelMsmcsK21rVy7/Pv88S7VaQnxrPi3GnccOZkCrJSYl00EREZxsw5d/QDzC4FLnbO/V8zKwG+4o+BanTOZYcd1+CcG3OYz68AVgDk5+cveeihh6JY/A9qbW0lPV3z9ETTcKzTPe0hVpX38FpVL4lx8OHJCVxYnEB6Yuy76YZjfQ51qtPoUn1Gn+o0+gajTpctW7bGObf0cPv60wJ1FvBRM7sYSAYyzew3QK2ZFfitTwXAnsN92Dl3P3A/wNKlS11JScnxfId+Ky0tZaCvMdoMpzqtauzgp38u55G3dhMXMG4+ewqfK5lGbnpSrIu233Cqz+FCdRpdqs/oU51GX6zr9JgByjn3NeBrAGEtUJ8ysx8ANwD3+MtVA1dMkaOra+ni3/5czm/f2IXD8TenTeLWZdPJ1zPqRERkAJzI/dr3AI+Y2c3ALuDj0SmSSP919gT55avbue/PW+noCfLxJUXcdt50zRouIiIDKqIA5ZwrxbvbDudcPbA8+kUSOTbnHE+tr+HuJzdR0dDB+bPzuePiWXpOnYiIDArNGCjDzrqKJu56YiNv7tjHrPEZ/PdnTuOs6bmxLpaIiIwiClAybNQ2d/KDZ7bw6NsVjE1N5O6PzefaUyZqAkwRERl0ClAy5HX2BPmPl7fx7y9tpTfoWHHuVG5dNp3M5IRYF01EREYpBSgZspxzPL62iu89tZmqpk4unDueOy6ezaQcDRAXEZHYUoCSIentXQ3c9cRG3tnVyNwJmfzo2oWcPjUn1sUSEREBFKBkiKlq7OB7T29mVVkV4zKS+P7VJ3PV4iKNcxIRkSFFAUqGhLauXn7+0lZ+/vI2AG5bNp1bSqaRlqQfURERGXr010liqm+c091PbqK2uYvLFkzgqxfO1ESYIiIypClAScxUNnbwjcfW8ectdZxclMV9n1zMksljY10sEREZLKEQNFfCvq2wb5v3qt8GnY0QnwTxKZCQAgnJ/vqBZWpbXkyLrgAlgy4Ycjz4+g5+8MwWAP7x0jnccGaxxjmJiMSKc9DVDJ1N0NPhvXo7w5bt0NMJvR2HLDs/eGywBwLxEBfvLQMJB7+3ADRXQf1WaNgBwa4D5YhPhjFTIDUHOpuhd8/hrw2kzbk9NnXVV9SYXl1Gnc01zax8dB1luxspmTmOb18xT911IiLR1t0GbXXQWgdtew6sd+yD9n3Q0eC/+tYbwQUju4YFPtAqRHyKF5RCQQj1eq9gj/++x1t3QUgfD7kz4KSPwNhpMHYq5EyDjAkQCBz9us5Bbxd7//LKcVdPNChAyaDo7Any0xfL+dlLW8lMSeBfPrGQjy6YgJlanURkFAmFoKcNulqgq9VfNkN3a9i2Zm/90G2h3qOfO9gD7Xu9oNTTdvhjkjIhJRtSxnivrKID6yljIDkTElK9brP45MMvE1L8oJQAsfgdbgYJybhAbCOMApQMuDe372Plo++ybW8bVy4u5BuXzGFsWmKsiyUiEh3OeV1fzVXQUgXN1R9YP6OhCl7v8QIR7tjnDCRAUsaBV2I6xB/j92Z8MoydAml5kD7OW6aNO3j9WOeQflOAkgHT2RPkn5/Zwi9e3U5hdgoP/p9TOfekcbEuloiIF3o6GqCpwmu16evSam8I697yu7i6Wv3uqB6/S6o37H0QersOHsfTJzUXMgsgq5B9lkdB8UwvCIUHo/CAlJThtRAlpXsDqGVIU4CSAbG+sokvPVLGe7WtfOr0Sdxx8WxSE/XjJiKDJNgDbXuhpRoad0HTbm/ZuAsa/fXulsN/NjHd79LK9papuf4A6IQjDI5OgPQ8yCiAzEIvNGUUHBSCtpSWUlBSMihfXQaH/qJJVAVDjp+9tJV7n3+PMamJ/NdNp1AyM7a3morICOGcd3t7s9811lIFrbVhA6X3Quseb72j4YOfT8qE7MkwZjJMOQeyJ0HWRK9rK3wckLq5pB8UoCRqdta38aVH1rJmZwOXzC/g21fMY4zGOomIc96A6I5Dusd6Oj54l1b4+542Pyj5Y4qaq/bfwn6QpCx/nM84GDfTC0dp/vuM8V5Iyp7ktSiJRIkClJww5xwPvbWbu57YSFzAuPfahVy+UHfYiYwaoaA3n0/dFtj7nvfat+3g2+VDPZGfN5Dgd4dNgIIFMPMiv5tsgvfKKID0fO/2eZFBpgAlJ6S2uZM7/rCOFzbv4cxpOfzzxxcwITsl1sUSkUiEQt48Qf5dYwVVr8DqbUc+3jmv66wvMNWXQ7D7wP708d6cPnmzDu4aSxkbtp7t3S7fN4YokACBOH+9b3zRMeYDEokhBSg5Lh3dQf7jL9v499KtBJ3jHy+dw41nFhPQbOIiQ0tPp9cFFt4N1lLtPT6jr3uspeagFqKZAO8d47wWgDHFkHsSTD/f6zrLnelNjqiuMhkFFKAkIn0P/73nqc1UN3Vy0bzxfO2i2UzK0WziIoMuFPJagvbfYbbTu8Ns/xxEVdBe/8HPJaR5XWOZE2DyWQe6yTInQGYBr6/bxhlnnXP0aydnq+tMRjUFKOm3t3c18E9/2kjZ7kbmFWZy77ULOW1qTqyLJTKy9XWX1W7wXvXvH7gNv2n3wV1n4D1DLLPQexUuPfi2+r71pMyjziDd9X6LN/haRI5IAUqOqb4jxOd/9w6Pr60iLyOJH1x9MlctLlJ3nUg0OefNUr33fahdD3s2HghNHfsOHJea692GX3AyzL7UvxV/krfMngiJabH7DiKjiAKUHFF3b4j7Ssv5t790EAh08fnzpvPZD00jLUk/NiLH5JzXfbZvm/fU+X3bvC61DzznzH/WWXcLuNCBzyekQt4cLyTlzYV8/5U6NnbfSUT2019COaz3a1v4+0fKWF/ZzGnj4/jRjR+iUHfXiXxQVwvU9d26v/VAWNq3HbqaDhxnAe/utOTMA4/vyPC708If6TF2KuTPgexi3YUmMoQpQMlBQiHHr17bwfee3kxGUjz3f3oJiXWbFZ5kdHPOu82/bgvs3eIHJn/ZUnXgOAt4XWljp0HRKV4YypnmLbMn6flmIiOIApTsV9XYwVf+Zy2vba3n/Nl5fPfKkxmXkURp6eZYF01k8HS3Q90mf/zRRtjjj0MKv5stMd27XX/KuTDuJP/2/ZO82/r1GBAZZXp6eqioqKCzs3NQr5uVlcWmTZuicq7k5GSKiopISEjo92cUoATnHH8sq+QfV20gGHLcc+V8rj1lomYSl5GrtxuaK8IeLrsL6jZ7gWnfNsB5xyWkQt5smHWJNx5pnB+UMguPehebyGhSUVFBRkYGxcXFg/p3o6WlhYyMjBM+j3OO+vp6KioqmDJlSr8/pwA1yjW0dfONP67nf9dVs2TyGH50zQIm5+guHhkBnIOG7VC91mtBCg9LzVXsD0ngTwo5xRukffI13jJvjrdN45BEjqqzs3PQw1M0mRk5OTnU1dVF9DkFqFFszc593PKbt2lo7+b2C2fy2XOnEaepCWQ4ckHYs9kLSzXvesvqdw8M4rYAZBZ545CmfMi/5T/slTnBe4SIiByX4Rqe+hxP+RWgRqmn19fwhYfeoSArmV/eeBbzCrNiXSSR/nHOm3G7cg1UrIHKNZxT+Q681OXtj0+G/Hkw/2rvAbQFJ3utSRrALSJRpAA1Cj34+g6++fgGFhRl84sblpKTrj8sMoR1NEDl215gqlwDFauhfa+3Lz4ZChZQXfBhik651AtMuSdBnH61iYwW9fX1LF++HICamhri4uIYN24cAIsXL+aJJ54gLy+P9evXR/W6+i0zioRCju8/s4WfvbSV82fn8ZPrFpOSGBfrYslo1tEADTs/+HDb8IfedjUfOD53Jpx0ARQu9h5Tkj8X4hIoLy2laGFJzL6GiMROTk4OZWVlANx5552kp6fzla98BYCXX36Z2267jeuvvz7q11WAGiW6e0Pc/vu1/LGsir85bRL/9NG5xMdpcKwMAue8MLR//iT/VbcF2vYcfKzFQXq+NyZp3EkwtQSyCr2WpQmLIFldzSLSf+eeey47duwYkHMrQI0CLZ09fO43a3i1vJ6vfOQkbl02fdgP+JMhLNgLlavh/edg+0ve4O7ulgP7k7P8lqSPeMuxU7zAlDEB0vMgoFZRkeHqW3/awMaq5mMfGIE5EzL55mVzo3rOaFCAGuFqmzu54ZdvUr6nlR9cfTIfXzox1kWSkailBspfgPLnYOuL0Nnk3flWdAosvM4blzRupheY0vM0h5KIDHsKUCPY+7Ut3Pirt2hs7+YXN57Ch04aF+siyUjQ1yVXuwF2ve6Fppp13r708TDrMphxvtf9ljImpkUVkcE1FFuKBooC1Aj1wqZavvhQGcmJcTz82TM0TYEcn64W2LMJatf7jzXZ6K139s2vFAeTTofl34Tp58P4+WpdEpFR4ZgBysySgZeBJP/43zvnvmlmY4GHgWJgB3CNc65h4Ioq/REKOX7yYjk/fv495hVm8rNPLaFoTGqsiyXDQWsd1Kz1JqGsKvOWjTsP7E/MgPw5MO8qb16l/HneXXDJmTErsojI0Vx33XWUlpayd+9eioqK+Na3vsXNN98clXP3pwWqCzjPOddqZgnAK2b2FHAl8IJz7h4zWwmsBL4alVLJcWnp7OFLj6zluY21fGxRId+9cj7JCRqQK4fRusebU6l67YFXc+WB/WOmeHe9Lf60F5Ty5ngzdqt1SUSGsDvvvPOg97/73e8G7FrHDFDOOQe0+m8T/JcDLgdK/O0PAKUoQMXM1rpWVjy4mh317XzzsjnceObwfS6RRFko5E0bsPuvsOsNb9xSw3Z/p3kDvCef5c/avcDrhkvJjmWJRUSGvH6NgTKzOGANMB34N+fcG2aW75yrBnDOVZtZ3gCWU47i+Y21/P3DZSTEB/jNzadxxrScWBdJYqm7Daregd1veIFp9xvQ2ejtS82BiafD0pug6FQvLCWlx7S4IiLDkXkNTP082CwbeAz4O+AV51x22L4G59wHbrkxsxXACoD8/PwlDz300AkW+ehaW1tJTx8dfxBCzvGnrT08Vt7D5MwAn1+URE5K9CfHHE11OhiiWp8uSFrbbjKb3yOj5X0ym98jrW0XRgiAttQimjNn0ZQ1m6as2XSkTBiR3XD6GY0u1Wf0jeQ6zcrKYvr06YN+3WAwSFxc9IaplJeX09TUdNC2ZcuWrXHOLT3c8RHdheecazSzUuBCoNbMCvzWpwJgzxE+cz9wP8DSpUtdSUlJJJeMWGlpKQN9jaGgtauXv3+4jOfKa7lyUSF3D+B4p9FSp4PlhOqzo9Hrgtv1uvcg3ap3oKfN25ecBYVLoPAab1l0CmlpOaQBBVEq+1Cln9HoUn1G30iu002bNpGRkTHo121paYnqdZOTk1m0aFG/j+/PXXjjgB4/PKUA5wPfAx4HbgDu8ZerjqvEErHd+9r5zAOrKa9r1Xinka6jAXa+DjtegZ2vQPW7gINAgtf9tuiTfmhaCjnTRmTrkojIUNSfFqgC4AF/HFQAeMQ594SZvQ48YmY3A7uAjw9gOcX31o59fPbXa+gNhnjgplM5e0ZurIsk0dS2F3b9FXa+6oWmmnWAg7gkmHgqfOirUHw2FC2FhJRYl1ZEZNTqz1147wIfaNNyztUDyweiUHJ4v19TwR1/WEfhmBR+ccNSpo4bmf3po4ZzsPd9rztu9xtecNq31dsXn+wFppKveYGpcAkkJMe2vCIiQ1B9fT3Ll3txpKamhri4OMaNG0dLSwuTJk2ipqaGQCDAihUr+MIXvhC162om8mEgGHJ8/+nN/PzlbZw1PYf7/mYJWakJsS6WRMo5qF3PxF1/gN/+zAtNHfu8fSljvRm9F1/vLScsgvik2JZXRGQYyMnJoaysDPDmgUpPT+crX/kK1dXVVFdXs3jxYlpaWliyZAkf/vCHmTNnTlSuqwA1xLV29fLFh8p4flMtnz59Mv942RwS4qJ/p50MkN4u2P4XeO8p2PI0NFcwDSBnBsy62JtSYNLpkDNd45dERKKooKCAggLvFpqMjAxmz55NZWWlAtRoUNHgDRZ/f08r/3T5XK4/ozjWRZL+aK2D95+FLU/C1j97d8klpMLUZVDyVV6ry+DMCz4W61KKiETfUysPPFw8WsbPh4vuOaFT7Nixg3feeYfTTjstSoVSgBqy1uz0Bot394b4r5tO4ZwZ42JdJDmcng6o3QDVZQeeIdc38DtjAiy4Fk66CKacs3/Qd3dpaQwLLCIyurS2tnLVVVdx7733kpkZvWd3KkANQavKKvmH37/LhKxkfvHZU5imweJDQ3ebN41AX1iqXgt1W8AFvf0pY6BgIZSshJMu9B6Lom45ERlNTrClKNp6enq46qqr+OQnP8mVV14Z1XMrQA0hzjn+9YVyfvz8e5w2ZSw///QSslMTY12s0SkU9MJR5WqoWA2Vb8OejQfCUnq+F5ZmXXrgGXJZRQpMIiJDhHOOm2++mdmzZ/OlL30p6udXgBoiunqDrHx0HY+9U8lVi4v47pXzSYzXYPFB09sN21+GHS97YanqHej2n6HdN8P3zC9D4WLvDrmM8bEtr4iIHNWrr77Kr3/9a+bPn8/ChQsBuPvuu7n44oujcn4FqCFgX1s3n/31at7a0cBXPnISty6brpnFB0N3G5Q/D5v+BO89A13NB2b4XnCdN1ll4VIYOxUCCrMiIkPdnXfeuX/97LPPJpLn/UZKASrGyve0cvMDb1Hd1MlP/2YRl548IdZFGtk6GrzpBDY/4YWn3k5vDqY5H4VZl8HUD2mGbxEROSYFqBh6rXwvn/vNGhLiAjy04nQWTxoT6yKNLM5B484DA74r3oKdr0Go17tDbvH1MPsymHQmxOmfgoiI9J/+asTII2/t5o7H1jElN41f3ngKE8emxrpIw1so5D0GpXrtwXfJdTZ5+y0O8mbDGbfC7I/ChMXqlhMRkeOmADXIunqDfPuJTfz6rzs5Z0YuP/2bxWSl6LEsx6V9H2x9Ed5/Dra+AG113va4RMifC3M/duAOuby5epaciIhEjQLUINq9r51bf/s271Y08bfnTOH2C2fpsSyRCIW8u+PKn/PGL1WuARfyxjBNXw5TzvXukBs3C+IUSkVEZOAoQA2SFzbV8qVH1hIKOX72qSVcOE+3wR+Tc7BvG+x4BXb8xWttaq8HzJtW4NzbYcaHvdAUiIt1aUVEZBRRgBpgvcEQP3ruPe4r3cqcgkz+/VOLmZyTFutiDU3OQf1W2PmKH5pegZZqb19aHkw/H6Z/GKadB2k5sS2riIgMGRUVFdx6661s3LiRYDDIxRdfzA9/+ENaW1u5+uqreeutt7jxxhv56U9/GrVrKkANoD0tnfzdb9/hje37uO7UiXzzsrkkJ6il5CANO2FbqT+J5SvQWuNtT8+H4rO91+SzIXeGZvkWEZEPcM5x5ZVXcsstt7Bq1SqCwSArVqzg9ttv5+677+auu+5i/fr1rF+/PqrXVYAaIH/dVs/f/e4dWjp7+OHHF3DVkqJYF2loaN/nhaVtpd6rYbu3PX2898DdyWdB8TmQM02BSUREjunFF18kOTmZm266CYC4uDh+/OMfM3nyZL7zne9w9tlnU15eHvXrKkBFmXOO//jLNu55ajPFOWn8+uZTmTU+ek9/Hna622H3G7D9JS8wVZUBDhIzvMB0+i0wtQRyT1JgEhEZ5r735vfYvG9zVM85a+wsvnrqV4+4f8OGDSxZsuSgbZmZmRQXF1NeXr7/MS7RpgAVRV29Qb7+2Hp+v6aCi+eP5/tXLyA9aZRVcXcb7H7zwBimyjUQ6oFAPBSdCiVf8wJT4WLdKSciIifMOXfYx58N5GNcQAEqaupbu/jcb9bw1o4Gvnj+DL6wfMboeJ5dZ7M/w/erYYGp15u4csIib+LK4rNh0umQlBHr0oqIyAA6WkvRQJk7dy6PPvroQduam5upra1l5syZA3ZdBago2FLTws0PvEVdSxc/uW4Rly0Yoc+zC/ZA7QaoXA2Vb3thqW4L4LzAVLgYzvw7b9D3pNMUmEREZMAtX76clStX8uCDD3L99dcTDAb58pe/zG233UZKysA921QB6gS9sKmWz//uHdKS4nnks2ewYGJ2rIsUPV2tsPUFppX/D2y923s0Sm+nty81F4qWwryrvDmZJp4GSemxLa+IiIw6ZsZjjz3Grbfeyl133UVdXR3XXnstX//61wEoLi6mubmZ7u5u/vjHP/Lss88yZ86cE76uAtRxcs7xn3/Zzt1PbWLuhEz+8/pTGJ81Ah4V0r4P3nsGNv3JezxKbycTAole69Ipn/GWhUshe5IGfYuIyJAwceJEHn/8cQBee+01rrvuOtasWcOSJUvYsWPHgFxTAeo4dPeG+Ppj6/gff7D4Dz++kJTEYTy/U0sNbH4CNj3hzfgd6oXMQlh8A8y+jFe2d/Gh886PdSlFRESO6cwzz2Tnzp0Dfh0FqAhVN3Xw+d+9w1s7Gvj88hl8cfkMAoFh1hLTUgMVq72xTDte9QaB42DsNG8M0+zLYMLi/S1MbmdpTIsrIiIy1ChAReDJddV87Q/r6AmG+NfrFvHR4TBYvKsVqsv8wLTGezVXevsC8TB+Piy7wwtN42apW05ERKQfFKD6obWrl289voH/WVPBgqIs7v3EIqbkDrHn2TkHTbu9u+RqN8Cejd5y73vgQt4xY4q96QQKl3oDwMfPh4SBu0NBRERkpFKAOoZ3djXwxYfL2LWvnduWTecL588gIS4Q20L1dEDNeqhZ6wemjV5g6mo+cEz2JMibC3Mu9wJT4WJIy41dmUVEREYQBagjCIYc9/25nHtfeJ/xmck8vOIMTp0ydvAL0tUCNeu8KQT6XnVbwAW9/UlZkD8HTr4G8uZA/jzImw3Jo/jxMSIiIgNMAeowdu9r50uPlPHWjgY+umACd10xj6yUAXzsSCgErTWwbxvUb/WW+7bCnk3ee/zp6NPHQ8ECmHWptyw4GbImatySiIiMahUVFdx6661s3LiRYDDIxRdfzA9/+ENefvllVq5cSXd3N4mJifzgBz/gvPPOi8o1FaDCdPUGeejN3fzzM1sAuPfahVyxqDA6Jw+FoKXaC0b7toWFpe3eem/HgWMDCd54pXGz4ORr/bC0ADLGR6csIiIiI4RzjiuvvJJbbrmFVatWEQwGWbFiBbfffjs33ngjf/rTn5gwYQLr16/nggsuoLKyMirXVYACeoIh/vB2Bf/6QjmVjR2cMTWH7199MhPHpkZ2ot4uaKqAxl3QsONAUNq3zQtK4SEpLhHGTIGxU72H6+ZM9dbHToOsIggM43mlREREBsmLL75IcnIyN910EwBxcXH8+Mc/ZvLkyXznO98hPd17SsbcuXPp7Oykq6uLpKSkE77uqA5QwZDjT2uruPf599hR386Cidncc9V8zp6ee+BBwMEebxxSd6u37GrxHqDbXOkFpabd3rJxlze/EmFPf45LgrF+SJp2nrfMmeYtMwsVkkREZESpuftuujZtjuo5k2bPYvwddxxx/4YNG1iyZMlB2zIzMykuLqa8vJyFCxcC8Oijj7Jo0aKohCcYaQGquZqsxvXwfq/X2tPTCT3t3vPbejr8ZTuup4OKPQ1sqdxDUmc7P0gKMW1iPGMSg9jznfBUux+WWg9uNTpUIN4LQtmTYNpyb5k90V9O9kNSjO/YExERGcGccwcaPQ7Z3mfDhg189atf5dlnn43adUdUgGp7+xEWlf0jlB35mGAggQ6XSFIogTmBJDKyM0hPT8cSEiE+FdLzvLmRkjL8VyYkpoe9T/e2ZU6AjAK1IomIiPiO1lI0UObOncujjz560Lbm5mZqa2uZOXMmFRUVfOxjH+PBBx9k2rRpUbvuiApQf+pewqrur9PlEugk0Xu5RDr89S4SCRFg0thUvnj+DC5fWEjccHsMi4iIiOy3fPlyVq5cyYMPPsj1119PMBjky1/+MrfddhtdXV1ccsklfPe73+Wss86K6nVHVIA6ffEiKhs6WbRgPvGBAPEBIz4uQFzASIgz4gJGYlyA4ty02E+GKSIiIifMzHjssce49dZbueuuu6irq+Paa6/l61//Ot/+9rcpLy/nrrvu4q677gLg2WefJS8v74Sve8wAZWYTgQeB8UAIuN859y9mNhZ4GCgGdgDXOOcaTrhEJ6A4N40l+fGUzMqPZTFERERkEE2cOJHHH38cgNdee43rrruONWvW8I1vfINvfOMbA3LN/jTD9AJfds7NBk4HbjWzOcBK4AXn3AzgBf+9iIiISMyceeaZ7Ny58wN35kXbMQOUc67aOfe2v94CbAIKgcuBB/zDHgCuGKAyioiIiAwpEQ0EMrNiYBHwBpDvnKsGL2QBJ96hKCIiIsNO+JQBw9HxlN/6+yEzSwdeAr7jnPuDmTU657LD9jc458Yc5nMrgBUA+fn5Sx566KGICxmJ1tbW/bOOSnSoTqNL9Rl9qtPoUn1G30iu0/T0dPLz88nKyjrsfEwDJRgMEhd34lMJOedoamqitraW1tbWg/YtW7ZsjXNu6eE+168AZWYJwBPAM865H/nbtgAlzrlqMysASp1zM492nqVLl7rVq1f37xsdp9LSUkpKSgb0GqON6jS6VJ/RpzqNLtVn9I3kOu3p6aGiooLOzs5BvW5nZyfJyclROVdycjJFRUUkJCQctN3Mjhig+nMXngG/ADb1hSff48ANwD3+ctXxFlxERESGp4SEBKZMmTLo1y0tLWXRokWDft0+/ZkH6izg08A6Myvzt92BF5weMbObgV3AxwekhCIiIiJDzDEDlHPuFeBInZrLo1scERERkaFP03GLiIiIREgBSkRERCRCClAiIiIiEVKAEhEREYmQApSIiIhIhBSgRERERCKkACUiIiISIQUoERERkQgpQImIiIhESAFKREREJEIKUCIiIiIRUoASERERiZAClIiIiEiEFKBEREREIqQAJSIiIhIhBSgRERGRCClAiYiIiERIAUpEREQkQgpQIiIiIhFSgBIRERGJkAKUiIiISIQUoEREREQipAAlIiIiEiEFKBEREZEIKUCJiIiIREgBSkRERCRCClAiIiIiEVKAEhEREYmQApSIiIhIhBSgRERERCKkACUiIiISIQUoERERkQgpQImIiIhESAFKREREJEIKUCIiIiIRUoASERERiZAClIiIiEiEFKBEREREInTMAGVmvzSzPWa2PmzbWDN7zsze95djBraYIiIiIkNHf1qg/gu48JBtK4EXnHMzgBf89yIiIiKjwjEDlHPuZWDfIZsvBx7w1x8ArohusURERESGruMdA5XvnKsG8Jd50SuSiIiIyNBmzrljH2RWDDzhnJvnv290zmWH7W9wzh12HJSZrQBWAOTn5y956KGHolDsI2ttbSU9PX1ArzHaqE6jS/UZfarT6FJ9Rp/qNPoGo06XLVu2xjm39HD74o/znLVmVuCcqzazAmDPkQ50zt0P3A+wdOlSV1JScpyX7J/S0lIG+hqjjeo0ulSf0ac6jS7VZ/SpTqMv1nV6vF14jwM3+Os3AKuiUxwRERGRoa8/0xj8DngdmGlmFWZ2M3AP8GEzex/4sP9eREREZFQ4Zheec+66I+xaHuWyiIiIiAwLmolcREREJEIKUCIiIiIRUoASERERiZAClIiIiEiEFKBEREREIqQAJSIiIhIhBSgRERGRCClAiYiIiERIAUpEREQkQgpQIiIiIhFSgBIRERGJkAKUiIiISIQUoEREREQipAAlIiIiEiEFKBEREZEIKUCJiIiIREgBSkRERCRCClAiIiIiEVKAEhEREYmQApSIiIhIhBSgRERERCKkACUiIiISIQUoERERkQgpQImIiIhESAFKREREJEIKUCIiIiIRUoASERERiZAClIiIiEiEFKBEREREIqQAJSIiIhIhBSgRERGRCClAiYiIiERIAUpEREQkQgpQIiIiIhFSgBIRERGJkAKUiIiISIQUoEREREQipAAlIiIiEqETClBmdqGZbTGzcjNbGa1CiYiIiAxlxx2gzCwO+DfgImAOcJ2ZzYlWwURERESGKnPOHd8Hzc4A7nTOXeC//xqAc+67R/rM0qVL3erVq4/rev1Rc/fd1L7+V7KzswfsGqNRY2Oj6jSKVJ/RpzqNLtVn9KlOo68uI52l9903oNcwszXOuaWH2xd/AuctBHaHva8ATjvMxVcAKwDy8/MpLS09gUseXXpFBYFgkMbGxgG7xmgUVJ1Gleoz+lSn0aX6jD7VafT1JCcNaKY4lhMJUHaYbR9oznLO3Q/cD14LVElJyQlc8hhKSigtLWVArzEKqU6jS/UZfarT6FJ9Rp/qNPpiXacnMoi8ApgY9r4IqDqx4oiIiIgMfScSoN4CZpjZFDNLBD4BPB6dYomIiIgMXcfdheec6zWz24BngDjgl865DVErmYiIiMgQdSJjoHDOPQk8GaWyiIiIiAwLmolcREREJEIKUCIiIiIRUoASERERiZAClIiIiEiEFKBEREREIqQAJSIiIhIhBSgRERGRCJlzH3h83cBdzKwO2DnAl8kF9g7wNUYb1Wl0qT6jT3UaXarP6FOdRt9g1Olk59y4w+0Y1AA1GMxstXNuaazLMZKoTqNL9Rl9qtPoUn1Gn+o0+mJdp+rCExEREYmQApSIiIhIhEZigLo/1gUYgVSn0aX6jD7VaXSpPqNPdRp9Ma3TETcGSkRERGSgjcQWKBEREZEBNaIClJldaGZbzKzczFbGujzDgZn90sz2mNn6sG1jzew5M3vfX44J2/c1v363mNkFsSn10GZmE83sz2a2ycw2mNkX/O2q1+NgZslm9qaZrfXr81v+dtXnCTCzODN7x8ye8N+rPk+Ame0ws3VmVmZmq/1tqtMTYGbZZvZ7M9vs/z49YyjV6YgJUGYWB/wbcBEwB7jOzObEtlTDwn8BFx6ybSXwgnNuBvCC/x6/Pj8BzPU/c59f73KwXuDLzrnZwOnArX7dqV6PTxdwnnNuAbAQuNDMTkf1eaK+AGwKe6/6PHHLnHMLw26tV52emH8BnnbOzQIW4P28Dpk6HTEBCjgVKHfObXPOdQMPAZfHuExDnnPuZWDfIZsvBx7w1x8Argjb/pBzrss5tx0ox6t3CeOcq3bOve2vt+D9oy9E9XpcnKfVf5vgvxyqz+NmZkXAJcB/hm1WfUaf6vQ4mVkmcC7wCwDnXLdzrpEhVKcjKUAVArvD3lf42yRy+c65avDCAJDnb1cdR8jMioFFwBuoXo+b391UBuwBnnPOqT5PzL3A7UAobJvq88Q44FkzW2NmK/xtqtPjNxWoA37ldzX/p5mlMYTqdCQFKDvMNt1iGF2q4wiYWTrwKPBF51zz0Q49zDbVaxjnXNA5txAoAk41s3lHOVz1eRRmdimwxzm3pr8fOcw21ecHneWcW4w3jORWMzv3KMeqTo8tHlgM/LtzbhHQht9ddwSDXqcjKUBVABPD3hcBVTEqy3BXa2YFAP5yj79dddxPZpaAF57+2zn3B3+z6vUE+U34pXhjHFSfx+cs4KNmtgNvqMN5ZvYbVJ8nxDlX5S/3AI/hdR+pTo9fBVDhtzYD/B4vUA2ZOh1JAeotYIaZTTGzRLzBZI/HuEzD1ePADf76DcCqsO2fMLMkM5sCzADejEH5hjQzM7x++03OuR+F7VK9HgczG2dm2f56CnA+sBnV53Fxzn3NOVfknCvG+z35onPuU6g+j5uZpZlZRt868BFgParT4+acqwF2m9lMf9NyYCNDqE7jB/Lkg8k512tmtwHPAHHAL51zG2JcrCHPzH4HlAC5ZlYBfBO4B3jEzG4GdgEfB3DObTCzR/B+iHuBW51zwZgUfGg7C/g0sM4ftwNwB6rX41UAPODfURMAHnHOPWFmr6P6jCb9fB6/fOAx7/+diAd+65x72szeQnV6Iv4O+G+/UWQbcBP+74ChUKeaiVxEREQkQiOpC09ERERkUChAiYiIiERIAUpEREQkQgpQIiIiIhFSgBIRERGJkAKUiAw5ZpbjP9W+zMxqzKzSX281s/tiXT4REU1jICJDmpndCbQ65/451mUREemjFigRGTbMrMTMnvDX7zSzB8zsWTPbYWZXmtn3zWydmT3tP04HM1tiZi/5D3l9pu8xECIiJ0IBSkSGs2nAJcDlwG+APzvn5gMdwCV+iPoJcLVzbgnwS+A7sSqsiIwcI+ZRLiIyKj3lnOsxs3V4j3B62t++DigGZgLzgOf8x2zEAdUxKKeIjDAKUCIynHUBOOdCZtbjDgzqDOH9fjNgg3PujFgVUERGJnXhichItgUYZ2ZnAJhZgpnNjXGZRGQEUIASkRHLOdcNXA18z8zWAmXAmTEtlIiMCJrGQERERCRCaoESERERiZAClIiIiEiEFKBEREREIqQAJSIiIhIhBSgRERGRCClAiYiIiERIAUpEREQkQgpQIiIiIhH6/4Ab/ALUywDyAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "import pandas as pd\n", "\n", "t_expt = 600\n", "\n", "data_file = \"data/Model_Data.csv\"\n", "connected = False\n", "\n", "if connected:\n", " # run experiment and record data locally\n", " from tclab import TCLab, clock, Historian, Plotter\n", " with TCLab() as lab:\n", " h = Historian(lab.sources)\n", " p = Plotter(h, t_expt)\n", " lab.P1 = 200\n", " lab.U1 = 50\n", " for t in clock(t_expt, 10):\n", " print(t, lab.T1)\n", " p.update(t)\n", "\n", " h.to_csv(data_file)\n", "else:\n", " # download previously recorded data from repository\n", " df = pd.read_csv(\"https://jckantor.github.io/cbe30338-2021/\" + data_file)\n", " ax = df.plot(\"Time\", figsize=(10, 5))\n", " ax.grid(True)\n", " ax.set_title(f\"Peak Temperature = {df['T1'].max()}\")" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[2.3.2.5 Estimating $\\alpha$](https://jckantor.github.io/cbe30338-2021/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.2.5-Estimating-$\\alpha$)", "section": "2.3.2.5 Estimating $\\alpha$" } }, "source": [ "![](https://jckantor.github.io/cbe30338-2021/figures/Model_Data_Image.jpg)\n", "\n", "Under these conditions, starting with an ambient temperature of 21 C, when the system reached steady-state the measured voltage was 5.10 volts with a current of 0.315 amps, or 1.61 watts, resulting in a peak temperature of 53 C\n", "\n", "$$\\alpha P_1 u_1 = 1.6 \\text{ watts} \\implies \\alpha = \\frac{1.6\\text{watts}}{200 \\times 50} = 0.00016 \\frac{\\text{watts}}{\\text{units P1} \\times \\text{percent U1}}$$\n", "\n", "
\n", "\n", "**Study Question:** What is the maximum power that could be delivered to the heater/sensor assembly?\n", "\n", "
" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[2.3.2.6 Steady State](https://jckantor.github.io/cbe30338-2021/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.2.6-Steady-State)", "section": "2.3.2.6 Steady State" } }, "source": [ "### 2.3.2.6 Steady State\n", "\n", "We'll begin our analysis by investigating the steady-state response of this system to a steady-state input $\\bar{u}_{1}$. At steady-state all variables are constant so $\\frac{dT_1}{dt} = 0$, which leaves \n", "\n", "\\begin{align}\n", "0 = U_a(T_{amb} - \\bar{T}_1) + \\alpha P_1\\bar{u}_{1}\n", "\\end{align}\n", "\n", "Solving for $\\bar{T}_{1}$\n", "\n", "$$\\bar{T}_{1} = T_{amb} + \\frac{\\alpha P_1}{U_a}\\bar{u}_{1}$$\n", "\n", "
\n", "\n", "**Study Question:** In the cell below, write Python code to estimate the value of $U_a$.\n", "\n", "**Study Question:** Using the results of this calculation, estimate the maximum acheivable temperature with this device.\n", "\n", "
" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "nbpages": { "level": 3, "link": "[2.3.2.6 Steady State](https://jckantor.github.io/cbe30338-2021/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.2.6-Steady-State)", "section": "2.3.2.6 Steady State" } }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[2.3.2.7 Deviation Variables](https://jckantor.github.io/cbe30338-2021/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.2.7-Deviation-Variables)", "section": "2.3.2.7 Deviation Variables" } }, "source": [ "### 2.3.2.7 Deviation Variables\n", "\n", "In examining the response of the temperature control laboratory, we see the temperature is a deviation from ambient temperature, i.e.,\n", "\n", "\\begin{align}\n", "T_1' = T_1 - T_{amb}\n", "\\end{align}\n", "\n", "For process control purposes, we are often interested in the deviation of a process variable from a nominal value. In this case the choice of deviation variable is clearly obvious which is designated $T_1'$. From the steady state equation we see\n", "\n", "\\begin{align}\n", "\\bar{T}_1' = \\bar{T}_1 - T_{amb} = \\frac{\\alpha P_1}{U_a}\\bar{u}_1\n", "\\end{align}\n", "\n", "which is a somewhat simpler expression.\n", "\n", "Let's see what happens to the transient model. Substituting $T_1 = T_{amb} + T_1'$ into the differential equation gives\n", "\n", "\\begin{align}\n", "C_p\\frac{d(T_{amb}+T_1')}{dt} & = U_a(T_{amb} - (T_{amb} + T_1')) + \\alpha P_1u_1\n", "\\end{align}\n", "\n", "Expanding these terms\n", "\n", "\\begin{align}\n", "C_p\\underbrace{\\frac{dT_{amb}}{dt}}_{0} + C_p\\frac{dT_1'}{dt} & = U_a(\\underbrace{T_{amb} - T_{amb}}_{0} - T_1') + \\alpha P_1u_1\n", "\\end{align}\n", "\n", "we see several terms drop out. The derivative of any constant is zero, and see a cancelation on the right hand side, leaving\n", "\n", "\\begin{align}\n", "C_p\\frac{dT_1'}{dt} & = - U_aT_1' + \\alpha P_1u_1\n", "\\end{align}\n", "\n", "One last manipulation will bring this model into a commonly used standard form\n", "\n", "\\begin{align}\n", "\\frac{dT_1'}{dt} & = - \\frac{U_a}{C_p}T_1' + \\frac{\\alpha P_1}{C_p}u_1\n", "\\end{align}\n", "\n", "
\n", "\n", "**Study Question:** Previously we estimated $U_a$ and $\\alpha$ from steady-state measurements. Can $C_p$ be estimated from steady-state measurements? Why or why not?\n", "\n", "
" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[2.3.2.8 First Order Linear Differential Equations](https://jckantor.github.io/cbe30338-2021/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.2.8-First-Order-Linear-Differential-Equations)", "section": "2.3.2.8 First Order Linear Differential Equations" } }, "source": [ "### 2.3.2.8 First Order Linear Differential Equations\n", "\n", "A standard form for a single differential equation is\n", "\n", "\\begin{align}\n", "\\frac{dx}{dt} & = ax + bu\n", "\\end{align}\n", "\n", "where $a$ and $b$ are model constants, $x$ is the dependent variable, and $u$ is an exogeneous input. \n", "\n", "#### Steady State Response\n", "\n", "For a constant value $\\bar{u}$, the steady state response $\\bar{x}$ is given by solution to the equation\n", "\n", "\\begin{align}\n", "0 & = a\\bar{x} + b\\bar{u}\n", "\\end{align}\n", "\n", "which is\n", "\n", "\\begin{align}\n", "\\bar{x} & = -\\frac{b}{a} \\bar{u}\n", "\\end{align}\n", "\n", "#### Transient Response\n", "\n", "The transient response is given by\n", "\n", "\\begin{align}\n", "x(t) & = \\bar{x} + \\left[x(t_0) - \\bar{x}\\right] e^{a(t-t_0)}\n", "\\end{align}\n", "\n", "which is an exact, analytical solution.\n", "\n", "#### Apply to Model Equation\n", "\n", "We now apply this textbook solution to the model equation. Comparing equations, we make the following identifications\n", "\n", "\\begin{align}\n", "T_1' \\sim x \\\\\n", "-\\frac{U_a}{C_p} \\sim a \\\\\n", "\\frac{\\alpha P_1}{C_p} \\sim b \\\\\n", "u_1 \\sim u\n", "\\end{align}\n", "\n", "Substituting these terms into the standard solution we confirm the steady-state solution found above, and provides a solution for the transient response of the deviation variables.\n", "\n", "\\begin{align}\n", "\\bar{x} = -\\frac{b}{a}\\bar{u} \\qquad & \\Rightarrow \\qquad \\bar{T}_{1}' = \\frac{\\alpha P_1}{U_a}\\bar{u}_{1} \\\\\n", "x(t) = \\bar{x} + \\left[x(t_0) - \\bar{x}\\right] e^{a(t-t_0)} \\qquad & \\Rightarrow \\qquad\n", "T_1'(t) = \\frac{\\alpha P_1}{U_a}\\bar{u}_{1} + \\left[T_1'(t_0) - \\frac{\\alpha P_1}{U_a}\\bar{u}_{1}\\right]e^{-\\frac{U_a}{C_p}(t-t_0)}\n", "\\end{align}" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 3, "link": "[2.3.2.9 Plotting the Analytical Solution](https://jckantor.github.io/cbe30338-2021/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.2.9-Plotting-the-Analytical-Solution)", "section": "2.3.2.9 Plotting the Analytical Solution" } }, "source": [ "### 2.3.2.9 Plotting the Analytical Solution\n", "\n", "The following cell demonstrates use of these results to plot the transient response for a particular choice of model parameters. \n", "\n", "The steady state analysis provided an estimate for the gross heat transfer coefficient $U_a$. Rerun this cell for different values of gross heat capacity $C_p$. Try to find a value that at least mimics the experimental response shown above." ] }, { "cell_type": "code", "execution_count": 85, "metadata": { "nbpages": { "level": 3, "link": "[2.3.2.9 Plotting the Analytical Solution](https://jckantor.github.io/cbe30338-2021/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.2.9-Plotting-the-Analytical-Solution)", "section": "2.3.2.9 Plotting the Analytical Solution" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAApK0lEQVR4nO3dd3xc5ZX/8c9Rb7blKncbsI0BG2zLQFjKYjqEhJJASICQACGNLFmSLBCyC2TDkvbb9GwSeoBEIaHGlIQim44LNrbBNgYsd7lKtro00vn9MdcgbFkaSxrdKd/363Vfc+8zc++co3J09cy9z2PujoiIpI+MsAMQEZG+pcIvIpJmVPhFRNKMCr+ISJpR4RcRSTNZYQcQiyFDhvj48eO7tW9dXR2FhYW9G1BIlEviSZU8QLkkqp7ksnDhwm3uPnTP9qQo/OPHj2fBggXd2nfOnDmceOKJvRtQSJRL4kmVPEC5JKqe5GJmazpqV1ePiEiaUeEXEUkzKvwiImlGhV9EJM2o8IuIpBkVfhGRNKPCLyKSZpLiOn4RkWQRaW2jKRJdmncvra00trTR3NpGSyR4bI0+1xRpo6XVaQnaPliPRLdHtrT1eowq/CKS8tydpkgbdU0R6ptbqW9upa45QkOwXt8cobGllYbmVhpa2mhoaaWppZWGoK0x0kZjSyuNLa00tbTRGIk+NkWiBb0p0vpBsW9t6905Tq4tze3V44EKv4gksNY2p6axhZ0NLdQ0RtjVGH2MLi3UNkaobfpwqQseN21rIHPBHOqaI9Q3RYv8/tbjvOwM8rMzyQuW3KyMYD2DQYU55GVF13OzMsnNziA3K7qek7V7PYOcYHt3W05mxgfb2Zkfbmdn2gdtu9uzM43MDGPu3Lm9/nVV4ReRuGtpbaOqvpmquhZ21DVTXd9MdUMLVfXN7Kxvobo+WG/4sMjvbGihtinS5bFzszIoys2iKC+LwpzoY3GuMXbkAApzMinIyaIw98PH/OxMCnOzyM/OJD8nk4Jgyc8J2oIin5FhffCVCYcKv4jsN3enpinCll1NbK1pYlttE9trm9hW28z2uujjttomquqa2VHXzK7GfRfwnKwMBhZkU5yfw4CCbMYMKqB/XjYD8rPpn59F/7xs+udn0y8vi3550e3oejZFuVnkZO19jUp0fJvp8fwSJDUVfhH5iMaWVjbvamTTzsYPHiuD9S01TWypaWRrTRONHXzomGEwqDCXIUU5DC7KYczAYgYV5jCwIIdBhdkMLMxhUEEOxQU5DCyMFvv8nMwQskxvKvwiacTd2dnQwrodDayvqmdDdQMbqxvZUF3PynUN7HrxGXbUNe+1X7/cLIb1z2VYvzxmjB3IsH65DO0X3R4arA8ujBb0zBTuIkkVKvwiKaatzdm4s4GKbfWs3l7Huh31rN1ez7qqetbuqKdmj26XgpxMRhXn0y/HOObA4YwckMfwAXmMGJDP8AG5lPTPo19edkjZSDyo8IskqV2NLby7pZZ3t9Ty3tZaVm+to2J7HRXb62mOfNgNk5OVwZiB+YwZVEDpuIGMHVTA6IEFjB6Yz+iB+QzIz8bMgn7xqSFmJH1FhV8kwdU1RVi5uYYVm2p4Z3MNq7bU8O6WWjbvavrgNdmZxrjBhYwfXMi/ThrK+CGFHBAsJf3yUvoKFdl/KvwiCcLd2VDdwLINO3l74y5WVNaworKGtTvqP3hNQU4mE4YVceyEIUwYVsSEoUVMLOnHmIH5ZGVqBBaJjQq/SAjcnfVVDSzdsJOlG3ayLFiq6luA6NUx44cUMnXUAC4oHc3Bw/txyIj+jCrO19m79JgKv0gfqGuK8Ob6ahavq2bR2uiyrTbaVZOdaUwq6cdphw5nyugBTBnZn0NG9CcvW5c5Snyo8IvEwdaaJuZX7GDe6h28vnoHKyt3fTBkwIFDCjlh0hBmjB3I4aMHcPDwfuRmqchL31HhF+kFm3c18sp72z4o9O9vrQMgPzuTGeOKufqkiUwfW8y00cUMLMwJOVpJd3Et/GZWAdQArUDE3Wea2SDgL8B4oAK40N2r4hmHSG+ra4rw+urt/Hl5E/+zaC7vbK4FoF9eFkeNH8RnZo7hqAMGMWXUALL1oaskmL4445/l7tvabV8PPOfuPzSz64Pt6/ogDpFuc3fe2VzLs8s3M3flVt5YW0WkzcnOgI8dlMenZozm2AlDOGREf925KgkvjK6ec4ATg/V7gTmo8EsCamxp5bX3t/P8ii08t3wLG6obADhsZH+uOP4Ajp8wlPq1Sznt5KNDjlRk/8S78DvwTzNz4Pfu/gegxN03Abj7JjMbFucYRGJW2xTh+RVbeGrpJua+s5X65lbysjM4bsJQrj5pArMOHsbwAXkfvH7OBp3dS/Ix996dLeYjBzcb6e4bg+L+DPAN4HF3L273mip3H9jBvlcBVwGUlJSUlpWVdSuG2tpaioqKurVvolEu8VHf4ize2sr8yghLt7USaYPiXGPGsEymDctk8qBMcjI7LvCJlEdPKZfE1JNcZs2atdDdZ+7ZHtfC/5E3MrsZqAW+BJwYnO2PAOa4+8Gd7Ttz5kxfsGBBt943Ov7Iid3aN9Eol97T2NLKs8s38+iiDbzwzjaaW9sY3j+PM6cO56ypIygdOzCmG6XCzqM3KZfE1JNczKzDwh+3rh4zKwQy3L0mWD8N+D7wOHAZ8MPg8bF4xSDSXlubM79iB48s2sATSzdR0xihpH8ulx4zjrOmjmD6mGLdFStpIZ59/CXAI2a2+33+5O5Pm9l84EEzuwJYC1wQxxhEWF9Vz4Pz1/Hwog2sr2qgICeTM6YM5/zpoznmoMG6CkfSTtwKv7u/DxzRQft24OR4va8IQKS1jfKVW3ng9TXMfWcrBhw7YQjfOm0Spx82nIIc3bso6Us//ZJSNu1s4C/z11E2bx2Vuxop6Z/LN06ayEVHjmFkcX7Y4YkkBBV+SQmL1lZxx0ureXpZJW3uHD9xKLeccxgnTx6m4YpF9qDCL0mrtc155u1Kbn9xNQvXVNE/L4srjzuAi48ex9jBBWGHJ5KwVPgl6dQ3R3hw/jruermCtTvqGTMon5s/cSgXzBxDYa5+pEW6ot8SSRq1TRH++GoFd7y4mh11zZSOG8h3z5rMqYcO15U5IvtBhV8SXk1jC398dQ23v/g+1fUtnHjwUL5x0gRKxw0KOzSRpKTCLwlrV2ML97xcwZ0vrWZnQwsnTR7Gv508kWljisMOTSSpqfBLwmmOtHH/a2v41fOrqKpv4ZRDSrjm5IlMHT0g7NBEUoIKvyQMd2f2kk385B8rWbujnuMnDuG6MyYzZZQKvkhvUuGXhPD6+9v5nyeX8+b6nUwe3o8/Xn4UJ0waGnZYIilJhV9CtXZ7Pd+f/TbPLt/MiAF5/PSCIzhv+ihdpSMSRyr8EoqWNueXz63iN+XvkpVhfOf0g7niuAPIy84MOzSRlKfCL33uhXe28r2XGthc/w4fnzqC7519CCMGaBwdkb6iwi99ZtPOBn4wezlPLN1ESYGpH18kJCr8EnfuzgOvr+W2J5cTaXO+deokJtt6FX2RkKjwS1ytr6rn+oeW8tK72zhuwhD+57ypjB1cwJw5G8IOTSRtqfBLXLg7f5m/jh88sZw2d249bwqfO2oswYxsIhIiFX7pdZt2NnD9Q0uZ+85WjjlwMD/+9OGMGaRhkkUShQq/9Kq/v7mR7z6ylEir8/1zDuOSo8dpAnORBKPCL72isaWVW/7+Nn+et5YZY4v52WemMW5wYdhhiUgHVPilx97dUsvVf3qDFZU1fPXEg7j21Elka7pDkYSlwi898vAb6/neo8vIy87kni8eyYkHDws7JBHpQtwLv5llAguADe5+tpndDHwJ2Bq85Lvu/mS845DeVd8c4abH3uKvC9dz1AGD+OVF0xk+IC/ssEQkBn1xxn8NsBzo367tZ+7+0z54b4mD9VX1fOmPC1lRuYtvnDSBa06eSJa6dkSSRlwLv5mNBj4O3ApcG8/3kr4xv2IHX7lvIc2tbdz9BXXtiCSjeJ+m/Rz4D6Btj/arzWyJmd1lZgPjHIP0kr/MX8vnbn+N/vnZPPr1Y1X0RZKUuXt8Dmx2NnCWu3/NzE4Evh308ZcA2wAH/hsY4e6Xd7D/VcBVACUlJaVlZWXdiqO2tpaioqLuJZFgwsqltc0pW9nMM2siHDY4g69Ny6Mwu2fX5qfK9yVV8gDlkqh6ksusWbMWuvvMvZ5w97gswG3AeqACqATqgfv3eM14YFlXxyotLfXuKi8v7/a+iSaMXKrrmv2SO17zcdfN9lsef8tbIq29ctxU+b6kSh7uyiVR9SQXYIF3UFPj1sfv7jcANwC0O+O/xMxGuPum4GXnAcviFYP0zIbqBj5/5+us3VHPjz41lc8cOTbskESkF4RxHf+PzWwa0a6eCuDLIcQgXVi1uYZL75xHXXOE+684mqMPHBx2SCLSS/qk8Lv7HGBOsH5pX7yndN/CNVVcfs98crIyePDLx3DIiP5d7yQiSUN37spHlK/cwlfvX8jw/nncd8XRGlVTJAWp8MsHHlm0nu/8dQkHD+/HPV88iqH9csMOSUTiQIVfALjzpdX89+y3OebAwfzh86X0y8sOOyQRiRMVfuH3c9/jtqdWcOaU4fzsM9PIy84MOyQRiSMV/jR3x4vvc9tTK/jEESP52YVHaMwdkTSwz99yMzvdzD7dQfvFZnZqfMOSvnDnS6v5wRPL+fjUESr6Immks9/0W4C5HbQ/B3w/PuFIX7nn5Wif/plThvPzi6ap6Iukkc5+2wvcfeueje5eCWhOvSR236sV3Pz3tznt0BJ++dnpmi1LJM109hufZ2Z7fQZgZtlAfvxCknh64PU1/Odjb3HKISX8+nMzVPRF0lBnv/UPA7eb2Qdn98H674LnJMk8smg9Nz6yjJMmD+M3F08nJ0tFXyQddfab/z1gM7DGzBaa2UKiY+tsDZ6TJPLiqq18569LOObAwfzfJTPIzdIlmyLpap+Xc7p7BLjezG4BJgTN77p7Q59EJr1m2YadfOW+hUwYVsTvP1+qoi+S5jq9jt/MJhGdrGVpH8UjvWzdjnq+cPd8igtyuPfyo+ivO3JF0t4+C7+Z/TB4vs3MzN2/03dhSW/YUdfM5++aR0trG2VXHU1J/7ywQxKRBNDZGf/JwHHB+it9EIv0oobmVi6/Zz4bqxt44MqjmTCsX9ghiUiC6Kzwfxu4FzCCmbQkOURa27j6T2+wZH01/3dJKTPHDwo7JBFJIJ19uDuXju/clQT3gyeW89yKLfz3uVM4/bDhYYcjIglGF3KnmAcXrOOeVyq48rgDuPRj48IOR0QSkAp/Clm0torvPbKM4yYM4fozJ4cdjogkKBX+FLFlVyNfuX8hJQNy+dVnp2vQNRHZp86GZV5gZr8wszPMTNcBJrCmSCtfuX8huxoi/OHSmQwszAk7JBFJYJ2dFn4MeAQ4EZhrZk+a2TXBTV2SINydmx57izfWVvP/LjyCQ0b0DzskEUlwXQ3ZMCdYMLMRwJnAD8xsAvCau3+tD2KUTtz/+lrK5q/j67MO4qypI8IOR0SSQMwdwe6+yd3vcvcLgZnAA7HsZ2aZZrbIzGYH24PM7BkzWxU8Duxe6DJv9Q5uefwtZh08lGtPPTjscEQkSXTrE0B3b3P3l2N8+TXA8nbb1wPPuftEorN5Xd+dGNLdjrpmrv7TG4wZVMDPL5pOZoaFHZKIJIm4XvphZqOBjwN3tGs+h+gdwQSP58YzhlTk7nznr29SXd/Crz83nQH5GnhNRGJn7h6/g5v9DbgN6Ad8293PNrNqdy9u95oqd9+ru8fMrgKuAigpKSktKyvrVgy1tbUUFRV1a99EszuXZypaeGBFMxdPzuHU8clZ9FPl+5IqeYBySVQ9yWXWrFkL3X3mXk+4e6cLMIlol8yyYPtw4Hsx7Hc28Ntg/URgdrBevcfrqro6VmlpqXdXeXl5t/dNNOXl5b5sQ7VP/O6Tfvnd87ytrS3skLotVb4vqZKHu3JJVD3JBVjgHdTUWLp6bic6SFtL8IdiCXBRDPsdC3zSzCqAMuAkM7sf2BxcIbT7SqEtMRxLgKaI840/L6K4IJufXHAEZurXF5H9F0vhL3D3eXu0Rbrayd1vcPfR7j6e6B+K5939EuBx4LLgZZcBj+1HvGnt/uXNrN5Wx88vmsYg3aQlIt0US+HfZmYHAQ5gZp8GNvXgPX8InGpmq4BTg23pwuNvbuTFDRG+fuIE/uWgIWGHIyJJrNOpFwNfB/4ATDazDcBq4OL9eRN3n0NwI5i7byc6yYvEaN2Oem58eCkTijO45pSJYYcjIkmuqzl3M4GvuvspZlYIZLh7Td+EJgCtbc6/lS0Cgy8fnku2Bl8TkR7qtIq4eytQGqzXqej3vbteWs2itdX84NwpDC1Q0ReRnoulq2eRmT0O/BWo293o7g/HLSoB4P2ttfz0nys55ZASPnnESObOXRV2SCKSAmIp/IOA7cBJ7docUOGPo7Y257qHlpCblcGt503RpZsi0mu6LPzu/sW+CEQ+6r7X1jC/ooqffPpwSvprOgQR6T1dFn4zu5vgUs723P3yuEQkrNtRz4+eXsEJk4by6dLRYYcjIikmlq6e2e3W84DzgI3xCUfcnesfXkKGGbedP1VdPCLS62Lp6nmo/baZ/Rl4Nm4Rpbmy+et4+d3t3HreFEYV54cdjoikoO5cHzgRGNvbgQhsrG7g1ieWc8yBg/nskfoSi0h8xNLHX8NH+/grgeviFlGacndufGQprW3ODz81lQxNrCIicRJLV0+/vggk3T21rJLylVv5z7MPZdzgwrDDEZEU1mVXj5k9F0ubdF99c4QfzH6bQ0b057JjxoUdjoikuH2e8ZtZHlAADAkmRN/d99AfGNkHsaWN35a/x8adjfzis9PJ0lg8IhJnnXX1fBn4JtEiv5APC/8u4DfxDSt9VGyr4w8vvM9500dx5PhBYYcjImlgn4Xf3X8B/MLMvuHuv+rDmNLK92e/TXamccOZk8MORUTSRCwf7v7KzKYAhxK9gWt3+x/jGVg6eG75Zp5fsYUbzzqEYRqWQUT6SCyXc95EdLL0Q4EngTOBlwAV/h5obGnl+7PfZsKwIr5w7PiwwxGRNBLLJ4mfJjpjVmUwYNsRQG5co0oDd7z4Pmu213PzJw7T5Coi0qdiqTgN7t4GRMysP7AFODC+YaW2DdUN/Lr8Xc6aOpzjJmr+XBHpW7EM0rbAzIqB24le3VMLzItnUKnu1ifeBuDGjx8aciQiko66mnPXgNvcvRr4nZk9DfR39yV9EVwqeuW9bTy5tJJvnzZJg7CJSCi6mnPXgUfbbVeo6Hefu/Ojp1YwckAeVx6v3jIRCUcsffyvmdmR+3tgM8szs3lm9qaZvWVmtwTtN5vZBjNbHCxn7XfUSeqpZZW8uX4n/37qJPKyM8MOR0TSVCx9/LOAr5hZBdHJ1o3oPwOHd7FfE3CSu9eaWTbwkpk9FTz3M3f/aXeDTkYtrW385B8rmVRSxPkzNKuWiIQnlsJ/ZncOHHQT1Qab2cGy1xSO6eLBBetYva2OOz4/k0wNuSwiIbJofe7iRWbHARPd/W4zGwoUufvqGPbLJHol0ATgN+5+nZndDHyB6Jg/C4BvuXtVB/teBVwFUFJSUlpWVhZzUu3V1tZSVFTUrX17S1Orc90LDQzNN757dF63p1NMhFx6S6rkkip5gHJJVD3JZdasWQvdfeZeT7h7pwtwE/B34J1geyTwclf77XGMYqAcmAKUAJlEP1+4Fbirq/1LS0u9u8rLy7u9b2/59fOrfNx1s33+6u09Ok4i5NJbUiWXVMnDXbkkqp7kAizwDmpqLB/ungd8kmj/Pu6+EdivyVk8ejnoHOAMd9/s7q0evSnsduCo/TlWsqmqa+Z3c97jlEOGMVOjb4pIAoil8DcHfzkcwMximh7KzIYGN35hZvnAKcAKMxvR7mXnAcv2K+Ik89s571LbHOE7p2v0TRFJDLF8uPugmf0eKDazLwGXEz1T78oI4N6gnz8DeNDdZ5vZfWY2jegfkgqi4/6npA3VDdz76ho+NWM0Bw/XDJYikhhiGZb5p2Z2KtEPYycB/+Xuz8Sw3xJgegftl3Yn0GT082feAeDfT50UciQiIh+K5YwfYCmQT/QsfWn8wkkd72yu4aE31nP5sQdoaAYRSSixTLZ+JdFB2c4nOkTza2Z2ebwDS3a/eHYVBTlZfH3WhLBDERH5iFjO+L8DTHf37QBmNhh4BbgrnoEls3e31PDksk187cSDGFiYE3Y4IiIfEctVPeuBmnbbNcC6+ISTGn5b/h55WZlcfuwBYYciIrKXWM74NwCvm9ljRPv4zwHmmdm1AO7+v3GML+ms2V7HY29u5Iv/Mp7BRZqoTEQSTyyF/71g2e2x4FHXJ3bgd3PfIzPD+NIJGnZZRBJTLJdz3tIXgaSCjdUN/G3hei46ciwl/fPCDkdEpENdFn4zmwncCIxr/3rveljmtPOHF97HHb78rzrbF5HEFUtXzwNEr+xZCrTFN5zktaWmkT/PW8v5M0YxemBB2OGIiOxTLIV/q7s/HvdIktydL66mpbWNr56o6/ZFJLHFUvhvMrM7gOeIzqoFgLs/HLeokkxVXTP3v7aGsw8fyQFDYhrDTkQkNLEU/i8Ck4nOoLW7q8cBFf7A3a9UUNfcqrt0RSQpxFL4j3D3qXGPJEntamzhnpdXc/phJRqBU0SSQix37r5mZofGPZIkdd+ra9jVGOHqWRPDDkVEJCaxnPEfB1xmZquJ9vEb0bnU0/5yzqZIK3e/XMEJk4YydfSAsMMREYlJLIX/jLhHkaRmv7mJbbVNXHmcxuQRkeTRZVePu68BxgAnBev1seyX6tydu15ezYRhRRw/cUjY4YiIxCyW8fhvAq4DbgiasoH74xlUMpi3egdvbdzF5ccegJmFHY6ISMxiOXM/D/gkUAfg7hvRAG3c/XIFxQXZnDd9VNihiIjsl1gKf7O7O9Fr9zGztL9Dad2Oev75diWfO2os+TmZYYcjIrJfYin8D5rZ74FiM/sS8CxwR3zDSmz3vlJBhhmXHjMu7FBERPZbLMMy/9TMTgV2AQcD/+Xuz8Q9sgRV2xThL/PXcdbUEYwYoEnURST5xDIs84/c/TrgmQ7aOtsvD3gByA3e52/ufpOZDQL+AowHKoAL3b2q2xn0sb8tWEdNU4QvHjs+7FBERLollq6eUztoOzOG/ZqIXgJ6BDANOMPMPgZcDzzn7hOJDvx2fYyxhq6tzbnnlQqmjy1m+tiBYYcjItIt+yz8ZvZVM1sKHGxmS9otq4ElXR3Yo2qDzexg2T1n771B+73AuT1JoC+Vr9xCxfZ6TaIuIknNohfsdPCE2QBgIHAbHz0rr3H3HTEd3CwTWAhMAH7j7teZWbW7F7d7TZW773X6bGZXAVcBlJSUlJaVlcWW0R5qa2spKirq1r57+vH8BirrnB+fkE9WRt9fu9+buYQtVXJJlTxAuSSqnuQya9ashe4+c68n3D3uC1AMlANTgOo9nqvqav/S0lLvrvLy8m7v297yTTt93HWz/bfl7/bK8bqjt3JJBKmSS6rk4a5cElVPcgEWeAc1tU+GXnD3amAO0XF/NpvZCIDgcUtfxNBTd79UQV52Bp89akzYoYiI9EjcCr+ZDTWz4mA9HzgFWAE8DlwWvOwy4LF4xdBbdta38OjiDZw/YzTFBTlhhyMi0iOxjM7ZXSOAe4N+/gzgQXefbWavEr0p7ApgLXBBHGPoFY8sWk9TpI2Ljx4bdigiIj0Wt8Lv7kuA6R20bwdOjtf79jZ3p2z+Og4fPYDDRmrMfRFJfmk/vHJXFq+rZkVlDRcdqbN9EUkNKvxdKJu3joKcTD45bWTYoYiI9AoV/k7UNkX4+5KNfOLwkRTlxvPjEBGRvqPC34nHF2+kvrmVi3QJp4ikEBX+TpTNX8vk4f2YNqY47FBERHqNCv8+vLVxJ0vW7+SiI8doakURSSkq/PtQNm8duVkZnDd9dNihiIj0KhX+DjQ0t/Lo4g2cNXUEAwqyww5HRKRXqfB34Imlm6hpjHDRkfpQV0RSjwp/B8rmreXAoYUcdcCgsEMREel1Kvx7WLW5hgVrqvShroikLBX+PZTNX0d2pvGpGfpQV0RSkwp/O02RVh5+Yz2nHTqcwUW5YYcjIhIXKvztlK/YQlV9CxfqQ10RSWEq/O08smgDQ/vlcuxBg8MORUQkblT4AzvrWyhfsZVPHD6SrEx9WUQkdanCBZ5atonm1jbOna7hl0UktanwBx5dvIEDhxQydZRm2RKR1KbCD2ysbuC193dw7vRRunZfRFKeCj/w+JsbAThHs2yJSBpQ4QceXbSB6WOLGTe4MOxQRETiLu0L/4rKXayorOHcaaPCDkVEpE/ErfCb2RgzKzez5Wb2lpldE7TfbGYbzGxxsJwVrxhi8eiijWRmGB8/fESYYYiI9Jl4ziAeAb7l7m+YWT9goZk9Ezz3M3f/aRzfOyZtbc7jizdwwsQhDNEQDSKSJuJ2xu/um9z9jWC9BlgOJFR/yvyKHWzc2ci50xMqLBGRuDJ3j/+bmI0HXgCmANcCXwB2AQuI/ldQ1cE+VwFXAZSUlJSWlZV1671ra2spKirq8Ll7ljXx6qYIv5xVQG5W4l/G2VkuySZVckmVPEC5JKqe5DJr1qyF7j5zryfcPa4LUAQsBM4PtkuATKL/bdwK3NXVMUpLS727ysvLO2xvbIn41Jue9mv+/Ea3j93X9pVLMkqVXFIlD3flkqh6kguwwDuoqXG9qsfMsoGHgAfc/eHgD81md2919zbgduCoeMawL3NWbmVXY4Rz1M0jImkmnlf1GHAnsNzd/7dde/vLZ84DlsUrhs48tngDgwtzOH7CkDDeXkQkNPG8qudY4FJgqZktDtq+C3zWzKYBDlQAX45jDB3a1djCs8u38LmjxmokThFJO3Er/O7+EtDRJ6ZPxus9Y/WPZZU0R9o0RIOIpKW0PN19elklo4rzmTamOOxQRET6XNoV/tqmCC+u2sbphw3XSJwikpbSrvCXr9hCc2sbZ0wZHnYoIiKhSLvC//SySoYU5VI6bmDYoYiIhCKtCn9jSyvlK7dw2mElZGaom0dE0lNaFf4X3tlKfXMrZ6qbR0TSWFoV/qffqqR/XhYfO3Bw2KGIiIQmbQp/S2sbz769mVMOLSFbN22JSBpLmwr46nvb2dUY4cwpmnBFRNJb2hT+p9+qpCAnk+MnamweEUlvaVH4W9ucf761mVkHDyMvOzPscEREQpUWhX/hmiq21Tbppi0REdKk8D+9rJKcrAxmTR4WdigiIqFL+cLv7vzjrUpOmDiEotx4jkItIpIcUr7wV+xqY0N1A6cfpm4eERFIg8K/cHMrmRnGKYeUhB2KiEhCSOnC7+4sqIxwzIGDGViYE3Y4IiIJIaUL/6ottVTWO6frah4RkQ+kdOF/elklBpx+qLp5RER2S+nCP7x/HsePzmJY/7ywQxERSRgpfX3jhUeOYVjde2GHISKSUFL6jF9ERPYWt8JvZmPMrNzMlpvZW2Z2TdA+yMyeMbNVwaPmQBQR6UPxPOOPAN9y90OAjwFfN7NDgeuB59x9IvBcsC0iIn0kboXf3Te5+xvBeg2wHBgFnAPcG7zsXuDceMUgIiJ7M3eP/5uYjQdeAKYAa929uN1zVe6+V3ePmV0FXAVQUlJSWlZW1q33rq2tpaioqFv7JhrlknhSJQ9QLomqJ7nMmjVrobvP3OsJd4/rAhQBC4Hzg+3qPZ6v6uoYpaWl3l3l5eXd3jfRKJfEkyp5uCuXRNWTXIAF3kFNjetVPWaWDTwEPODuDwfNm81sRPD8CGBLPGMQEZGPiudVPQbcCSx39/9t99TjwGXB+mXAY/GKQURE9ha3Pn4zOw54EVgKtAXN3wVeBx4ExgJrgQvcfUcXx9oKrOlmKEOAbd3cN9Eol8STKnmAcklUPcllnLsP3bOxTz7cDZOZLfCOPtxIQsol8aRKHqBcElU8ctGduyIiaUaFX0QkzaRD4f9D2AH0IuWSeFIlD1AuiarXc0n5Pn4REfmodDjjFxGRdlT4RUTSTEoXfjM7w8xWmtm7ZpbQo4Ca2V1mtsXMlrVr2+cQ1mZ2Q5DXSjM7PZyoO9adIbkTNR8zyzOzeWb2ZpDLLUF70uUCYGaZZrbIzGYH28maR4WZLTWzxWa2IGhL1lyKzexvZrYi+J05Ju65dDSOQyosQCbwHnAgkAO8CRwadlydxHsCMANY1q7tx8D1wfr1wI+C9UODfHKBA4I8M8POoV3cI4AZwXo/4J0g5qTLBzCgKFjPJnoD4seSMZcgvmuBPwGzk/xnrAIYskdbsuZyL3BlsJ4DFMc7l1Q+4z8KeNfd33f3ZqCM6JDQCcndXwD2vIN5X0NYnwOUuXuTu68G3iWab0Lw/R+SO2Hz8ajaYDM7WJwkzMXMRgMfB+5o15x0eXQi6XIxs/5ET/ruBHD3ZnevJs65pHLhHwWsa7e9PmhLJiXuvgmixRQYFrQnTW7BkNzTiZ4pJ2U+QffIYqIDCj7j7smay8+B/+DDIVQgOfOA6B/ff5rZwmAId0jOXA4EtgJ3B11wd5hZIXHOJZULv3XQlirXriZFbmZWRHR01m+6+67OXtpBW8Lk4+6t7j4NGA0cZWZTOnl5QuZiZmcDW9x9Yay7dNAWeh7tHOvuM4Azic7ud0Inr03kXLKIdvH+n7tPB+rofFbCXskllQv/emBMu+3RwMaQYumufQ1hnfC57eeQ3AmfD0DwL/gc4AySL5djgU+aWQXRbs+TzOx+ki8PANx9Y/C4BXiEaHdHMuayHlgf/BcJ8DeifwjimksqF/75wEQzO8DMcoCLiA4JnUz2NYT148BFZpZrZgcAE4F5IcTXIbP9HpI7YfMxs6FmVhys5wOnACtIslzc/QZ3H+3u44n+Ljzv7peQZHkAmFmhmfXbvQ6cBiwjCXNx90pgnZkdHDSdDLxNvHMJ+xPtOH9afhbRK0reA24MO54uYv0zsAloIfpX/QpgMNEJ6VcFj4Pavf7GIK+VwJlhx79HLscR/fdzCbA4WM5KxnyAw4FFQS7LgP8K2pMul3bxnciHV/UkXR5E+8XfDJa3dv9uJ2MuQWzTgAXBz9ijwMB456IhG0RE0kwqd/WIiEgHVPhFRNKMCr+ISJpR4RcRSTMq/CIiaUaFX5JKMJLh19ptjzSzv8XpvbLNLNY7XfuMmY23dqO4iuwvFX5JNsXAB4Xf3Te6+6fj9F7HAa/E6dgioVHhl2TzQ+CgYBz2n7Q/+zWzL5jZo2b2dzNbbWZXm9m1weBXr5nZoOB1B5nZ08EAXy+a2eR9vNcZwFPtG4IB2+4xs2XBePD/3tkxzazEzB6x6Hj+b5rZvwTt1wbHWGZm3wzaxgfjsd9u0bH//xncLYyZlQb7vwp8vV08h1l0voDFZrbEzCb24tdaUlXYd61p0bI/CzCej85Z8ME28AWiw9T2A4YCO4GvBM/9jOhgcRC9E3JisH400eELOnqveUDBHm2lREfo3L1d3Nkxgb+0e99MYEBwjKVAIVBE9O7T6UEuEWBa8PoHgUuC9SXAvwbrP2mX86+Ai4P1HCA/7O+RlsRfsnryR0MkAZV7dA6AGjPbCfw9aF8KHB6MGPovwF+jQwoB0UktPsLMRgI73L1+j6feBw40s18BTxAdGrizY54EfB6io3wCO83sOOARd68L3uth4Hii47CsdvfFwb4LgfFmNoDoH5i5Qft9REelBHgVuDEYa/9hd18V49dJ0pgKv6Sapnbrbe2224j+vGcA1R4dZrkzZwL/2LPR3avM7AjgdKJdLhcC34zxmLt1NLTubu3jbwXyg9d3OLaKu//JzF4nOsHKP8zsSnd/PsY4JE2pj1+STQ3Rrpxu8ei8AKvN7AKIjiQaFPI97dW/H7x+CJDh7g8B/0l0isnOjvkc8NWgPdOiMy69AJxrZgXB6JLnAS92EnM1H/6nAHBxu3gOBN53918S/Y/h8Bi/FJLGVPglqbj7duDl4EPRn3TzMBcDV5jZ7tEdPzIlp5llEu2vX9HBvqOAORadkese4IYujnkNMMvMlhLtujnMo9NS3kP0M4TXgTvcfVEXMX8R+E3w4W5Du/bPAMuCeCYDf+ziOCIanVNkT8GZ9SXu/pWwYxGJBxV+EZE0o64eEZE0o8IvIpJmVPhFRNKMCr+ISJpR4RcRSTMq/CIiaeb/A4Bj6Hy3JT8VAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "# parameter values and units\n", "alpha = 0.00016 # watts / (units P1 * percent U1)\n", "P1 = 200 # P1 units\n", "Ua = 0.05 # watts/deg C\n", "Cp = 6 # joules/deg C\n", "U1 = 50 # steady state value of u1 (percent)\n", "T_amb = 21 # deg C\n", "\n", "# initial conditions\n", "T1_dev_initial = 0\n", "\n", "# steady state solution\n", "T1_dev_ss = alpha*P1*U1/Ua\n", "\n", "# compute the transient solution\n", "t = np.linspace(0, 600)\n", "T1_dev = T1_dev_ss + (T1_dev_initial - T1_dev_ss)*np.exp(-Ua*t/Cp)\n", "\n", "# plot\n", "fig, ax = plt.subplots(1, 1)\n", "ax.plot(t, T1_dev + T_amb)\n", "ax.set_xlabel('time / seconds')\n", "ax.set_ylabel('temperature / °C')\n", "ax.grid(True)" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 2, "link": "[2.3.3 Matching the Model to Experimental Data](https://jckantor.github.io/cbe30338-2021/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.3-Matching-the-Model-to-Experimental-Data)", "section": "2.3.3 Matching the Model to Experimental Data" } }, "source": [ "## 2.3.3 Matching the Model to Experimental Data\n", "\n", "The following cell provides an interactive tool for 'tuning' the model to fit the experimental data. Work with the sliders to find good choices for each of the parameters. " ] }, { "cell_type": "code", "execution_count": 88, "metadata": { "nbpages": { "level": 2, "link": "[2.3.3 Matching the Model to Experimental Data](https://jckantor.github.io/cbe30338-2021/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.3-Matching-the-Model-to-Experimental-Data)", "section": "2.3.3 Matching the Model to Experimental Data" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAI4CAYAAAB3OR9vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACVQklEQVR4nOzdd3zV1f3H8dcnexMgEMIMe+8AgqJBa8VRcSsunLiqtVqrtcP2Z1tta7VabeueKOJEraMuRBzssPcMO4EkZK97fn/ci0YIEMi9uTfJ+/l43Me993u/93w/4Qi+OZzvOeacQ0REREREvMKCXYCIiIiISChRQBYRERERqUEBWURERESkBgVkEREREZEaFJBFRERERGqICHYBdZGSkuLS09P91l5xcTHx8fF+a0/8Q/0SutQ3oUn9ErrUN6FJ/RKagtkv8+fPz3XOtdn/eKMIyOnp6cybN89v7c2YMYPMzEy/tSf+oX4JXeqb0KR+CV3qm9CkfglNwewXM9tU23FNsRARERERqUEBWURERESkBgVkEREREZEaFJBFRERERGpQQBYRERERqUEBWURERESkBgVkEREREZEaFJBFRERERGpoFBuFiIiIiEjoKyitZH1OERtyi6n2OI7p1ppOreKCXdYRU0AWERERkTqrqPKweU8J63OKWJ9bzIacYtbnekNxblHFAed3ahXLmG4pjOnRmtHdWtM2KSYIVR8ZBWQRERGREOacI3tPKQuz88jKzmfh5ny25JUGqxrySiqp9rjvjqQkRNEtJYEf9U2la0o83dok0K1NPNUexzfrdvP1ulw+WLqdV+dlA9CzbQJjurdmdPcUjunWKkg/x6EpIIuIiIiEkL1llSzOLiArO4+Fm/PJys5nd7F3ZDYmMoxBHZI5uV9bzCwo9bWKi6JbG28Q7poST4vYyIOe2ys1kUlj0qn2OJZv28vX63L5et1ups3bwvPfbMIMOieG8dyAYrqmxDfgT3FoCsgiIiIiQVJUXsWK7XtZtrWApdv2sig7n7U5RTjfAG33NvGM69OWIZ2SGdIpmd7tEokMb3xrLISHGQM7tmBgxxZcd0J3Kqo8LNqSz9drd/PhgrWkJkUHu8QfUEAWERERaQD5JRUs27aXpVsLvM/bCtiQW/xdGE5JiGJghxb8ZHB7hnZOZlDH5EOOzjZmUWEwokMsI1JTGFG9mLjwYFf0QwrIIiIiInXknGNbQRlLtxawdlcR5ZXVVHoclVUeqjyOimoPVdUeKqsdldUeKqs9lFd5WLur6Afzhjskx9K/fRJnDelA//ZJDOjQgraJ0cGZNuEcVFdAZQlUlnmfq8r2e+37rKq0js81H+U1jpV7n6vLv7v8GIARWdCqa8P/7AehgCwiIiIhw+NxFJRWUlhWRVpyTFCnE3g8jk17Sli6tYCl2wpYtnUvy7YVkFdS+YPzosLDiAg3IsPDiAw3IsLCiIwwIsPCvMcijCGdkrn0mC4MaN+C/u2TaBkfVfdCnPMG1IoSqCz2PlcU+0Jrzdel37+uKPn+832fVZbWeL3fMec5ul+k8GiIjIGIWIiIhshYiIjxPkfFQ1yK7/Oaj33nRUNEDKvWb6Z3bMuju36AKCCLiIhIg9iaX8rK7XvJLSont6iC3UUV7C4uZ3dRBblF5ewurmBPccV3KyREhhvd2yTQKzWR3u0S6ZWaSJ92iXRIjiUs7PAjrc459pZVsdvX9uKcKiqX7/xuZLey2vlGe78f8a3yOHKLylm2dS/Lt++lqLzqu1p6t0vklP7t6N+hBQPaJ9G7XSKxkeE/HPX1eKCiyPsoL4KKQt/zDqhYBwVFkFPsDbIVRb7n4u+/U1FcIwgXfx90cbX/kLUyiIyDqDhvEI2M9z3H+QKr7/UPnve99oXdyBqPiFjv8ci478PvvrAbVv+/wGwvm0Hv2OR6t+NPCsgiIiLidx6PY11OEXM27mHuhj3M3ZjH1vwfLk2WEB1B64QoWsdH0alVHEM7J9M6PprWCVHER0WwYXcxq3cUsmBzHu8s2vbd9+KiwumZmkjv1AR6tk3E4xy7i30hu0bo3l1UQUX1fiOj8+fVUq0jjnISKCXRSmgdUUb/1sY53aBbInRKqKJNZCURlYXeELu1ENYXQrnv8V0YLvKF2TqKiPGOskbFQ1SiN9BGxUNC6vcBNyrB9zr++8e+99+F4BqPKF+IDdIKF02FArKIiIjUW2W1h6VbC5i7cQ9zNuQxf9Oe76YitEmMZmR6K64d25VBnZJpmxhN6/hoYqPqfmdWUXkVq3cWsnpHIat2FrJ6ZyGfrdzFtHnZxFBBm4hSOsVV0TG2gsHRFbRtU05K+zJahZXSIqyURIopyc2mbUIkEVXFhFfsJbyikLCKIqyiEHPVP7xgvu9RU0SMN7BGJ37/SEyD6ITvj0cleMNrdII39H73WcL3n0XFe0d1wxXDQpV6RkRERACo9ji25JWwPreY9TnFbMwtpqi86rspCVXV+25C892A9t3Nad6d1coqvaO16a3j+FHfVEZ0bcXI9FZ0aR136JvPnPOOxJbmeR9l+b7nAijNh7J8EsoKGFaaz7CyAu/nZQUQlY+LK8A8vjnBFb7H/sIiIKYFpZ5IYmNSIToJkrpBTJIv6Cb98HV00g9D8L7gG3EE84alUVNAFhERaQY8+1ZY8DhKKqrYvLuE9TnFvjDs3SZ40+6SH0xJSIyJIDku8rubzWreiBYVEUZceBhRvpvSxnRPYUSXloxMC6dNRAmU7oGSVbBtD6zLg5I93mP7QnBpfo0wnA/7j+DWFBYBMckQmwwxLbyvk7tAbDIW08J3zPeI3vc6yfc+yTtn1ozZM2aQmZkZyF9maSIUkEVERBqpmjuuZWXnsy6nmIoqzwEjvpXVHjwHuccrMtzo0jqebinxnNi3Ld1TEujaJp5ureNoFVmOlezxhtuS3Qd57IHC3bB9NyzMO3TQjWkBsS2/fyR3rvE+2fsck/z9+32hODJOc2qlQSkgi4iINAJV1R5W7SwkKzufrM35LMzOZ91+O671S0siJjKcyO9GemssNxZmxFoZSVV5JLl8OkUW0z6qiGS3l/DS3VCcC7m5sCkHindDSa53bdzahEVAXOvvH237QGwriGvlfY5t+f3ruFbfB1/NuZVGQv+lioiIBJjH49iaX8oq3w1mq3YUsmZXEeVV1d7wGuGdprBvPd2IGlMXIiPC2FlQxpKtBZRWekdnW8VHMaRTMmcOSmN4u3AGJZeTWLkbitZDcY73UbQLCnOheJfvfY53E4faRCV4g258CiS2h3aDIb61d0mw+JQaYbiV9zk6SSO60qQpIIuIiPiJx+PIKSpnWW41a79cz+qdhazaWcSanYWUVHw/9aBDciw9UxNIiI444Oa3iioPpeUVJFTuJqZqN0nVu+kbsZcbOpaSHl1EquUTW7Eby9sF2Tt/sCPZdyzcG2zj20JCG2jdA+LbQEJb73N8G9/nbbyBNzK2AX+VREKfArKIiEgdVFZ72FVYzo6CMnYUlLG9oNT7vLeMnQVlbC8oY1dhGZXV+yb7riAlIYpeqYlckNHJu9FF23h6J5aRUJ4De7dB0Q4o3AGF26Fwp/e5aId3xHf/jSGK8I7oJqR6g27rHt7nhNTvjyW09Ybi2JZ+2cBBpLlSQBYREfHxeBzb95axIaeY9blF363ysCG3iK15pQfc6BYTGUZai1jaJcUwOj2JHrFGemQe4duXMKZbEvHlObB3K+Rsh3XbvQHYU7nfVe37oJuYBu2HQmI73yPNd7ydd7Q3PLLBfi1EmrOABmQz2wgUAtVAlXMuw8xaAa8C6cBG4ALnXF4g6xARkebFOe+UhdKKakp8D+/rqu/el1RUUVpZTU5h+Q+C8L61fAHio8Lp2iaeoR1bcGm/KLpG5dPedtPGk0ty5S6iSrZjBVu9IXjbDn4w6puNdzOIpDRv0O0yxve6/Q+f49vq5jWRENMQvyPHOedya7y/C/jUOXe/md3le39nA9QhIiJNULXHsT6niKXbCli6dS/LthWwbNteCsuq6vT98DCja3IEw1uWcnHfAnpE59HRckmp3kVM8VasIBvWbj1w5DcyDlp0hKQO0OMkSOoILTpAUnvmrNrGyJMm6GY2kUYqGH9lnQBk+l4/D8xAAVlEROqgvKqaNTuLWLrVG4KXbitgxfa93436RkeE0TctiTMHtyetRQxxURHERYUTF+FoWZVDy4ptJJZtI6FkKzHF2UQVbiGicAtWuANKas6fMO+ob3In6JAB/c7yvv4uBHfwzvM9SPgt2TLDu+aviDRK5txBVg73R+NmG4A8vP/m9Lhz7gkzy3fOJdc4J88517KW704GJgOkpqYOnzp1qt/qKioqIiEhwW/tiX+oX0KX+iY0NdV+cc5RUO7YUeLYUexhR7GH7cWOncUeckod++6Bi42AzolhdEkKo0ui0TO+hK62k/jyncSW7iCmbGeNRy7G91MnHGGUxaRQFtOWsphUymLaUh7dhrKYNr7XrXFhRz/ft6n2TWOnfglNweyXcePGzXfOZex/PNABub1zbpuZtQU+Bm4G3qlLQK4pIyPDzZs3z291zdBWkyFJ/RK61DehqbH1S2W1h4LSSvaWVlLge+wtq6KgtJLdReVsyC32PnKKKSz/fnpEdEQYXVPi6Z4Sy8CkEgbH59EzMofW5duw/A2wZz3s2QjlBT+8YEKqdzvill0OfE7qENAb3hpb3zQX6pfQFMx+MbNaA3JAp1g457b5nneZ2VvASGCnmaU557abWRqwK5A1iIhIwyivqmbdrmJW7yxk5Y5CVu8sZGteqS8IV/5gHeD9mUH7FrF0S4nj8oExDIjdTfew7bSr2kZi8SZszzrYuOGHG12ERXi3Km7ZFTqO8D636up9bpkOUXGB/6FFpEkKWEA2s3ggzDlX6Hv9Y+D/gHeAScD9vufpgapBRET8r6raQ3aeb1c4XxBetbOQDbnFVPvWQYsIM7q3SaBz6ziSYyNJio2kRY1HcmQFbSu20Kp0I4mFG4jZu57wvPWwaz1sKfz+YmGR3tDbqjt0PxFadfM9unrnA2v1BxEJgED+yZIKvGXeGxgigJedcx+a2VxgmpldDWwGzg9gDSIicgjOOTbuLiErO48lW/aSX1pBaUU1pZU/XBqttKKaEt+xiqrv5/KaQedWcfRKTWR8/3b0bpdI73aJpLeOJyrcvOv+5q6G3DXe561rvK/3bvm+CAvzjgS37gGdjoHW3b2PVt2hRSeFYBFpcAH7U8c5tx4YXMvx3cBJgbquiIgcXH5JBVnZ+T945Jd4ly+LjQynVXwUsVHhxEWFExsZTkpCFHFRcd8fiwonLjKCtOQY+rRLpEfbBOIiwryBd9dKyFkJ36zyPuesgooao8FRiZDSA9KPhZSe0LonpPTyjghHxgTpV0RE5ED6a7mISBNVUeVh5Y69ZGXns3CzNwxvyC0GvCO/vdp6R32HdEpmSOdkerZNJDzsEGv2OgcF2bBrhfcx1xeIc1ZDZfH35yWkQpveMGSiNwDveyS205rAItIoKCCLiDQBzjm25pf+IAwv2Vrw3XSINonRDO2UzPkZHRnSKZlBHZNJiD7E/wJK82Dncti1HHYu8z7vWgHle78/JzHNG4SHXQZt+vgevSGuVYB/WhGRwFJAFhFphEoqqli+u5pln6/9LhTnFpUD3mXRBnZoweXHdGFo55YM6ZxM+xYxWG2jt9VVsHst7FgCO5d4w/DO5VC47ftzYlpA2/4w6AJo29f7um0f70YZIiJNkAKyiEgjUF5VTdbmfL5at5tv1uWSlZ1PZbUDVtEtJZ7je6YwtHMyQzq1pE9aIpHhYbU0UuQNwDsWewPxjiXekeGqMu/n4VGQ0hu6joW2/SC1v/c5qb2mRohIs6KALCISgqo9jqVbC/hqXS7frNvN3I17KKv0EGYwsEMLrj6uG3FFW7j89ONJjos6sIGSPbBtIWzPgu2+QLxnPd6NTfGO/rYbCCOu8T63G+idJxzAzTNERBoLBWQRkRCxt6ySdxdt4/OVOczesJvCMu9ucr1TE7loRGfGdG/NqG6taRHrDbEzZuzwhuPi3bB9IWzL8gbibYugYPP3DbdMh3aDYPBF34fhpA4aFRYROQgFZBGRIHLOMWfDHl6dl837S7ZTVumhc6s4zhiUxujuKYzu1po2idHff6FsL6z/GrbOp//S/8HCm/cLw12h43AYcTW0HwJpgzVXWETkCCkgi4gEwa7CMt5csJVpc7NZn1tMYnQE5w7ryIUjOjGwQwvvDXVVFbBrGaycD1sXwJZ53s02fNMk4mPToNtoGHkNpA3xheHkYP5YIiJNggKyiEgDqar2MHNNDlPnZPPpyl1Uexwj01tx47genDYglbjS7ZD9CSyZB1vnw/ZFUO1dmYK4FOiYAQPPgw7Dof1Q5sxZTGZmZlB/JhGRpkgBWUQkgJxzLN++l/eXbOeN+VvZsbeMlIQorju2Axd3zqdj4XxY92+YMce7LTNAZJx3RHjktd4w3DHDu+Wy5gyLiDQIBWQRET/zeByLtuTz4dIdfLB0B5v3lNDWCris4y7O6LqZLiVLCVuQBXN9o8PJXSD9OOg0CjqN9K4zHK4/nkVEgkV/AouI+EG1xzF34x4+XLqDD5dsJ6Iom9Hhq7g3eQNDW68kqXgj5AB7or4fHd4XiBPbBbl6ERGpSQFZROQolVVWM3vDHj5aspU1yxbQu3wxo8JXcUvkGlpF53hPqmoBncdAl6ug82jvjXQR0YduWEREgkoBWUSkjqqqPSzaUsA3a3eRvXI+STu+YQTL+GXYKpKtCCLBk5BKWJex0GWM99GmL4TVsqudiIiELAVkEZGD8HgcK3cU8vXaHNavzCJ261cM8yzh4rDltLIiCIfS+E5Edj8Tuh4LXcYQ1rKrbqYTEWnkFJBFRHw8HseqnYXM3bCbtauXEbHpSwZVLebMsOW0tXwwKE1II6zbadBzHKSPJTa5U7DLFhERP1NAFpFmq7yqmiVbCpizcQ/L1m4iasssRlRlMS5sCZeHeecQl8W1xtMlE3r7AnGrbhohFhFp4hSQRaTZKCyrZP6mPOZu3MOC9TnY1rmMYjHHhy3hurD1hOOhMiaeys7H4XqfhHXLJCallwKxiEgzo4AsIk1WWWU18zfl8fW6XL5au5u9W1dxrC3i+PAl3BS+nLiIUhxhVKUNJbzXHdBtHJEdM4gMjwx26SIiEkQKyCLSZFRWe1i8JZ+v1+7m63W7WbJ5J0M9yzkxPIt/RS2mfdQ2ADzJXQjrfhF0PxHrOpbI2JZBrlxEREKJArKINGoFJZW8tXALX6zOYc6GPbSo2Elm+CJuiVvK8KhFRHnKcBExWPpY6Plz6HESYa27B7tsEREJYQrIItIordlZyHNfb2T6gs30q1rB2YnLuC8ui3Zh670nxHWGXpdCz1Ow9OMgKi64BYuISKOhgCwijYbH4/h81S5embWC8A2fMz5iAXdHLSI+vACqIrwbc/S8Cnr+GHRznYiIHCUFZBEJeYVllbz3VRZbZr/JsNJveCx8KdFRlXhikgnrNR56nwbdT4SYpGCXKiIiTYACsoiErOxVC1n1xVTabP2EibYWgJLEDkQMuBr6nk5Y59GgFSdERMTPAh6QzSwcmAdsdc6dYWa/B64Fcnyn3O2cez/QdYhII+Ac7FzGjm9fxbPsbTpVbqYTsDm2N9v73U7ayHOIS+2vqRMiIhJQDTGC/DNgBVDz3z4fcs490ADXFpFQ5xxsX4RbPp2yRW8SW7iRNs6Yb/1Y0fUOBp98MZ3bdwt2lSIi0owENCCbWUfgdOBPwG2BvJaINCLOwbYFsOxt3PLpWP4mPIQxt7o/X0ZeR8fR53PO2CEkxmj6hIiINDxzzgWucbPXgfuAROAXNaZYXAHsxTv14nbnXF4t350MTAZITU0dPnXqVL/VVVRUREJCgt/aE/9Qv4Quv/SNcyQUbaDtri9ou+srYspzqCacOTaQNytGsiAyg2O7teK4DhFEhWsKRV3o90zoUt+EJvVLaApmv4wbN26+cy5j/+MBC8hmdgZwmnPuRjPL5PuAnArkAg64F0hzzl11qLYyMjLcvHnz/FbbjBkzyMzM9Ft74h/ql9BVr77ZvQ6WvA5LXoPda3BhEWxrPYbnCoby6t7+tEttxw2Z3fnJoPZEhIf5te6mTr9nQpf6JjSpX0JTMPvFzGoNyIGcYnEscKaZnQbEAElm9pJz7tIaRT0JvBfAGkQkGPZug6VvwtLXYdtCwChKO4ZPO53D37J7syU7hsGdknlgQnd+1DeVsDCNGIuISOgIWEB2zv0K+BVAjRHkS80szTm33Xfa2cDSQNUgIg2oZA8snw5L34CNswBHVbshZPW+nX/uHMgXG6KIigjj1AHt+NuIzhzTrRWm1ShERCQEBWMd5L+a2RC8Uyw2AtcFoQYR8YfqSlj7CWS9DKs/hOoKXOuebBn8M14szOD51RGUb/TQNy2JP5zZiQlD2pMcFxXsqkVERA6pQQKyc24GMMP3+rKGuKaIBNCOJZD1CiyZBsU5EJdCyeAreM+O518r4tk4u5TE6AjOG96ei0Z0ZkCHJI0Wi4hIo6Gd9ESkbopyvDfaZb0MO5dAWCT0Hs/6DhN4NDudd2fnUFntGNk1lptP6sVpA9OIjQoPdtUiIiJHTAFZRA6uuhJWfcCAJY/AzIXgqYL2Q6ke/xf+FzaWJ+bls3BhPgnRe7hkVBcuG92F7m20hJKIiDRuCsgicqDd62DBC97R4uJdJEa1hGNuJL/Xeby0Po4XP9vEzr0bSW8dxz0/6cd5wztqUw8REWkyFJBFxKuqHFa8Cwuehw0zwcKh1ykwbBLTVoaxZG8qbz+1jYoqD2N7pnDfOQPJ7NVWS7SJiEiTo4As0tzlrPaG4qyXoXQPtOgM434DQy8hqyCOv364kq/X7SY2cjvnD+/IFWPS6ZmaGOyqRUREAkYBWaQ5qizzrlk8/znY/DWERUDv02D4JOh2Ilv3lvO391fydtY2UhKiuLB3FHdfmEmLOE2jEBGRpk8BWaQ5yc+Gec94R4xLdkOrbvCj38OQSyChLUXlVfz749U89eUGHHDTuO5cf0J35n/7lcKxiIg0GwrIIk2dc7DhC5jzJKx633us92kw4hroegKEhVHtcUybs5m//281uUXlnDWkPXeM70OH5Njg1i4iIhIECsgiTVV5ISya6g3GuasgthUc+zPIuAqSO3932szVOfz5/RWs3FFIRpeWPDUpgyGdkoNXt4iISJApIIs0NTmrYe6T3p3uKgohbQic9W/ofw5Exnx32pqdhfzp/RXMWJVD51Zx/PuSYYwf0E473omISLOngCzSFDgH6z+Hrx+FdZ9CeBT0PxtGToYOw6FG6N2QW8w/P1vD9KxtxEWF8+vT+nL5mC5ER2jXOxEREThEQDazEUCKc+6D/Y6fCWx1zs0PdHEichhVFbD0dfjmMdi5FOLbwrhfw/ArIKHtD05dl1PEo5+tZXrWVqIiwrjq2HRuyOxBq/io4NQuIiISog41gvw34Ipaji8HngBODERBIlIHJXtg/rMw+wko2gFt+sKEx2Dg+RAR/YNT1+4q5J+freXdRduIjgjnmrHduHZsN9okRh+kcRERkebtUAG5tXNu4/4HnXNrzax14EoSkYPasx6++RdkTYHKEug2Ds56DLqf9INpFOCdY/zIZ2t5b/E2YiPDufZ4bzBOSVAwFhEROZRDBeRDre8U7+9CROQQsufAVw/Dyv96N/UYeD6MvgnaDTjg1FU7CnnkszW8v2Q7cZHhXH9Cd64d201TKUREROroUAH5EzP7E/Ab55zbd9DM/gB8FvDKRJo752D9DPjy77DxS4hJhuN+7r3xLintgNN37i3jLx+u5K2FW4mLDOfGzO5cfZyCsYiIyJE6VEC+HXgKWGtmWb5jg4F5wDUBrkuk+fJ4vBt6fPl32LYAEtPglD/DsEkQnXDA6eVV1TwzayOPfraGymrHdcd357rju9FSwVhEROSoHDQgO+eKgYlm1g3o7zu8zDm3vkEqE2luqqtg2Zvw5YOQswJapsMZ/4AhFx9w4x2Ac45PV+zij/9dzsbdJfyobyq/PaMvXVprBpSIiEh9HHIdZDOLA3YqFIsEUFU5ZL0MX/0D8jZ6V6Q45ynvOsbhtf8WXburiHvfW84Xq3Po3iaeF64ayfG92jRo2SIiIk3VodZBvgUYDTgzm+Oc+0eDVSXSHFSUeJdq+/qfULgd2g/zTqXodSqEhdX6lb1llTzyyRqe+3ojsZHh/PaMflw+uguR4bWfLyIiIkfuUCPIk4AMwPDOO/5HQxQk0uRVlsH852DWg1C0E9LHereC7pZ5wFJt+3g8jtfmZ/O3j1axu7iCCzM68YtTemvJNhERkQA4VED+K/Cm7/U/Al+KSBNXVQ4LX4SZf4fCbdDlODjvWUg/9pBfm7Uml/s/XMHSrXsZ3qUlz14xkoEdWzRQ0SIiIs3PoW7SexV4tQFrEWmaqiu9G3vMfAAKsqHTMXDO49D1+EN+benWAv7y4Uq+XJNLh+RY/nHhECYMaY8dZJRZRERE/OOQN+mJSD1UV8HiqfDFXyF/E3TIgDMf8e5+d4iQu3l3CQ/8bxXvLNpGy7hIfntGPy49pjPREeENWLyIiEjzpYAs4m+ealjyOnxxv3dr6LQhcNoD0PPkQwbj3UXl/POztUyZvYnwMOOn43ow+YRuJMVENlztIiIiEviAbGbheG/y2+qcO8PMWuGdupEObAQucM7lBboOkYBzDtZ8DJ/8HnYtg9SBcNEr0PvUQwbj4vIqnp61gSdmrqe0spoLMjpx6496kpoU03C1i4iIyHcOtczbR8CHwAfOuZX1uMbPgBVAku/9XcCnzrn7zewu3/s769G+SPBtmQ+f3OPdErplVzjvGeh39kGXawOo9jhenZvNgx+vJreonFP6p3LHKX3o0fbA3fJERESk4RxumbfxwO/NrBcwG29g/tQ5V1SXxs2sI3A68CfgNt/hCUCm7/XzwAwUkKWx2r0OPv0/WP42xKV4p1IMmwQRh97mefm2vdz91hKysvMZkd6Sxy8bzvAuLRumZhERETmkQ61isQN4DnjOzMKAUcCpwC/NrBT4n3Pur4dp/x/AL4HEGsdSnXPbfdfYbmZtj758kSAp2gVf/MW7nnF4NJxwJ4y5GaITD/m1kooqHv5kDU/N2kBybCQPXzSEMwdrZQoREZFQYs65I/+SWQpwinNuyiHOOQM4zTl3o5llAr/wzUHOd84l1zgvzzl3wNCZmU0GJgOkpqYOnzp16hHXeTBFRUUkJOifsUNNY+iX8KoSOmVPp1P224R5KtjW/hQ2dbmQiujDj/4uyqnihWUV7C5zHN8xggt6RZEQ1TiCcWPom+ZI/RK61DehSf0SmoLZL+PGjZvvnMvY//hRBeS6MLP7gMuAKiAG7xzkN4ERQKZv9DgNmOGc632otjIyMty8efP8VtuMGTPIzMz0W3viHyHdL55qWPA8fP5nKM6BfhPgxN9BSo/DfnXX3jL+8O5y/rtkOz3aJvDnswcysmurBijaf0K6b5ox9UvoUt+EJvVLaApmv5hZrQE5YKtYOOd+BfzKd/FMvCPIl5rZ3/DOb77f9zw9UDWI+MWGL+HDX8HOJdB5NEycCh0P+L10AI/HMWXOZv76wUrKqz3cfnIvrjuhO1ERB79xT0RERIIvGOsg3w9MM7Orgc3A+UGoQeTw8jbC/34LK96BFp2820L3P/uQS7bts2K79ya8hZvzObZHa/541kC6psQHvmYRERGpt8MGZDNLBf4MtHfOnWpm/YDRzrmn63oR59wMvKtV4JzbDZx0VNWKNITyIpj1IHz9KISFw7hfe2/Ai4w97Fcrqz386/N1/POzNSTFRvLQhYM5a0gH3YQnIiLSiNRlBPk54Fng1773q/Fu9FHngCzSKHg8sPhV70YfRTtg0IVw0j3QokOdvr4up4jbXs1i0ZYCJgxpz+9/0p+W8Yde7k1ERERCT10CcopzbpqZ/QrAOVdlZtUBrkukYWXPhQ/vhK3zof0wuPBF6DSyTl91zvHit5v48/sriIkM57GLh3H6oLQAFywiIiKBUpeAXGxmrQEHYGbHAAUBrUqkoRTlwMe/g0UvQ0I7OOs/3pHjQ+yAV9OOgjLueH0RX67J5YRebfjreYO0RbSIiEgjV5eAfBvwDtDdzL4C2gDnBbQqkUDzeGDBc/DJH6CiGI77OYz9BUTXfR3G6Vlb+e3bS6msdvzxrAFcMqqz5hqLiIg0AYcMyGYWDpzge/QGDFjlnKtsgNpEAmP7InjvNtg6D9LHwul/hzaHXIr7B/JLKvjN20t5b/F2hnZO5sELhmiFChERkSbkkAHZOVdtZhOccw8ByxqoJpHAKNvr3ehjzuMQ1xrOfgIGXVCnZdv2+WJ1Dr98fRG7iyr4xY97cf0J3YkI17rGIiIiTUldplh8ZWaP4l25onjfQefcgoBVJeJPzsGyt+Cju6FwB2RcBSf9FmIPvz30PiUVVdz/wUpe+GYTPdsm8PSkEQzo0CKARYuIiEiw1CUgj/E9/1+NYw440f/liPjZ7nXw/h2w7lNoNwgunAIdhx9REws353HbtEVsyC3m6uO6cscpvYmJDA9QwSIiIhJshw3IzrlxDVGIiF9VVcBX/4CZD0B4FIz/C4y4BsLrvnlkZbWHf366hsdmrKNdUgwvXzuKMd1TAleziIiIhIS67KT3u9qOO+f+r7bjIkG3dT5Mvxl2LfNuDX3KfZB0ZOsSr9lZyM+nZbF0617OHdaRe87sR1JMZIAKFhERkVBSp3WQa7yOAc4AVgSmHJF6qCz13oT3zaOQkAoTp0LvU4+oCY/H8ezXG/nLhytJiI7gP5cOZ/yAdgEqWEREREJRXaZY/L3mezN7AO+6yCKhY9PXMP2nsGcdDLscTr4XYpOPqImt+aXc8doivl63m5P6tOW+cwfSNlGbfoiIiDQ3dZ+Q+b04oJu/CxE5KuWF8MnvYe5TkNwFLp8O3TKPqAnnHG8t3Mo905fhcY6/nDuQCzI6adMPERGRZqouc5CX4NtmGgjHu5PevYEsSqRO1n4C794KBVtg1A3epduijmzDjqLyKu56YzHvLd7OiPSW/P38IXRuHReYekVERKRRqMsI8hk1XlcBO51zVQGqR+TwSvbAR7+GRS9D655w1UfQedQRN7N2VyHXv7SA9TlF3HFKb64/oTvhYRo1FhERae7qEpD/6Jy7rOYBM3tx/2MiDWL1/+Cdn0JxLhx3G5xwJ0Qe+Tzh/y7ezi9fX0RsVDhTrjmG0d1bB6BYERERaYzqEpD713xjZhHAke20IFJfFcXwv9/AvGegbT+4eBq0H3LEzVRWe7j/g5U8PWsDw7u05LGLh9GuhW7EExERke8dNCCb2a+Au4FYM9u77zBQATzRALWJeGXPhbcmw54NMOZmGPeboxo13rW3jJteXsDcjXlcMSadu0/rS1REWAAKFhERkcbsoAHZOXefmf0FeMo5d1UD1iTiVV0JX/wVvnwAkjrApHeh69ijamrOhj3c9PICisqqePiiIUwY0sHPxYqIiEhTccgpFs45j5kNbqhiRL6TsxrevBa2Z8HgiXDqXyCmxRE345zj6VkbuO+DlXRpFceUa0bRKzXR//WKiIhIk1GXOcjfmtkI59zcgFcj4hzMeRI+/i1ExsEFL0C/CUfVVFF5Fb98fRHvL9nB+P7t+Nv5g0jUdtEiIiJyGHUJyOOA681sI95tpw1wzrlBgSxMmp+o8t3w0jmw7jPocTJMeBQSj26b5027i7n6+XlsyC3m7tP6cO3Ybtr4Q0REROqkLgH51IBXIbLiXUbMvQXMA6c/CBlXwVEG2tnrd3P9S/NxwEtXj9ISbiIiInJEDhuQnXObzOw4oKdz7lkzawMkBL40aRYqy7zLt819ktLEHkROehVSehx1c6/Ny+but5bQuVUcz1wxgi6tj2xnPREREZG6bDV9D5AB9AaeBSKBl4BjA1uaNHm5a+H1K2DHEhj9UxZGZnLCUYZjj8fxl49W8vgX6xnbM4VHLx5Gi1jNNxYREZEjV5cpFmcDQ4EFAM65bWamZQCkfha9Cu/9HCKiYOKr0Hs8bsaMo2qquLyKW1/N4uPlO7nsmC7c85N+RIRrfWMRERE5OnUJyBXOOWdmDsDM6vRv1mYWA8wEon3Xed05d4+Z/R64FsjxnXq3c+79I65cGqeKYnj/l5D1EnQeA+c+BS2Ofk3i7QWlXP3cPFbu2MsfzuzPpDHp/qtVREREmqW6BORpZvY4kGxm1wJXAU/W4XvlwInOuSIziwRmmdkHvs8ecs49cHQlS6O1cxm8diXkrobj74AT7oLwuvwnWLtF2flc+8I8SiqqeeaKEWT2buvHYkVERKS5qstNeg+Y2cnAXqAX8Dvn3Md1+J4DinxvI30PV49apbFyDhY8Dx/cCdFJcPnb0C2zXk3+d/F2bpuWRZvEaF7S5h8iIiLiR+bNsYc5yawdMBJvwJ3rnNtRp8bNwoH5QA/gMefcnb4pFlfgDdzzgNudc3m1fHcyMBkgNTV1+NSpU+tyyTopKioiIUELcTSE8KoSeq96jLY5s9jTcggr+v6cyqjkWs+tS794nOO99ZW8uaaSnslh3DwshqQorW8caPo9E5rUL6FLfROa1C+hKZj9Mm7cuPnOuYz9jx82IJvZNcDvgM/wbhJyAvB/zrln6npxM0sG3gJuxjv3OBdv2L4XSHPOXXWo72dkZLh58+bV9XKHNWPGDDIzM/3WnhzEzuXw6qWQtxFO/A0ceyuEHfzmucP1y/aCUu54bTGz1uZyztAO3HfuQKIjwv1ethxIv2dCk/oldKlvQpP6JTQFs1/MrNaAXJcJoHcAQ51zu30NtQa+BuockJ1z+WY2Axhfc+6xmT0JvFfXdqQRWfomTP8pRCfAFe9BlzFH3ZRzjulZ2/jt9KVUVTv+dPYALh7ZWTvjiYiISEDUJSBvAQprvC8Esg/3Jd+GIpW+cBwL/Aj4i5mlOee2+047G1h6hDVLKKuugk/ugW8ehU6j4PznISntqJvLK67gN28v5b9LtjOsczIPXjCE9BRt/iEiIiKBU5eAvBWYbWbT8U6LmADMMbPbAJxzDx7ke2nA8755yGHANOfce2b2opkN8bW1Ebiufj+ChIyiHHj9Stj4JYy4Fk75s3ed46P0+apd3Pn6YvJKKrjjlN5cd3w3rW8sIiIiAVeXgLzO99hnuu/5kMsGOOcW491gZP/jl9W5Omk8tsyDaZdDyW446z8wZOJRN1VcXsWf31/BlNmb6ZWawLNXjqB/+xZ+LFZERETk4OqyzNsfGqIQacTmPwfv3wGJ7eDq/0Ha4KNvalMet03LYvOeEq4d25Xbf9ybmEjdiCciIiIN57AB2cwygF8DXWqe75wbFMC6pDGoLIP3fwELX4TuJ3l3xYtrdVRNVVR5eH11Be9/9DVpLWJ55dpjOKZbaz8XLCIiInJ4dZliMQXvShZLAE9gy5FGIz8bpl0G2xbC2F/AuLsh7OhGevOKK7j+pfnM3lDJ+cM78ruf9CMxJtLPBYuIiIjUTV0Cco5z7p2AVyKNx+ZvYeolUFUOF06BvmccdVPrcoq4+rm5bMsvY/KgaO4+/+inZ4iIiIj4Q10C8j1m9hTwKVC+76Bz7s2AVSWha9FUeOdmaNERJr4KbXoddVNfrc3lhpfmExkexiuTR1G4YbEfCxURERE5OnUJyFcCfYBIvp9i4QAF5ObE44HP7oVZD0L6WLjghaOebwzw8uzN/Hb6Urq3iefpSSPo1CqOGRv8WK+IiIjIUapLQB7snBsY8EokdFUUw5uTYeV7MGwSnP53CD+6OcLVHsef31/B07M2kNm7Df+cOFTzjUVERCSk1CUgf2tm/ZxzywNejYSegq3wykWwcymcch8ccwMc5RbPReVV3PLKQj5buYsrxqTzm9P7auMPERERCTl1CcjHAZPMbAPeOcgGOC3z1gxsnQ+vTISKEpg4FXqdctRNbckr4Zrn57FmVxH3njWAy47p4sdCRURERPynLgF5fMCrkNCz9E14+wZIaAuXvQ2p/Y66qQWb85j8wjzKqzw8d+UIxvZs4786RURERPzssP++7ZzbBHQCTvS9LqnL96SRcg5m/AVevxLShsA1n9UrHH+wZDsXPfEtcVERvHXjGIVjERERCXl12UnvHiAD6A08i3c1i5eAYwNbmjS4yjKYfhMsfR0GT4SfPAwR0Ufd3OerdnHzKwsZ1LEFT00aQav4KD8WKyIiIhIYdZlicTYwFFgA4JzbZmaJAa1KGl5pPky9GDZ9BSf9Do677ahvxgOYt3EPN7w0n97tEnnuqpEkaaUKERERaSTqEpArnHPOzByAmcUHuCZpaAVb4aVzYfdaOPdpGHhevZpbvm0vVz43l/YtYnle4VhEREQamboE5Glm9jiQbGbXAlcBTwW2LGkwO5fDlPOgbC9c+gZ0O6FezW3MLebyZ+aQEB3BC1ePJCXh6KdoiIiIiATDYQOyc+4BMzsZ2It3HvLvnHMfB7wyCbyNX8HUiRARC1d9AO3qtx/MjoIyLn16NtUeD1Mnj6Zjyzg/FSoiIiLScOpyk95fnHN3Ah/Xckwaq2Vve3fHa9nFO3Kc3LlezeUVV3DZ07PJK67glcnH0KOtpqmLiIhI41SX5dpOruXYqf4uRBrQ7MfhtSug/RC46qN6h+Pi8iqufG4um/aU8OSkDAZ1TPZHlSIiIiJBcdARZDO7AbgR6GZmi2t8lAh8FejCJACcg09+D1/9A3qfDuc9DZGx9WqyvKqa616cz5KtBfz7kmGM6Z7il1JFREREguVQUyxeBj4A7gPuqnG80Dm3J6BVif9VVcA7N8PiqZBxFZz2AISF16vJao/j1qlZzFqbywPnD+bH/dv5qVgRERGR4DloQHbOFQAFwMSGK0cCorwQpl0O6z6DE38DY39RrzWOAZxz3P3mEj5YuoPfnN6X84Z39FOxIiIiIsGlLaObutI8eOEsWP8FTHgMjr/DL+H4vg9W8uq8bG4+sQfXjO3mn1olZO3YsYMBAwb84Njvf/97HnjggYBdc/78+QwcOJAePXpwyy234Jyr9bz77ruPHj160Lt3bz766KPvjmdmZtK7d2+GDBnCkCFD2LVrV8BqFRGRpkUBuSkr2gXPnQE7FsOFL8LQS+vdpHOOP/13BU/MXM/lo7tw28m9/FCoyIFuuOEGnnjiCdasWcOaNWv48MMPDzhn+fLlTJ06lWXLlvHhhx9y4403Ul1d/d3nU6ZMISsri6ysLNq2bduQ5YuISCOmgNxUFWyFZ0+FPevh4lehz+n1btLjcdzzzjKemrWBSaO78Icz+2P1HI2WpuHJJ59kxIgRDB48mHPPPZeSkpJ6tbd9+3b27t3L6NGjMTMuv/xy3n777QPOmz59OhdddBHR0dF07dqVHj16MGfOnHpdW0RERAG5KdqzHp4d7x1BvvRN6H5ivZv0eBx3v7WEF77ZxLVju/J7hWOp4ZxzzmHu3LksWrSIvn378vTTTx9wzueff/7ddIeajzFjxhxw7tatW+nY8ft57R07dmTr1q21ntepU6eDnnfllVcyZMgQ7r333oNO0RAREdlfXbaaPipmFgPMBKJ913ndOXePmbUCXgXSgY3ABc65vEDV0ezsWgkvTIDqCpj0DrQfWu8mqz2OX76+mDcWbOGmcd35xY97KxwLwHf/HSxdupTf/OY35OfnU1RUxCmnnHLAuePGjSMrK6tO7dYWZmv7b+5Q502ZMoUOHTpQWFjIueeey4svvsjll19ep+uLiEjzFsgR5HLgROfcYGAIMN7MjsG7ZNynzrmewKf8cAk5qY9tWfDcaYCDK9/3SziurPZw66tZvLFgC7ed3Is7TumjcNwMtWjRgry8H/49ds+ePaSkeNe9vuKKK3j00UdZsmQJ99xzD2VlZQe0cSQjyB07dmTLli3fvd+yZQvt27ev9bzs7Oxaz+vQoQMAiYmJXHzxxZp6ISIidRawgOy8inxvI30PB0wAnvcdfx44K1A1NCubZ8PzZ0JkHFz5AbTtW+8mK6o83PzyQt5dtI07x/fhlpN6+qFQaYxiY2NJS0vj008/Bbzh+MMPP+S4444DoLCwkLS0NCorK5kyZUqtbewbQd7/8fXXXx9wblpaGomJiXz77bc453jhhReYMGHCAeedeeaZTJ06lfLycjZs2MCaNWsYOXIkVVVV5ObmAlBZWcl77713wCocIiIiB2OBnJdnZuHAfKAH8Jhz7k4zy3fOJdc4J88517KW704GJgOkpqYOnzp1qt/qKioqIiEhwW/tBVty3iIGLvkT5dGtWTT4/yiPaVPvNis9jscWlpOVU83EPlGckh7ph0oPran1S1NSVFREbm4uDz/8MIWFhQBceOGFnHyydyf66dOnM3XqVFJTU+nWrRslJSXcdVf9/nFo1apV3H///VRUVDBy5EhuueUWzIyvvvqKVatWcdVVVwHw0ksv8cEHHxAeHs5NN93EqFGjKC0t5Wc/+xnV1dVUV1czfPhwbrzxRsLD67c5TqjR75nQpb4JTeqX0BTMfhk3btx851zG/scDGpC/u4hZMvAWcDMwqy4BuaaMjAw3b948v9UzY8YMMjMz/dZeUK36AKZNgtbd4bK3ITG13k2WVVYz+cX5zFydw71nDeCyY7rUv846aFL90sSob0KT+iV0qW9Ck/olNAWzX8ys1oDcIKtYOOfygRnAeGCnmaX5ikoDtHr/0Vr6Jrx6KaT2hyv+65dwXFJRxZXPzuXLNTn89dxBDRaORUREREJFwAKymbXxjRxjZrHAj4CVwDvAJN9pk4DpgaqhSVv2FrxxDXQcAZdPh7hW9W6yqLyKK56Zy+wNu3nwgsFcMKLT4b8kIiIi0sQEbJk3IA143jcPOQyY5px7z8y+AaaZ2dXAZuD8ANbQNC1/B16/GjqNhEteh+j6z9spqajiqmfnMn9zHg9fNJSfDD5wxQARERGR5iBgAdk5txg4YJ0x59xu4KRAXbfJW/EevH4ldMyAS17zSzgurajmqufmMm/THoVjERERafa0k15jsvJ9eG2Sd33jS16H6MR6N1laUc3Vz89lzoY9PHThEIVjERERafYCOcVC/GnVhzDtckgbDJe+ATFJ9W7Su1rFPL5Z751zPGFIBz8UKiIiItK4aQS5MVj9P5h2GbQbAJe+CTEt6t1kWWU11704n1lrc/nbeYM5e2hHPxQqIiIi0vgpIIe6tZ94l3Jr2xcuewtik+vdZHlVNTdOWcAXq3P4yzmDOG+4wrGIiIjIPgrIoWzdZ/DKxdCml3cTkNhD7qdSJxVVHm6aspDPVu7iz2cP1FJuIiIiIvtRQA5V62fAKxMhpSdc/o5f1jmurPZw8ysL+GTFTu49awAXj+pc/zpFREREmhgF5FC0YSa8fBG06ua3TUAqqz3c8spCPlq2kz+c2V875ImIiIgchAJyqNkyzxuOW3bxjhzHp9S7yapqD7e+msUHS3fw2zP6MWlMev3rFBEREWmiFJBDyc7l8NK5kNDWO3Kc0KbeTVZ7HL94bRH/XbydX5/Wl6uP6+qHQkVERESaLgXkUJG3EV48GyJi4PK3IbFdvZv0eBx3v7mEt7O2cccpvbn2+G71blNERESkqdNGIaGgcCe8cBZUl8OVH0DL9Ho36Zzj9+8u49V52dxyYg9uGtej3m2KiIiINAcKyMFWmgcvnQNFu2DSO971juvJOcd9H6zkhW82Mfn4bvz85F5+KFRERESkeVBADqaKYnj5QshdDRdPg44Zfmn2oY9X88TM9Uwa3YVfndoHM/NLuyIiIiLNgQJysFRVwKuXwZa5cP7z0H2cX5p97PO1PPLZWi4a0Yl7ftJf4VhERETkCCkgB4OnGt6aDOs+hTMfhX5n+qXZp2dt4G8freKsIe3509kDCQtTOBYRERE5UlrFoqE5B/+9HZa9BSffC8Mu80uzL327iXvfW85pA9vxwPmDCVc4FhERETkqCsgN7dP/g/nPwnG3wbG3+KXJ1+Zl85u3l/Kjvm35x4VDiQhXt4qIiIgcLSWphvTVIzDrQRh+JZz0O780+c6ibdz5xmLG9kzh0YuHERWhLhURERGpD6WphrLoVfj4t9D/HDj97+CHm+c+WLKdn7+axYj0VjxxWQYxkeF+KFRERESkeVNAbggbZsL0myB9LJz9OITVP8hOm5fNTS8vYHDHFjx9xQhioxSORURERPxBq1gE2q4VMPVSaN0dLnwJIqLq3eRTX67nj/9dwdieKTx+2XDiotSNIiIiIv6iEeRAKtwBU86HyBi45DWITa5Xc845HvhoFX/87wpOH5jGU5MyFI6lwezYsYOLLrqI7t27069fP0477TRWr14dkGtVVlYyadIkBg4cSN++fbnvvvsCch0REZHaKF0FSnkRvHwBlOyBK9+H5M71as7jcfzunaW89O1mLhrRiT+dPVBLuUmDcc5x9tlnM2nSJKZOnQpAVlYWO3fupFcv/29l/tprr1FeXs6SJUsoKSmhX79+TJw4kfT0dL9fS0REZH8KyIFQXQWvXwk7lsDEV6H9kHo1V1Hl4fbXFvHuom1cf0J37hzfWzvkSYNauHAhkZGRXH/99d8dGzJkCAAzZszgd7/7Ha1bt2bVqlUcf/zx/Otf/yIs7Oj/gcrMKC4upqqqitLSUqKiokhKSqrvjyEiIlInCsj+5hx8cAes+R+c8RD0+nG9miutqOaGKfOZsSqHu07tw/UndPdToSJ1t2HDBoYPH37Qz+fMmcPy5cvp0qUL48eP58033+S88877wTk///nP+fzzzw/47kUXXcRdd931g2PnnXce06dPJy0tjZKSEh566CFatWrlnx9GRETkMAIWkM2sE/AC0A7wAE845x42s98D1wI5vlPvds69H6g6GtxXD8O8Z+DYWyHjqno1VVBayTXPz2XepjzuO2cgE0fWb5qGSKCMHDmSbt26ATBx4kRmzZp1QEB+6KGH6tzenDlzCA8PZ9u2beTl5TF27Fh+9KMffXcNERGRQArkCHIVcLtzboGZJQLzzexj32cPOeceCOC1g2PJ6/DJPTDgXDjpnno1lVNYzuXPzGHtrkIenTiM0wel+alIkSOXnp7O9OnTD/r5/lN+apsCdCQjyC+//DLjx48nMjKStm3bcuyxxzJv3jwFZBERaRABC8jOue3Adt/rQjNbAXQI1PWCbtPX8PYN0Hk0TPgX1GP+ZfaeEi57ejY795bz9KQRHN+rjR8LFTlyw4YNY9q0aTz55JNce+21AMydO5eSkhLAO+K7YcMGunTpwquvvsrkyZMPaONIRpA7d+7MZ599xqWXXkpJSQnffvstt956q19+FhERkcNpkGXezCwdGArM9h36qZktNrNnzKxlQ9QQUDmr4ZWJkNwFLnrZu6zbUdq8u4QLHv+GvJJKXrpmlMKxhAQz46233uLjjz+me/fu9O/fn9///ve0b98egNGjR3PXXXcxYMAAunbtytlnn12v6910000UFRUxYMAARowYwZVXXsmgQYP88aOIiIgcljnnAnsBswTgC+BPzrk3zSwVyAUccC+Q5pw7YLKumU0GJgOkpqYO37e0lD8UFRWRkJDgl7YiK/IZtuCXhFeXsWDYXymLbXfUbeWUeLh/Thnl1Y5fjoihc1Lz2h3Pn/0i/nWovsnKyuLVV1/VWsVBoN8zoUt9E5rUL6EpmP0ybty4+c65jP2PB3QVCzOLBN4Apjjn3gRwzu2s8fmTwHu1fdc59wTwBEBGRobLzMz0W10zZszAL+1VVcDzP4GqArjifY7pePC7/A9nS14Jv3niW6osgldvGEX/9i3qX18j47d+Eb87XN988skn6rsg0O+Z0KW+CU3ql9AUiv0SyFUsDHgaWOGce7DG8TTf/GSAs4GlgaohoJyD/94G2d/Cec9APcLxtvxSJj75LXtLK3n52mOaZTiWxiszMzPk/mATERGpj0COIB8LXAYsMbMs37G7gYlmNgTvFIuNwHUBrCFw5jwBC1+Esbd7V604StsLvOE4v6SSl64exYAOCsciIiIiwRTIVSxmAbVt99b41zxePwM+/BX0OhXG/eaom9m5t4yLn5zN7qIKXrx6JIM7JfutRBERERE5Og2yikWTsmc9TJsEKb3gnCeOejm3XXvLmPjkt+zaW8bzV41gaOfGv5iHiIiISFOgraaPRNle73JuZjDxZYhJOqpmcgrLufip2ewoKOP5q0YyvIu20BUREREJFQrIdeXxwJuTIXcNXPYWtDq6Hb1yi8q55Klv2ZpXynNXjmBEusKxiIiISChRQK6rz/8Iqz+A0x6AbiccVRN7iiu49KnZbN5TwjNXjGBUt9Z+LlJERERE6ktzkOtiyevw5d9h+BUw4pqjamJXYRmXPDWbDbnFPHX5CMZ0T/FvjSIiIiLiFxpBPpxtC2H6TdB5DJz6N+/84yO0emchVz47lz3FFTx5eQbH9VQ4FhEREQlVCsiHUrgTXrkY4tvABS9ARNQRN/HV2lyuf2k+MZHhTLtuNAM7ap1jERERkVCmgHwwVeXw6qVQlg9XfQQJbY64iWnzsrn7zSV0axPPM1eMoGPLOP/XKSIiIiJ+pYB8MB/cCVvmeEeO0wYd0Vedczz48Wr++dlajuuRwr8uHUZSTGSAChURERERf1JAPphhl3s3A+k34Yi+Vl5VzS9fX8z0rG1cmNGJP549gMhw3QspIiIi0lgoIB9Mh2HexxHIK67guhfnM2fjHu44pTc3ZnbHjuKmPhEREREJHgVkP9mYW8yVz81la14pj0wcypmD2we7JBERERE5CgrIfjB/0x6ufWE+zjmmXDtKu+OJiIiINGIKyPVQ7XE89/VG/vLhStq3iOHZK0fSNSU+2GWJiIiISD0oIB+lJVsKuPutJSzZWsC43m34+wVDaBV/5Oski4iIiEhoUUA+QsXlVfz9f6t57usNtE6I5rGLh3HawHa6GU9ERESkiVBAPgIfL9/JPdOXsn1vGZeM6swvx/fR+sYiIiIiTYwCch3sKCjjnneW8tGynfRpl8g/Lx7G8C4tg12WiIiIiASAAvIhVHscL36zkQf+t5oqj4c7x/fhmrFdtfGHiIiISBOmgHwQy7YVcPebS1i0pYDje7XhjxMG0Ll1XLDLEhEREZEAU0A+iCmzN7M1v4xHJg7lJ4PSdBOeiIiISDOhgHwQd53ahztP6UOLON2EJyIiItKcKCAfhFanEBEREWmedLeZiIiIiEgNCsgiIiIiIjUoIIuIiIiI1BCwgGxmnczsczNbYWbLzOxnvuOtzOxjM1vje9aOGyIiIiISMgI5glwF3O6c6wscA9xkZv2Au4BPnXM9gU9970VEREREQkLAArJzbrtzboHvdSGwAugATACe9532PHBWoGoQERERETlS5pwL/EXM0oGZwABgs3MuucZnec65A6ZZmNlkYDJAamrq8KlTp/qtnqKiIhISEvzWnviH+iV0qW9Ck/oldKlvQpP6JTQFs1/GjRs33zmXsf/xgK+DbGYJwBvArc65vXXdkc459wTwBEBGRobLzMz0W00zZszAn+2Jf6hfQpf6JjSpX0KX+iY0qV9CUyj2S0ADsplF4g3HU5xzb/oO7zSzNOfcdjNLA3Ydrp358+fnmtkmP5aWAuT6sT3xD/VL6FLfhCb1S+hS34Qm9UtoCma/dKntYMACsnmHip8GVjjnHqzx0TvAJOB+3/P0w7XlnGvj59rm1TacLsGlfgld6pvQpH4JXeqb0KR+CU2h2C+BHEE+FrgMWGJmWb5jd+MNxtPM7GpgM3B+AGsQERERETkiAQvIzrlZwMEmHJ8UqOuKiIiIiNRHc91J74lgFyC1Ur+ELvVNaFK/hC71TWhSv4SmkOuXBlnmTURERESksWiuI8giIiIiIrVSQBYRERERqaFZBWQzG29mq8xsrZndFex6mhsze8bMdpnZ0hrHWpnZx2a2xvfcssZnv/L11SozOyU4VTd9ZtbJzD43sxVmtszMfuY7rr4JIjOLMbM5ZrbI1y9/8B1Xv4QAMws3s4Vm9p7vvfolBJjZRjNbYmZZZjbPd0x9EwLMLNnMXjezlb7/34wO5b5pNgHZzMKBx4BTgX7ARDPrF9yqmp3ngPH7HbsL+NQ51xP41PceX99cBPT3fedfvj4U/6sCbnfO9QWOAW7y/fqrb4KrHDjROTcYGAKMN7NjUL+Eip8BK2q8V7+EjnHOuSE11tVV34SGh4EPnXN9gMF4f/+EbN80m4AMjATWOufWO+cqgKnAhCDX1Kw452YCe/Y7PAF43vf6eeCsGsenOufKnXMbgLV4+1D8zDm33Tm3wPe6EO8fWh1Q3wSV8yryvY30PRzql6Azs47A6cBTNQ6rX0KX+ibIzCwJOB7vBnI45yqcc/mEcN80p4DcAciu8X6L75gEV6pzbjt4gxrQ1ndc/RUEZpYODAVmo74JOt8/42cBu4CPnXPql9DwD+CXgKfGMfVLaHDA/8xsvplN9h1T3wRfNyAHeNY3NekpM4snhPumOQXk2jYt0Rp3oUv91cDMLAF4A7jVObf3UKfWckx9EwDOuWrn3BCgIzDSzAYc4nT1SwMwszOAXc65+XX9Si3H1C+Bc6xzbhje6ZQ3mdnxhzhXfdNwIoBhwL+dc0OBYnzTKQ4i6H3TnALyFqBTjfcdgW1BqkW+t9PM0gB8z7t8x9VfDcjMIvGG4ynOuTd9h9U3IcL3T5Ez8M7FU78E17HAmWa2Ee9UvRPN7CXULyHBObfN97wLeAvvP8urb4JvC7DF969gAK/jDcwh2zfNKSDPBXqaWVczi8I7+fudINck3j6Y5Hs9CZhe4/hFZhZtZl2BnsCcINTX5JmZ4Z0XtsI592CNj9Q3QWRmbcws2fc6FvgRsBL1S1A5537lnOvonEvH+/+Rz5xzl6J+CTozizezxH2vgR8DS1HfBJ1zbgeQbWa9fYdOApYTwn0T0ZAXCybnXJWZ/RT4CAgHnnHOLQtyWc2Kmb0CZAIpZrYFuAe4H5hmZlcDm4HzAZxzy8xsGt7fQFXATc656qAU3vQdC1wGLPHNdwW4G/VNsKUBz/vu3A4Dpjnn3jOzb1C/hCL9fgm+VOAt79/5iQBeds59aGZzUd+EgpuBKb5ByvXAlfj+bAvFvtFW0yIiIiIiNTSnKRYiIiIiIoelgCwiIiIiUoMCsoiIiIhIDQrIIiIiIiI1KCCLiIiIiNSggCwiUg9mlmxmN9Z4397MXg/QtSLNrK47uDUYM0s3s6XBrkNExF8UkEVE6icZ+C4gO+e2OefOC9C1jgO+DlDbIiLio4AsIlI/9wPdzSzLzP5WczTVzK4ws7fN7F0z22BmPzWz28xsoZl9a2atfOd1N7MPzWy+mX1pZn0Ocq3xwAc1D5hZuJk9Z2ZLzWyJmf38UG2aWaqZvWVmi3yPMb7jt/naWGpmt/qOpZvZCjN70syWmdn/fLv6YWbDfd//BripRj39zWyO79djsZn19OOvtYhIg1BAFhGpn7uAdc65Ic65O2r5fABwMTAS+BNQ4pwbCnwDXO475wngZufccOAXwL8Ocq1xwIz9jg0BOjjnBjjnBgLPHqbNR4AvnHODgWHAMjMbjndXq1HAMcC1ZjbUd35P4DHnXH8gHzjXd/xZ4Bbn3Oj96rkeeNg5NwTIALYc5GcREQlZzWaraRGRIPncOVcIFJpZAfCu7/gSYJCZJQBjgNd8W+QCRO/fiJm1B/Y450r2+2g90M3M/gn8F/jfYdo8EV8w923dWmBmxwFvOeeKfdd6ExgLvANscM5l+b47H0g3sxZAsnPuC9/xF4FTfa+/AX5tZh2BN51za+r46yQiEjIUkEVEAqu8xmtPjfcevH8GhwH5vhHXQzkV+Gj/g865PDMbDJyCd6rDBcCtdWxzHzvEZzXrrwZifee72k52zr1sZrOB04GPzOwa59xndaxDRCQkaIqFiEj9FAKJR/tl59xeYIOZnQ9gXoNrOfWA+ce+81OAMOfcG8BvgWGHafNT4Abf8XAzSwJmAmeZWZyZxQNnA18eouZ8vh95BrikRj3dgPXOuUfwjkAPquMvhYhIyFBAFhGpB+fcbuAr381tfzvKZi4BrjazRcAyYELND80sHOjpnFtZy3c7ADPMLAt4DvjVYdr8GTDOzJbgnTLR3zm3wPfdOcBs4Cnn3MLD1Hwl8JjvJr3SGscvBJb66ukDvHCYdkREQo45V+u/komISIjwjdRe6py7Pti1iIg0BwrIIiIiIiI1aIqFiIiIiEgNCsgiIiIiIjUoIIuIiIiI1KCALCIiIiJSgwKyiIiIiEgNCsgiIiIiIjUoIIuIiIiI1KCALCIiIiJSgwKyiIiIiEgNCsgiIiIiIjUoIIuIiIiI1KCALCLSgMyst5ktNLNCM7sl2PWIiMiBFJBFpEkys+PM7GszKzCzPWb2lZmNCHZdwC+BGc65ROfcI8EupiGY2RVmVm1mRTUemTU+f8nMtpvZXjNbbWbX1LHdz8zMmVlEoGoXkeZJAVlEmhwzSwLeA/4JtAI6AH8AyoNZl08XYJk/GqotGJpZ+BG2cUTn18M3zrmEGo8ZNT67D0h3ziUBZwJ/NLPhh2rMzC4BFIxFJCAUkEWkKeoF4Jx7xTlX7Zwrdc79zzm3GMDMfm9mL+072czSa45EmtkMM/ujbwS6yMzeNbPWZjbFN8o518zSD3ZxMzvTzJaZWb6vrb6+458B44BHfe32quW7Lczsad+I6lZfHeG+z67wjYQ/ZGZ7gN+b2XNm9m8ze9/MioFxZtbXd918Xx1n1mi/tvNPM7PlvmkfW83sF/Xvgrpzzi1zzu37y4vzPbof7HwzawHcg3c0XkTE7xSQRaQpWg1Um9nzZnaqmbU8ijYuAi7DO/rcHfgGeBbviPQKvAHtAL7Q+wpwK9AGeB9418yinHMnAl8CP/WNoq6upYnngSqgBzAU+DFQc8rBKGA90Bb4k+/Yxb7XicBs4F3gf75zbgammFnvGm3UPH8W8DRwnXMuERgAfHaQn+04X+g+2OO42r7nM9TMcn1TKH67/+i3mf3LzEqAlcB236/bwfwZ+Dew4xDniIgcNQVkEWlynHN7gePwjkQ+CeSY2TtmlnoEzTzrnFvnnCsAPgDWOec+cc5VAa/hDa+1uRD4r3PuY+dcJfAAEAuMOdwFffWdCtzqnCt2zu0CHsIb1vfZ5pz7p3OuyjlX6js23Tn3lXPOAwwBEoD7nXMVzrnP8E43mVijje/Od86VAZVAPzNLcs7lOecW1Fafc26Wcy75EI9ZB/nRZuIN3m2Bc3213LFf2zfiDexjgTc5yHQYM8sAjsU7fUZEJCAUkEWkSXLOrXDOXeGc64g3nLUH/nEETeys8bq0lvcJB/lee2BTjTo8QDbekejD6QJEAtv3jcoCj+MNlvtk1/K9msfaA9m+6+6zab/r79/GucBpwCYz+8LMRteh1jpzzq13zm3wBfIlwP8B59VyXrUvZHcEbtj/czMLA/4F/Mz3FxURkYBQQBaRJs85txJ4Dm9QBigG4mqc0s6Pl9uGN+gCYGYGdAK21uG72XhHTlNqjMomOef61zjH1fK9mse2AZ18YXKfzvtd/wdtOOfmOucm4A3ibwPTaivOzMbutxLF/o+xdfgZ913fDvF5BLXPQU4CMoBXzWwHMNd3fMsRXFtE5LAUkEWkyTGzPmZ2u5l19L3vhPef9b/1nZIFHG9mnX03fP3Kj5efBpxuZieZWSRwO97Q+/Xhvuic24537vDfzSzJzMLMrLuZnXAE15+N9y8AvzSzSPMup/YTYGptJ5tZlJldYmYtfFNC9gLVB6nvy/1Wotj/8eVBrnHqvuktZtYH+C0w3fe+rZldZGYJZhZuZqfg7ava5kEX4B0hH+J7nOY7Ptz3c4uI+IUCsog0RYV4b2ab7Vup4VtgKd6winPuY+BVYDEwH+8cXb9wzq0CLsU7RzYXbzj9iXOuoo5NXA5EAcuBPOB1IO0Irl+Bd6m0U33X/xdwuW8U/WAuAzaa2V7gel/9/nQSsNjXF+/jnWP8530l451OsQXvz/sA3jnY+wJ0Z9/odGfntWPfA8jxtbHzCH59RUQOy5yr7V/rRERERESaJ40gi4iIiIjUoIAsIiIiIlKDArKIiIiISA0KyCIiIiIiNUQc/pTgS0lJcenp6X5rr7i4mPj4eL+1J/6hfgld6pvQpH4JXeqb0KR+CU3B7Jf58+fnOufa7H+8UQTk9PR05s2b57f2ZsyYQWZmpt/aE/9Qv4Qu9U1oUr+ELvVNaFK/hKZg9ouZbartuKZYiIiIiIjUoIAsIiIiIlKDArKIiIiISA0KyCIiIiIiNSggi4iIiIjUoIAsIiIiIlKDArKIiIiISA0KyCIiIiIiNSggN1KFZZXcM30p1zw/l+w9JcEuR0RERKTJUEBuhD5fuYsfPzSTF7/dxNfrdnPKP2YyZfYmnHPBLk1ERESk0VNAbkTyiiu47dUsrnxuLgnREbxxwxj+9/PjGdo5mV+/tZTLn5nDtvzSYJcpIiIi0qgpIDcS7y/ZzskPfcE7i7Zxy4k9eO+W4xjauSUdW8bx4lWjuHdCf+ZtzOOUf8zk9flbNJosIiIicpQigl2AHNquwjJ+9/YyPly2g4EdWvDCVaPo1z7pB+eEhRmXjU5nbM823PH6In7x2iI+XLqdP58zkLaJMUGqXERERKRx0ghyiHLO8fr8LZz84Ew+W7WLO8f34a0bxxwQjmtKT4ln6uTR/Ob0vsxck8uPH5rJu4u2NWDVIiIiIo2fRpBD0Ja8Eu5+aykzV+eQ0aUlfzlvEN3bJNTpu+FhxjVju5HZuy23v7aIm19ZyIdLd3DvWQNoFR8V4MpFREREGj8F5BCyLb+U/3yxjqlzs4kIM/5wZn8uO6YLYWF2xG31aJvAG9eP5vGZ6/nHJ6uZvWEPz105ggEdWgSgchEREZGmQwE5BGTvKeHfX6zjtXnZOAfnDe/IT0/sQceWcfVqNyI8jJvG9eDEPm255vl5THzyW567ciTDu7T0U+UiIiIiTY9fA7KZxQAzgWhf26875+7Z7xwDHgZOA0qAK5xzC/xZR2OxaXcx//p8HW8s2EKYGReO6MT1J3SvdzDeX9+0JF697hgueWo2lz09m6cnjWB099Z+vYaIiIhIU+HvEeRy4ETnXJGZRQKzzOwD59y3Nc45Fejpe4wC/u17bjbW5xTx6OdrmZ61jYgw49JjunDdCd1IaxEbsGt2bBnHa9eN5pKnZnPFs3N4/LLhZPZuG7DriYiIiDRWfg3Izrv4bpHvbaTvsf+CvBOAF3znfmtmyWaW5pzb7s9aQtHaXYX887O1vLtoG1ERYVw5Jp3Jx3ejbVLDLMXWNimGqZOP4fJn5nDtC/P458RhjB/QrkGuLSIiItJYmL83lDCzcGA+0AN4zDl3536fvwfc75yb5Xv/KXCnc27efudNBiYDpKamDp86darfaiwqKiIhoW6rQvjLzmIPv/6qlHCDkzpHMj49kqToI7/5zh+KKx0PzS9jfYGHawZGM6Z9aExFD0a/SN2ob0KT+iV0qW9Ck/olNAWzX8aNGzffOZex/3G/JyPnXDUwxMySgbfMbIBzbmmNU2pLhQekdOfcE8ATABkZGS4zM9NvNc6YMQN/tlcXv317KWGWzWd3ZNIhOXBTKeoq8/gqrnl+Hk8u2U3XHr2YOLJzsEsKSr9I3ahvQpP6JXSpb0KT+iU0hWK/BGyjEOdcPjADGL/fR1uATjXedwSa9G4WecUVvDY/m7OGtg+JcAwQHx3Bs1eOILNXG3715hKenrUh2CWJiIiIhAS/BmQza+MbOcbMYoEfASv3O+0d4HLzOgYoaOrzj6fM3kRZpYdrxnYLdik/EBMZzuOXZXDqgHbc+95yHv1sTbBLEhEREQk6f0+xSAOe981DDgOmOefeM7PrAZxz/wHex7vE21q8y7xd6ecaQkp5VTXPfb2JE3q1oVdqYrDLOUBURBj/nDiUO15fzAP/W01JRTV3nNIb72p8IiIiIs2Pv1exWAwMreX4f2q8dsBN/rxuKJu+cBu5ReVcG2KjxzVFhIfx9/MHExsVzr9mrKPaOe4a30chWURERJql0Fi+oIlyzvHUrPX0aZfIsT1Ce2OOsDDjT2cNwIDHv1hPQlQEN5/UM9hliYiIiDQ4BeQA+mJ1Dqt3FvH38wc3itFYM+PeCQMorajm7x+vJjYqPOTmTYuIiIgEmgJyAD315QZSk6L5yeD2wS6lzsLCjL+eN4jSymr++N8VxEVFcPGo4C8BJyIiItJQArbMW3O3fNteZq3N5YoxXYmKaFy/zBHhYTx80VAye7fh128v4e2FW4NdkoiIiEiDaVzJrRF56sv1xEWFc3EIbMBxNKIiwvjPpcM5pmtrbn9tER8u3RHskkREREQahAJyAOwoKOOdRdu4IKMTLeIig13OUYuJDOepSRkM7tiCm19ZwIxVu4JdkoiIiEjAKSAHwHNfb8TjHFcf1zXYpdSbd8e9kfRsm8h1L87n2/W7g12SiIiISEApIPtZUXkVL8/exKkD0ujUKi7Y5fhFi9hIXrx6JJ1axXH1c3PJys4PdkkiIiIiAaOA7GfT5mazt6yKa8Y2/tHjmlonRDPlmlG0Tojm8qdns3zb3mCXJCIiIhIQCsh+VFXt4ZmvNpDRpSVDO7cMdjl+l5oUw5RrRhEfHcFlT89mXU5RsEsSERER8TsFZD/6aNlOtuSVNunNNTq1imPKNaPwOMc905cFuxwRERERv1NA9hPnHE98uZ4ureM4uV9qsMsJqG5tErhmbDdmrc1l9c7CYJcjIiIi4lcKyH4yb1Mei7Lzufq4roSHhf620vV18cjOREeE8exXG4JdioiIiIhfKSD7yZMz15McF8l5wzsGu5QG0TI+inOGdeTNBVvZU1wR7HJERERE/EYB2Q825Bbz8YqdXDqqC3FREcEup8FcdWw65VUeXp69KdiliIiIiPiNArIfPDNrA5FhYVw+pkuwS2lQPVMTOb5XG174ZhMVVZ5glyMiIiLiFwrI9ZRXXMFr87OZMKQ9bRNjgl1Og7vq2HR2FZbz/pLtwS5FRERExC8UkOvpw2U7KKv0cMWx6cEuJSiO79mG7m3ieearDTjngl2OiIiISL35NSCbWScz+9zMVpjZMjP7WS3nZJpZgZll+R6/82cNDW3h5jyS4yLpl5YU7FKCIizMuPLYrizeUsC8TXnBLkdERESk3vw9glwF3O6c6wscA9xkZv1qOe9L59wQ3+P//FxDg8rKzmdwx2TMmv7SbgdzzrAOtIiN5JlZWvJNREREGj+/BmTn3Hbn3ALf60JgBdDBn9cIJUXlVazZVcSQTsnBLiWo4qIiuHhUZz5atoPsPSXBLkdERESkXixQ80bNLB2YCQxwzu2tcTwTeAPYAmwDfuGcO2DPYjObDEwGSE1NHT516lS/1VZUVERCQkK921mxu5q/zC3jtuHRDGrTfJZ3q82eMg+/+KKUH3eJ4KI+0UfVhr/6RfxPfROa1C+hS30TmtQvoSmY/TJu3Lj5zrmM/Y8HJNWZWQLeEHxrzXDsswDo4pwrMrPTgLeBnvu34Zx7AngCICMjw2VmZvqtvhkzZuCP9pbPWAus4rLTjqdlfFS922vsPs9byIxVu3jgyuNIiD7y/7T81S/if+qb0KR+CV3qm9CkfglNodgvfl/Fwswi8YbjKc65N/f/3Dm31zlX5Hv9PhBpZin+rqMhZG3OJ711nMKxz1XHplNYVsUb87cEuxQRERGRo+bvVSwMeBpY4Zx78CDntPOdh5mN9NWw2591NATnHFnZ+c1+/nFNQzu3ZGjnZJ79agMej5Z8ExERkcbJ3yPIxwKXASfWWMbtNDO73syu951zHrDUzBYBjwAXuUa4gO72gjJ2FZYzWAH5B646tisbd5fw2cpdwS5FRERE5Kj4dQ6yc24WcMj1zpxzjwKP+vO6wZCVnQ+gEeT9nDqgHe1bxPDMVxv4Ub/UYJcjIiIicsS0k95RWpSdT1R4GP3aN88NQg4mIjyMy8ek8/W63azYvv/9mSIiIiKhTwH5KC3Mzqdv+ySiI8KDXUrIuWhEJ2Ijw3n2K20cIiIiIo2PAvJRqKr2sGRLAUM1vaJWyXFRnDu8A29nbSO3qDzY5YiIiIgcEQXko7B6ZxGlldWaf3wIV4zpSkWVhynfbg52KSIiIiJHRAH5KOgGvcPr0TaBzN5tePHbTZRXVQe7HBEREZE6U0A+ClnZeSTHRdKldVywSwlpVx/Xldyict5btD3YpYiIiIjUmQLyUcjKzmdwx2R8+53IQRzXI4WebRP4x6er2ZBbHOxyREREROpEAfkIFZVXsWZXkaZX1IGZcd85Ayksq2LCo7OYsUqbh4iIiEjoU0A+Qou35OMcDOmcHOxSGoWM9Fa8+9PjaJ8cy1XPzeXxL9bRCDdOFBERkWZEAfkIfXeDXsfkoNbRmHRqFcebN47h1AFp3PfBSn42NYvSCt24JyIiIqFJAfkIZW3OJ711HC3jo4JdSqMSFxXBoxcP5Y5TevPu4m2c95+v2ZpfGuyyRERERA6ggHwEnHNkZedr/vFRMjNuGteDpydlsHl3CWf+cxaz1+8OdlkiIiIiP6CAfAS2F5Sxq7BcAbmeTuyTyls3HUuLuEgueWo2L36zUfOSRUREJGQoIB+BffOPBysg11uPtgm8fdOxHN+rDb+dvoxfvbmESs+hQ3K1x1FcXkVReVUDVSkiIiLNUUSwC2hMFmXnExUeRr/2ScEupUlIionkycszePDjVTz2+TpmxBtPrP6askoPpZXVlFVWU1bpobyymrKqaiqrvQE6Isz4+wWDmTCkQ5B/AhEREWmKFJCPwMLsfPq2TyI6IjzYpTQZ4WHGHaf0oX/7Fjz8fhYRYWGkJEQQExlObGQ40ZHhxESGERMZTkyE9/X7S7bz27eXMqpra9q1iAn2jyAiIiJNjAJyHVVVe1iypYALR3QKdilN0mkD04jbvYrMzGMOe+6P+7fj1Idn8qs3F/PMFSO0o6GIiIj4leYg19HqnUWUVlbrBr0Q0DUlnjvH9+HzVTm8Nm9LsMsRERGRJsavAdnMOpnZ52a2wsyWmdnPajnHzOwRM1trZovNbJg/awiU7zYIUUAOCZNGpzOqayvufW+51lMWERERv/L3CHIVcLtzri9wDHCTmfXb75xTgZ6+x2Tg336uISCysvNIjoukS+u4YJciQFiY8bfzBlPtHHe9sVjLxImIiIjf+DUgO+e2O+cW+F4XAiuA/ZcamAC84Ly+BZLNLM2fdQRCVnY+gzsma75rCOncOo67T+vLl2tyeXnO5mCXIyIiIk2EBWrkzczSgZnAAOfc3hrH3wPud87N8r3/FLjTOTdvv+9PxjvCTGpq6vCpU6f6rbaioiISEhLqfH5plePGT0o4s3skZ/fUFtOBcqT9At7dDR+YV8bafA9/PDaWNnGaVh8IR9M3Enjql9ClvglN6pfQFMx+GTdu3HznXMb+xwOyioWZJQBvALfWDMf7Pq7lKwekdOfcE8ATABkZGS4zM9Nv9c2YMYMjae/rdbk4ZnPW8UPI7N3Wb3XIDx1pv+zTa2gppzw0kze3xDHlmlGEhWmU39+Otm8ksNQvoUt9E5rUL6EpFPvF78NtZhaJNxxPcc69WcspW4Caa6V1BLb5uw5/+u4GvY7JQa1DatchOZbfntGXb9bv5sVvNwW7HBEREWnk/L2KhQFPAyuccw8e5LR3gMt9q1kcAxQ457b7sw5/y9qcT3rrOFrGa3pFqLogoxMn9GrD/R+sZGNucbDLERERkUbM3yPIxwKXASeaWZbvcZqZXW9m1/vOeR9YD6wFngRu9HMNfuWcIys7X8u7hTgz4/5zBxIRbtzx+iI8Hq1qISIiIkfHr3OQfTfeHXICqPPeFXiTP68bSNsLythVWK6A3AiktYjl9z/pz+2vLeKZrzZwzdhuwS5JREREGiHd8n8Y380/7twyuIVInZwzrAM/6tuWv320inU5RcEuR0RERBohBeTDWJSdT1R4GH3TEoNditSBmfHncwYSGxXOL15bRLWmWoiIiMgRUkA+jIXZ+fRtn0R0RHiwS5E6apsYwx/O7M/Czfn8e8baYJcjIiIijYwC8iFUVXtYsqWAoZp/3OicObg9Pxncngc/Xs1Xa3ODXY6IiIg0IgrIh7B6ZxGlldW6Qa8RMjPuP2cg3dskcMsrC9leUBrskkRERKSRUEA+hO9u0FNAbpTioyP496XDKaus5sYpC6io8gS7JBEREWkEFJAPISs7j5ZxkXRpHRfsUuQo9WibwN/OH8zCzfn88b/Lg12OiIiINAIKyIeQlZ3P4E7JeDcIlMbqtIFpXDu2Ky98s4m3F24NdjkiIiIS4hSQD6KovIo1u4oY3DE52KWIH9w5vg8ju7birjcXs3LH3mCXIyIiIiFMAfkgFm/JxzkY0jk52KWIH0SEh/HoxUNJionk+hfns7esMtgliYiISIhSQD6I727Q0whyk9E2MYZ/XTKMLXml3D5tER5tIiIiIiK1UEA+iILSSnqlJtAyPirYpYgfZaS34u7T+vLx8p38Z+a6YJcjIiIiIUgB+SB+dWpfPvzZ8cEuQwLgymPTOWNQGg98tEqbiIiIiMgBFJAPISxMq1c0RWbGX84dpE1EREREpFYKyNIsaRMRERERORgFZGm2am4i8tu3l+qmPREREQEUkKWZO21gGjef2INX52Vzy9SFlFdVB7skERERCbKIYBcgEmy3ndyLxJgI/vz+SvYUV/D4ZcNJjIkMdlkiIiISJH4dQTazZ8xsl5ktPcjnmWZWYGZZvsfv/Hl9kaNhZkw+vjsPXTiYORv2cMHj37Jrb1mwyxIREZEg8fcUi+eA8Yc550vn3BDf4//8fH2Ro3b20I48c8UINu0u5px/f826nKJglyQiIiJB4NeA7JybCezxZ5siDen4Xm2YOvkYSiuqOe/fX7Nwc16wSxIREZEGZs759859M0sH3nPODajls0zgDWALsA34hXNu2UHamQxMBkhNTR0+depUv9VYVFREQkKC39oT/wilftlZ7OGBeWUUVDhuHBzNkLbNe7p+KPWNfE/9ErrUN6FJ/RKagtkv48aNm++cy9j/eEMH5CTA45wrMrPTgIedcz0P12ZGRoabN2+e32qcMWMGmZmZfmtP/CPU+iWnsJwrn5vDiu2F3HfOQC7I6BTskoIm1PpGvNQvoUt9E5rUL6EpmP1iZrUG5AZd5s05t9c5V+R7/T4QaWYpDVmDSF21SYxm6uTRjOneml++vpjHPl+Lv/9CKSIiIqGnQQOymbUzM/O9Hum7/u6GrEHkSCRER/D0pBGcNaQ9f/toFX94d7lCsoiISBPn14mVZvYKkAmkmNkW4B4gEsA59x/gPOAGM6sCSoGLnNKGhLioiDAevGAIKQnRPDVrA63io7jlpMPODBIREZFGyq8B2Tk38TCfPwo86s9rijSEsDDj16f3Ja+kkgc/Xk16SjxnDm4f7LJEREQkALTVtEgdmRl/PmcAI9Nb8YvXFjF/k5aAExERaYoUkEWOQHREOP+5bDhpLWKY/MI8sveUBLskERER8TMFZJEj1Co+imeuGEFltYern5/L3rLKYJckIiIifqSALHIUurdJ4D+XDmd9TjE3TVlAVbUn2CWJiIiInyggixylMT1S+NPZA/hyTa6WfxMREWlCmvf+uSL1dOGIzqzPKebxmevp1iaeK4/tGuySREREpJ4UkEXq6c7xfdiQW8y97y2nS+s4TuyTGuySREREpB40xUKknsLCjH9cNIR+7ZO4+eWFrNi+N9gliYiISD0oIIv4QVxUBE9dPoLEmEiufm4uu/aWBbskEREROUoKyCJ+0q5FDE9NyiCvpJJrX5hHSUVVsEsSERGRo6CALOJHAzq04JGJQ1mytYBLn5pNfklFsEsSERGRI6SALOJnJ/dL5V+XDGPp1r1c8Pg37CjQdAsREZHGRAFZJADGD0jjuatGsC2/jHP//TUbcouDXZKIiIjUkQKySICM6Z7CK9ceQ2llNef9+2uWbi0IdkkiIiJSBwrIIgE0sGMLXrt+NDGR4Vz0xLd8s253sEsSERGRw1BAFgmw7m0SeP2G0bRrEcOkZ+fwv2U7gl2SiIiIHIICskgDSGsRy2vXjaZfWhLXvzSfafOyg12SiIiIHIQCskgDaRkfxZRrRnFsjxR++fpiHv9iXbBLEhERkVr4NSCb2TNmtsvMlh7kczOzR8xsrZktNrNh/ry+SKiLj47g6UkjOGNQGvd9sJL7PliBcy7YZYmIiEgN/h5Bfg4Yf4jPTwV6+h6TgX/7+foiIS8qIoyHLxrKpcd05vEv1nPRE9/y9bpcBWUREZEQ4deA7JybCew5xCkTgBec17dAspml+bMGkcYgPMy4d8IA7p3Qnw25xVz85GzO/883fLE6R0FZREQkyMzf/zM2s3TgPefcgFo+ew+43zk3y/f+U+BO59y8Ws6djHeUmdTU1OFTp071W41FRUUkJCT4rT3xj+baLxXVjplbqnh/QyV7yhzdWoTxk+6RDGkTjpkFuzyg+fZNqFO/hC71TWhSv4SmYPbLuHHj5jvnMvY/HtHAddT2f/taE7pz7gngCYCMjAyXmZnptyJmzJiBP9sT/2jO/fJj4HdVHt5YsIV/zVjLwwtK6ZeWxM0n9uCU/u0ICwtuUG7OfRPK1C+hS30TmtQvoSkU+6WhV7HYAnSq8b4jsK2BaxAJSVERYUwc2ZnPbs/kgfMHU1pZzQ1TFjD+4ZlMz9pKtUdTL0RERBpCQwfkd4DLfatZHAMUOOe2N3ANIiEtMjyM84Z35JPbTuDhi4bgHPxsahYXPv4NReVVwS5PRESkyfP3Mm+vAN8Avc1si5ldbWbXm9n1vlPeB9YDa4EngRv9eX2RpiQ8zJgwpAMf3Xo8fz1vEAuz87n2+XmUVVYHuzQREZEmza9zkJ1zEw/zuQNu8uc1RZq6sDDjgoxORIYbt01bxI1TFvCfS4cTFaF9fkRERAJB/4cVaSTOHtqRP541gM9W7uLn07I0J1lERCRAGnoVCxGph0tGdaGkvJo/vb+CuMhw/nLuoKCvcCEiItLUKCCLNDLXHt+NovIqHv50DfHREdzzk34hs16yiIhIU6CALNII3fqjnhSXV/HUrA3ER4dzxyl9gl2SiIhIk6GALNIImRm/Pr0vxRXVPPb5OuKjI7gxs0ewyxIREWkSFJBFGikz449nDaC0ooq/friK+KgIJo1JD3ZZIiIijZ4CskgjFh5mPHD+YEoqqrnnnWXERYVzfkanw39RREREDkrLvIk0chHhYfzz4qGM7ZnCnW8s5r3F2r1dRESkPhSQRZqA6Ihwnrgsg+FdWvLTlxfyy9cXkVNYHuyyREREGiUFZJEmIjYqnOevGsl1J3TjrYVbOfGBGTz15Xoqqz3BLk1ERKRRUUAWaULioiL41al9+ejW4xme3pI//ncFpz78JbPW5Aa7NBERkUZDAVmkCerWJoFnrxjB05MyqKz2cOnTs7nuxXlk7ykJdmkiIiIhTwFZpIkyM07qm8r/fn48d5zSm5mrc/nRg1/w4MerKa2oDnZ5IiIiIUsBWaSJi44I56ZxPfjsFydwSv92PPLpGk76+wz+u3h7sEsTEREJSQrIIs1EWotYHpk4lGnXjaZFXBQ3vbyAF77ZGOyyREREQo4CskgzM7JrK967+ThO7NOWe99bzsLNecEuSUREJKQoIIs0Q+FhxoMXDCY1KYabpixgT3FFsEsSEREJGQrIIs1UclwU/7pkGLlFFdz6ahbVHhfskkREREKC3wOymY03s1VmttbM7qrl80wzKzCzLN/jd/6uQUTqZlDHZO45sx8zV+fwz8/WBLscERGRkBDhz8bMLBx4DDgZ2ALMNbN3nHPL9zv1S+fcGf68togcnYtHdmb+pjwe/nQNQzu35IRebYJdkoiISFD5ewR5JLDWObfeOVcBTAUm+PkaIuJHZsafzhpI79REbp26kK35pcEuSUREJKjMOf/NOzSz84DxzrlrfO8vA0Y5535a45xM4A28I8zbgF8455bV0tZkYDJAamrq8KlTp/qtzqKiIhISEvzWnviH+iW4dhR7+P3XpbRPCOPuUTFEhNl3n6lvQpP6JXSpb0KT+iU0BbNfxo0bN985l7H/cb9OsQCslmP7J/AFQBfnXJGZnQa8DfQ84EvOPQE8AZCRkeEyMzP9VuSMGTPwZ3viH+qX4Evusp3rX1rAl4Vt+MOEAd8dV9+EJvVL6FLfhCb1S2gKxX7x9xSLLUCnGu874h0l/o5zbq9zrsj3+n0g0sxS/FyHiByF8QPSuOa4rjz/zSbeWbTt8F8QERFpgvwdkOcCPc2sq5lFARcB79Q8wczamZn5Xo/01bDbz3WIyFG689Q+jEhvyV1vLGbNzsJglyMiItLg/BqQnXNVwE+Bj4AVwDTn3DIzu97Mrveddh6w1MwWAY8AFzl/ToQWkXqJDA/j0YuHERcVzvUvzaeovCrYJYmIiDQof89B3jdt4v39jv2nxutHgUf9fV0R8Z/UpBgemTiUS5+azV1vLObcNP0dVkREmg/tpCcitRrTPYXbf9yb9xZv5z+Lylmt6RYiItJMKCCLyEHdcEJ3bsjszsKcan780EyufWEeCzfnBbssERGRgPL7FAsRaTrCwow7x/ehX9h21lgHnv96Ix8v38nobq25IbM7Y3um4LvnVkREpMnQCLKIHFZilHHbyb346q4T+c3pfVmfW8Tlz8zhzEe/4v0l26n2aI6yiIg0HQrIIlJnCdERXDO2GzN/OY77zxlIUXkVN05ZwMkPfsGrczdTXlUd7BJFRETqTVMsROSIRUeEc9HIzpyf0YkPl+7gXzPWcucbS/jjf1cwrndbTu6Xygm925AUExnsUkVERI6YArKIHLXwMOP0QWmcNrAds9bm8u6ibXy6YhfvLNpGRJhxTLfWnNwvlZP6tqVjy7hglysiIlInCsgiUm9mxtiebRjbsw3VHkdWdh7/W76TT5bv5J53lnHPO8vol5bEj/qlcnLfVAZ0SNLNfSIiErIUkEXEr8LDjOFdWjG8Syt+dWpf1ucU8cmKnXyyfBePfraGRz5dQ+/URKZcO4qUhOhglysiInIA3aQnIgHVrU0Ck4/vzrTrRzP31z/i/nMGsmlPMVc/P4/SCt3UJyIioUcBWUQaTOuEaC4a2ZmHLxrK4i353PrqQi0RJyIiIUcBWUQa3Cn92/Hb0/vx0bKd/Pn9FcEuR0RE5Ac0B1lEguKq47qyeU8JT8/aQKeWsVxxbNdglyQiIgIoIItIEP32jH5sySvl/95bToeWcZzcLzXYJYmIiGiKhYgET3iY8cjEIQzo0IJbXlnI4i35wS5JREREAVlEgisuKoKnJmXQKj6Kq56bR/aekmCXJCIizZwCsogEXdvEGJ6/agQVVdVc+dxcCkorg12SiIg0YwrIIhISerRN5D+XDWfT7mKuf3E+FVWeYJckIiLNlN8DspmNN7NVZrbWzO6q5XMzs0d8ny82s2H+rkFEGqcx3VP4y7mD+Gb9bu56czHOaY1kERFpeH5dxcLMwoHHgJOBLcBcM3vHObe8xmmnAj19j1HAv33PIiKcM6wj2XtKeeiT1XRqGcfPT+4V7JJERKSZ8fcybyOBtc659QBmNhWYANQMyBOAF5x3aOhbM0s2szTn3HY/1yIijdQtJ/UgO6+Ehz9dQ2JMBNeM7RbskkREpBkxf/4TppmdB4x3zl3je38ZMMo599Ma57wH3O+cm+V7/ylwp3Nu3n5tTQYmA6Smpg6fOnWq3+osKioiISHBb+2Jf6hfQlcw+qbK4/jPonLm7azm3J6R/KR7VINevzHQ75nQpb4JTeqX0BTMfhk3btx851zG/sf9PYJstRzbP4HX5Rycc08ATwBkZGS4zMzMehe3z4wZM/Bne+If6pfQFay+yTzBw+2vLeKNrG106NSFn5/cC7Pa/ghpnvR7JnSpb0KT+iU0hWK/+DsgbwE61XjfEdh2FOeIiBARHsaDFwwhOiKMRz5bS1mVh1+d2kchWUREAsrfAXku0NPMugJbgYuAi/c75x3gp775yaOAAs0/FpGDCQ8z7j9nEFERYTwxcz3lldXc85P+hIUFJiTv2lvGzDW5rM8pIjI8jKiIMKIjvM9Rvvc1X7eKj2JghxYK7SIiTYhfA7JzrsrMfgp8BIQDzzjnlpnZ9b7P/wO8D5wGrAVKgCv9WYOIND1hYca9EwYQExHOU7M2UF7l4U9nDyTcDyG5rLKauRv38OWaXGauzmHljkLvNQ08dbxF46Q+bfnT2QNp1yKm3vWIiEjw+XsEGefc+3hDcM1j/6nx2gE3+fu6ItK0mRm/Pr0vMZHhPPr5WiqqPPz1vEFEhB/Zcu7OOdbsKmLm6hxmrsll9vrdlFd5iAoPIyO9JXed2oexPVPo2y4JgIpqD+VVHiqqPFRU+56/e1/NvI15PPTJak5+8At+fXpfLhzRSaPJIiKNnN8DsohIoJgZvzilN9ERYfz949WUV3n4x0VDiDxESHbOsXF3CXM37GH2hj18vS6X7QVlAHRvE8/EkZ05oVcbRnVrRVzUgX8kxoSFExMZftD2h3dpxSn923HnG4u5680lvLd4O/edM5BOreLq/wOLiEhQKCCLSKNz80k9iYkM50/vr6Ci2sOjFw8lOsIbYqs9jlU7CpmzYTdzN+YxZ+MecgrLAWgVH8Worq245aQ2jO2ZQseW/gmx6SnxvHLtMbw8ZzP3vb+CU/4xk1+e0pvLR6cHbK60iIgEjgKyiDRK1x7fjejIMH43fRnXvjCf0d1aM3fjHuZu3ENhWRUA7VvEcGz31ozo2opRXVvRvU1CwKY/hIUZlx7ThXF92vKrN5fw+3eX898l2/nLuYPo1kbrroqINCYKyCLSaF0+Op3oiDDuenMJM1fn0L1NPGcMSmNk11aMSG/ltxHiI9EhOZbnrxzBGwu28n/vLmP8w19y28m9uOa4rkc8X1oE4MOlOygsq+T8jE6HP1nqJa+4gi/X5lJR5eHcYR10P0EzpoAsIo3ahSM6M6Z7CrFR4aQkRAe7HMA7V/q84R05vmcKv3l7Kfd/sJL3l2znsYuHaW6yHJEXvtnI76YvAyB7T4k2y9lPtcfxf+96f30GdkxmUMcWdG+TUOcVbqo9jqzsfL5YncPM1Tks2pLPvg2GcwrLuSGze6BKlxCngCwijV6ohs62STE8ftlw/rtkO796cwnXvjCPt248ltiog9/0Jw3L43GUV3lCsk/+88U67v9gJSf3SyU5NpJHPltLSUU1vz69r0Kyz9sLt/L8N5uIjgjj+W82ARAbGU7/9kkM7NiCgR1aMKhjC7qmfB+adxSUMXN1Dl+szmHW2lwKSisJMxjcKZmfndST43u14bmvNvKXD1eSkhClkftmSgFZRCSAzIwzBrUnPjqCq56by6/fXsLfzx+sgBMCFmzO4xevLWJjbjF905IYkd6KjPSWjEhvRWpS8Na0ds7x0MereeSztfxkcHsevGAw4WbERXnXAS+prOaPEwY0+xtAy6uqefDj1Qzs0IK3bhzDxt0lLNmaz/+3d9/xUVZZA8d/J5PeSCOBkEKAUBJKIDQpUkVAlF1UUFdUymLD8rqr6Oruuuu+q7vvorjqiogiCogo9g5KRyCEGlqAVFoCBEgCpN/3j4zZqAESmGQeyPl+PvnMzJ2nnORkkjN37nPvtgOnSDl4ioUbsplTmgGAj7uN+PAmHDp2hgNffwdAqJ8Hw+LCGNCuKf3ahBDg7V517I7hTcg7XcLjH24n2Nedwe3DnPEtKifSAlkppRrAoHahPDQklhlL99ItKpDbe0c7OyTLKC4rZ1PmSVxtgpdb5bR6Xu42vNwqvzxcXRxaDBaVlvPCklReX5VGM39P7h7Qmq3ZJ3kvKZu31mYAEBXkXVUs92gZROumPhd8U1NaXkFRaTkVFRcfmzGG//1iF7NXpzO2ewTPjulc1fP59A3xeLm7MnPFfopKyi9qHvAfFRSV4ufpdvGBWsC8dVkcPHmWf9xY+XNoE+pLm1Bfft01AqgcPrH/aCHbD5xi+8FTbDtwEn8P4Yn+7RjQrintwvzOmVN3Vxdmjk/k1lnruG/+JuZP7k1idGBDfnvKybRAVkqpBvLg4Fi2ZJ/kL5/tID7cn65R+g83NaeAB9/dXLWC4bl4urng5WbDx8OV4fHNmNAvhhYBXnU+32Z7r/H+o6e5tWckfxjZoapQLC2vYOehfJIy8tiYcYKVqUf5cNNBAAK93YgL96es3FBUWs5Z+1dRaQVFJZX3y6otvdi5qY3gNqfoFNGk1rFVVBie+iSFBeuzuKtPS/40Ku4nbwxEhGnD2+HjbmP6klSKysqZMa4r7q61L5K3HzjFv77dw4rUo/RtE8xj17anS2RArfc/l5z8Imwu0mDXARQUlfLKsn30axNCv9iQGrexuQhtw/xoG+bHjYmVRfPy5csZOKB244p9PVyZM6EHN726lklzk/jgnqtoE+rnsO9BWZsWyEop1UBcXIQZ4xIY9dJq7pu/ic8f6EewRS4sbGjGGOauzeDvX+3G39OVGeMSCPH1+G/hWfLfIvRsSXlVUXr4VBFz1mYwZ20GIzs157f9Y+gcEXDB8xWVlvPC0lReX5lGmL8ncyf2ZEDbpj/Zxs3mQpfIALpEBjC5/08XmUnKyGPf0ULcbS4E+rgTbu/d9nS34elqw8vdpar3O/9sKW+s2sf1L6/m2vgwHrmmHe2anb+wKiuv4LEPtvHh5oPcO7A1j13brsbeTRHhgSGxeLnb+NsXuzhbspFXb08872I2AHtzCnh+SSpfpRwhwNuNO66K5otthxn9yhpGdGzG74a1o01o3acj3JJ9ktmr0vgq5Qihfh4N9jv9+so08k6XMG14+3o9T4ivB29P7MWYV9dyxxsbWHxfH5o3qfsbM3X50QJZKaUaUIC3OzNvT2TMq2t5aOEW5k7sWesr7q8UuQVFPPr+NlakHmVQu6b886YuNPWrfVF18ORZ5qxOZ2FSNp9tPUTPmCCm9G/F4PahNQ7F2JJ9kt+/v5V9uYWM6x7Jk6M64F+L4QUiQkyIDzEhPoztUbcLtTq4HCKVCGavSuPbnSu5vnM4Dw+NrXFO7JKyCh5auJmvUo7w+2FtmTo49oLHn9y/FV7uNp76OIWJbyXx+h3d8fH45b/0rONnmLE0lY+3HMTb3ZWHhsQyqX8M/p5uPDa8PbNXpfH6yjS+2XGEmxMjefia2AsWgOUVhm93HGH26nSSM0/g5+HKLT0ieT/5AA+/t4W3JtTv73RuQRGzV6dzXefmdeqhv1hRwd68NaEHt8xax51vbuD9u/vQxPvyHp6iLkwLZKWUamAdWzThmdHxTFu8neeX7OHRa+u3F8xKlu7M4bHF2zhdXMYzo+O5vXd0nS9YbBHgxVOj4nhwaCzvbchmzpp0Jr+9kVZNfZjUL4Ybu0Xg6WajuKycGUv38tqK/YT5e/LWhB4MbBdaT9/ZT3m5Cg8NjOXOPtHMWpnGnDUZfL7tEDd2i+DBIbFVM68UlZZz77xklu05yh9HxTGpX0ytz/GbXtF4udn4/ftbuePNDcyZ0KOq8D9yqoiXvt/Le0nZ2FyE3/Zvxd0DWhPk898L0Xw9XHl4aFvG947mlWX7mbcuk4+2HOSuPi25d0BrAqttC1BYXMaipGzmrE0nO+8sEYFe/GlUHGN7ROLr4UrniCZMW7ydF5em8siwdg74Kdbspe/2UVJWwe/r8Rw/17FFE2aNT+SuOUlMmpvEvMm9Lthrry5vWiArpZQTjOsRxeask7yybD8JkYFcE3dlXyV/pqSMv32xiwXrs4hr7s+/b0245PGc/p5u/PbqVtzVtyVfbj/M7FXpPPlRCtO/TWVs90i+25XD3txCxnaP4KlRcbXqNXa0AG93Hhvenon9Ynh1+X7eWZfJx1sOMq5HJBP6xvDHj1P4Ie04f/91J27rFVXn44/pFoGXm40HF27mttfXMWNcV95LyuLtHzIprzDc2jOKqYPbnHdWjmBfD/50fRwT+rZkxtK9vL4qjXfXZ3H3gFZM7BfDiTOlzF2bwbvrsygoLiMxOpA/jOjAsPhmP+kpHtcjiuTME/z7+30kRAXUy8wPGcdO8+6GLMb1iCQmxMfhxz+fPm1CeGFcAlPf3cTUBZuZeXu3C14kWVBUytbsU6TmFDC8YzPCL2LcvHIOLZCVUspJnr4hnh2H8nnkvS189kA/WjbwP/yGsv3AKR56bzPpx05z99WteGRYWzxcHdf75mZzYXRCC27oEs769Dxmr0pj5or9NPP3ZM6EHgxqoF7j8wnx9eCPo+L4bf9WvLJsHwuTspi3Lgubi/D82C5VMy9cjBGdmjPLzcbd85IZ+vwKXAR+3TWCh4fG1mmO8Mggb6aP7cKUq1vxr2/38K9vU5m9Or1q6fYRHZsxqV/MeS8u/evojqQczOd/3tvK5w/0c/gc5dOXpOJmc+GhIRcehlIfruvcnGOF8fz50x08+VEKz93YqeoTEGMM2XlnSc7KIznzBMmZJ9lzJJ8fr918Z10mH97b5xc988qatEBWSikn8XSz8Z/fdOP6l1dzz7zky2IREWMMb6xOJzWnAH9PN/w83fD3cq289XStelz5nCvvbshm+rd7CPH1YP7kXvRpXfOMA44gIvRuFUzvVsHk5hfh6+mKt7u1/s01a+LJM7/qyJSrW/HG6nT6x4YwpMOl97QOah/KOxN78unWQ0zo2/KSeufbNfPj9Tu6k5yZx+xV6UQEenFnn5a1Wrrd083GzNsTGfXSKu6dn8wH9/Rx2FCElIOn+GzrIaYOakOoE+epvrNPS44WFPPysn14udtoEeBVWRBnneBoQTFQOXyla1QAwwbHVk0PN/ntjUx5ZyPvTNLhGdXl5hfxTUYp3YvL8K1hHL2zWCcSpZRqhCKDvJkxLoEJbyXx5EfbmT7WuouIGGN49qvdzFqZRoivO2dKyjlTUn7B/a7r1Jz//XXHnyzEUN+cWUDVRmSQN0/fEO/QY/ZqFUyvVsEOO15idBCJ0UF13i8q2JvnxyYw+e2N/OWzHTw7prND4vnH17sJ9HZjyoBWDjnepfjdsLYcLSiumjc7Otib/m1C6BYdSGJ0IG3D/H5xoeLzY7swdcFmHv1gGy+OS2j0C738aN66TBbuLuHugmItkJVSSv3XwGqLiHSNDmS8RRcRmbF0L7NWpnHHVdH85YZ4RITS8goKi8rILyqloKiM/LOl5BeVUVBUeRsZ6MU1cWGWLfpV/RgaF8Z9A1vzn+X76RoVyNhLXK557b5jrNp7jKeuq90MJPVNRPj7mE7c2iuK8ABPQv0u/IZsVOdwsvPO8o+vdxMZ6MVj9TxF3eWgqLSceeuz6NLUZrkhZlogK6WUBTw4OJat2Sf562c7iAz0YkDbppYqKl9bsZ8Xv9vLTYkRPH19fFVsbvZ5gXVcpfq5R65py5bsk/zx4xTiw/2JD7+4KdmMMfzj692EN/G01AqUNhchoY6LrNwzoBVZeWf4z/L9RAV5c0vPul+YeSX5dMsh8k6XMDnOep/4XNwalTUQkSARWSIie+23NY7iF5EMEdkuIltEZKOjzq+UUpczFxfhhXEJhAd4cdecJAZPX8FL3+0lO++Ms0Pj7R8yePar3Yzq3Jx/3NhZPxpWteJqc+Hft3YlwNuNe+dt4tTZ0os6zlcpR9h64BT/c03by37srojwzOh4rm7blCc/TmFl6lFnh+Q0xhjeXJNO+2Z+dAhyWDnqMI6M6HHgO2NMLPCd/fG5DDLGJBhjujvw/EopdVkL8Hbniwf788+bOtPM35PpS1Lp/89ljH3tB95LyiK/6OIKjEuxaGM2f/pkB0M7hPHCuIRGt6iJujQhvh785zfdOHTyLL9btIWKastx10ZpeQX/+mYPbcN8GdPt4mf6sBJXmwuv3NaV2FBf7pu/iV2H850dklP8kHac3UcKmNg3xlKflv3IkQXyaGCu/f5c4FcOPLZSSjUKvh6ujO0eybtTerN62iAevbYdxwqLmbZ4Oz3+tpSpCzbx/e4cSssr6j2WT7ceYtribfSPDeHl27ridoE5X5WqSWJ0EE9e14Glu3KZuXJ/nfZdtDGbtGOnefTa9lfUmzM/TzfmTOiBj4eNiW8lkZNf5OyQGtybqzMI8nHnhoRwZ4dSIzGmbu/mznkgkZPGmIBqj08YY34xzEJE0oETgAFeM8bMOsfxpgBTAMLCwhIXLlzokDgBCgsL8fWt+5rzqn5pXqxLc+NcxhjS8ytYc7CM9YfLKCwFf3eIDzRENnGnqbcLod5CUy8XvN0cU0Rsyinj5S3FxAa48Eh3TzxsV05x0hD0NfNTxhhe3VpM0pFyHu3hSVzwhYdKFJcbpq08S1Mv4Q+9PB3Sy2i1vGTml/Ps+iLCfFx4oqcnnq6N43WWc7qCx1ed5frWboyJdXdqXgYNGpRc04iGOhXIIrIUaFbDU08Cc2tZIIcbYw6JSCiwBHjAGLPyfOft3r272bjRccOVly9fzsCBAx12POUYmhfr0txYR0lZBcv35PLhpoOsTj1C4c9GXQR6uxEV7ENUkDfRQd5EBXsTE+JDx/AmtZ5jeUXqUX47dyMdwv2ZP7mXpaZeulzoa+aXTheXMfqVNWQcO02U/Xez5Y+/q8HeRAf7EBnkVbWIzCvL9vF/3+zhg3uuonvLuk83VxMr5mXZnlwmz93IgLZNmTU+8YKr810Jnv50B/PXZ7Jm2mBC/T2dmhcRqbFArtNfPWPM0POcIEdEmhtjDotIcyD3HMc4ZL/NFZGPgJ7AeQtkpZRSldxdXRgW34xh8c1Yvnw53Xr3JTvvDFnHz5CZd4Ys+/2t2Sf5cvthyu1jPm0uQlxzf7pFBdAtOpBuUYFEBHr9oldufdpx7n5nI61DfXl7Qk8tjpXD+Hi4MndiT+atyyTz+Gkyjp1hY8YJCovLqrYRgeb+nkQH+7D94CmGdgh1WHFsVYPahfKXG+J56uMUnv5sB8+M7mjJMbmOkl9UyvsbsxnVOdzS85U78i/fp8CdwHP2209+voGI+AAuxpgC+/1hwF8dGINSSjUq/p5uxIc3qXEKrdLyCg6fLGJvbgGbs06SnHmC95MPMPeHTABC/TzoFlW5sEG36ADKyg0T30qiRYAX70zqSRNv5883q64sLQK8mFZt/l9jDMdPl5B5/AxZeZVFc1beGTKPnybUz4PHRzSOuYJv7x1Ndt4ZXluZRstgHyb3d/5iKPVlUVI2p0vKmdg3xtmhnJcjC+TngEUiMgnIAm6GyiEVwGxjzEggDPjI/s7IFVhgjPnagTEopZSyc7O5EBVc+VH2j8sZl5VXsPtIAZuyTrDJvjzu1zuOVO0TFeTN/Mm9CfH1cFbYqhEREUJ8PQjx9ahakrmxmja8PenHTvPcV7vpan/jeqUprzC8tTaDHi0D6RRxcfNiNxSHFcjGmOPAkBraDwEj7ffTgC6OOqdSSqm6cbW50LFFEzq2aMIdV7UEILegiE2ZJ0k7VsivElrQrIl1P/ZU6krl4iL8381duO7fq3jw3c18+WD/K+5TnCU7czhw4ixPjuzg7FAu6MofCa6UUuq8Qv08Gd6xGfcNbEN4gJezw1Gq0Wri5cbLt3UjJ7+IxxZvxVEzjVnFnDXptAioXH7e6rRAVkoppZSyiITIAKYNb883O3J4Z12ms8P5idLyCpIz8zhaUFznfVMOnmJ9eh539Wl5WczUoZcnK6WUUkpZyKR+Mazdf4y/fb6LblGBdGzhvPG6uflFLN9zlGV7clm99xgFxWUE+7gzd2LPOsU1Z00G3u42xvaIrMdoHcf6JbxSSimlVCPi4iJMH5tAoI8bD7y7+SdT4dW38gpDcuYJpn+7h1EvraLn37/jscXb2Jx1klFdmjP95i54utm4ZdY61u47Vqtj5hYU8dnWQ9ycGEETr8tjXLX2ICullFJKWUyQjzsv3tKV215fx1MfbeeFcQn1Nj/yqTOlLE/N5fvduaxIPcrJM6W4CCRGB/Lote0Y3D6U9s38qs7fLzaEO97YwF1zkphxSwIjOzU/7/Hnr8uipLyCO/u0rJf464MWyEoppZRSFtS7VTAPDWnLC0tT6dMmhLHdHTc8ITvvDEt35bBkZw7r0/MorzAE+7gzuH0og9qFcnVs03POohHm78miu69i0twk7l+wiWdGd+T23tE1bltUWs789ZkMbh9Kq6bWWeb7QrRAVkoppZSyqKmD27Au7Th/+iSFrpEBxIb5XdRxjDGkHMxnyc4jfLszh91HCgCIDfVlytWtuCYujISIAFxcatdL3cTbjXcm9WLqgk089XEKxwqLeWhI7C96uT/beohjhSWWXxjk57RAVkoppZSyKJuL8OItCYx4cRVTF2zm4/v74uVuq9W+peUV/LD/OEt25rB0Vw6HTxXhItA9OognR3ZgaFwYMSE+Fx2bl7uNmeMTeXzxdmYs3cvxwhKeviEem73INsbw5poM2ob50rdN8EWfxxm0QFZKKaWUsrBQf0+mj+3CXXOS+OvnO3h2TOdzbltcVs6afcf4cvsRluzM4dTZUrzcbPSPDeGRa9oyuH0owQ5cKdPN5sK/bu5MiK87r61MI+9MCc+P7YKHq4316XnsOpzPc2M61dv46fqiBbJSSimllMUNbBfKPQNaM3PFfvq0DuH6LuFVzxWVlrMy9ShfpRxh6c4cCorL8PN05Zq4MEZ0bE7/2BA83WrX63wxRIQnRnYg2Nedv3+5m1NnSpk5PpE3V6cT6O3Gr7q2qLdz1xctkJVSSimlLgO/G9aWDenHeeLD7cSG+ZJ+9DRfphzh+105nC4pJ8DbjRGdmjGiU3P6tg7B3bVhZ/OdcnVrgnw8mLZ4Gze9upY9OQXcP7BNvRbn9UULZKWUUkqpy4CbzYV/39qVkS+uYviMVUDldHA3JLRgZKdm9G4VjJuTV6m7KTGCQG837l+wCZsI46+qeXYLq9MCWSmllFLqMhER6M3M8Yks3ZnL0A6h9IwJstzSzUM6hLH43j7k5hcT5u/p7HAuihbISimllFKXkT6tQ+jTOsTZYZxXfHgT4sMvvJ1VWesth1JKKaWUUk6mBbJSSimllFLVaIGslFJKKaVUNVogK6WUUkopVY3DCmQRuVlEdohIhYh0P892w0Vkj4jsE5HHHXV+pZRSSimlHMGRPcgpwBhg5bk2EBEb8AowAogDbhWROAfGoJRSSiml1CVx2DRvxphdwIXW2u4J7DPGpNm3XQiMBnY6Kg6llFJKKaUuhRhjHHtAkeXA740xG2t47iZguDFmsv3xeKCXMWZqDdtOAaYAhIWFJS5cuNBhMRYWFuLr6+uw4ynH0LxYl+bGmjQv1qW5sSbNizU5My+DBg1KNsb8YmhwnXqQRWQp0KyGp540xnxSm0PU0FZjhW6MmQXMAujevbsZOHBgbcO8oOXLl+PI4ynH0LxYl+bGmjQv1qW5sSbNizVZMS91KpCNMUMv8XwHgMhqjyOAQxfaKTk5+ZiIZF7iuasLAY458HjKMTQv1qW5sSbNi3VpbqxJ82JNzsxLdE2NDb3UdBIQKyIxwEHgFuC2C+1kjGnqyCBEZGNN3enKuTQv1qW5sSbNi3VpbqxJ82JNVsyLI6d5+7WIHACuAr4QkW/s7eEi8iWAMaYMmAp8A+wCFhljdjgqBqWUUkoppS6VI2ex+Aj4qIb2Q8DIao+/BL501HmVUkoppZRypMa6kt4sZwegaqR5sS7NjTVpXqxLc2NNmhdrslxeHD7Nm1JKKaWUUpezxtqDrJRSSimlVI20QFZKKaWUUqqaRlUgi8hwEdkjIvtE5HFnx9PYiMibIpIrIinV2oJEZImI7LXfBlZ77gl7rvaIyLXOifrKJyKRIrJMRHaJyA4RecjerrlxIhHxFJENIrLVnpe/2Ns1LxYgIjYR2Swin9sfa14sQEQyRGS7iGwRkY32Ns2NBYhIgIh8ICK77f9vrrJybhpNgSwiNuAVYAQQB9wqInHOjarReQsY/rO2x4HvjDGxwHf2x9hzcwsQb9/nP/YcKscrA35njOkA9Abut//8NTfOVQwMNsZ0ARKA4SLSG82LVTxE5XSlP9K8WMcgY0xCtXl1NTfW8CLwtTGmPdCFytePZXPTaApkoCewzxiTZowpARYCo50cU6NijFkJ5P2seTQw135/LvCrau0LjTHFxph0YB+VOVQOZow5bIzZZL9fQOUfrRZobpzKVCq0P3Szfxk0L04nIhHAdcDsas2aF+vS3DiZiPgDVwNvABhjSowxJ7FwbhpTgdwCyK72+IC9TTlXmDHmMFQWakCovV3z5QQi0hLoCqxHc+N09o/xtwC5wBJjjObFGmYAjwEV1do0L9ZggG9FJFlEptjbNDfO1wo4CsyxD02aLSI+WDg3jalAlhradI4769J8NTAR8QUWAw8bY/LPt2kNbZqbemCMKTfGJAARQE8R6XiezTUvDUBERgG5xpjk2u5SQ5vmpf70NcZ0o3I45f0icvV5ttXcNBxXoBvwqjGmK3Aa+3CKc3B6bhpTgXwAiKz2OAI45KRY1H/liEhzAPttrr1d89WARMSNyuJ4vjHmQ3uz5sYi7B9FLqdyLJ7mxbn6AjeISAaVQ/UGi8g8NC+WYF+9F2NMLpWr+/ZEc2MFB4AD9k/BAD6gsmC2bG4aU4GcBMSKSIyIuFM5+PtTJ8ekKnNwp/3+ncAn1dpvEREPEYkBYoENTojviiciQuW4sF3GmOerPaW5cSIRaSoiAfb7XsBQYDeaF6cyxjxhjIkwxrSk8v/I98aY29G8OJ2I+IiI34/3gWFACpobpzPGHAGyRaSdvWkIsBML58a1IU/mTMaYMhGZCnwD2IA3jTE7nBxWoyIi7wIDgRAROQD8GXgOWCQik4As4GYAY8wOEVlE5QuoDLjfGFPulMCvfH2B8cB2+3hXgD+guXG25sBc+5XbLsAiY8znIvIDmhcr0teL84UBH1W+58cVWGCM+VpEktDcWMEDwHx7J2UaMAH73zYr5kaXmlZKKaWUUqqaxjTEQimllFJKqQvSAlkppZRSSqlqtEBWSimllFKqGi2QlVJKKaWUqkYLZKWUUkopparRAlkppZRSSqlqtEBWSimllFKqmv8H7FPTpLpu3HYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "\n", "data_file = \"data/Model_Data.csv\"\n", "data = pd.read_csv(\"https://jckantor.github.io/cbe30338-2021/\" + data_file).set_index(\"Time\")[1:]\n", "t = data.index\n", "T1 = data['T1'].values\n", "\n", "# parameter values and units\n", "alpha = 0.00016 # watts / (units P1 * percent U1)\n", "P1 = 200 # P1 units\n", "Ua = 0.05 # watts/deg C\n", "Cp = 6 # joules/deg C\n", "U1 = 50 # steady state value of u1 (percent)\n", "T_amb = 21 # deg C\n", "\n", "def compare(Ua, Cp):\n", " T1_dev_initial = 0\n", " T1_dev_ss = alpha*P1*U1/Ua\n", " T1_dev = T1_dev_ss + (T1_dev_initial - T1_dev_ss)*np.exp(-Ua*t/Cp)\n", " T1_model = T1_dev + T_amb\n", " \n", " fig, ax = plt.subplots(2, 1, figsize=(10,8))\n", " \n", " ax[0].plot(t, T1, t, T1_model)\n", " ax[0].set_xlabel('time / seconds')\n", " ax[0].set_ylabel('temperture / °C')\n", " ax[0].grid(True)\n", "\n", " ax[0].text(200, 30, f'Ua = {Ua}')\n", " ax[0].text(200, 25, f'Cp = {Cp}')\n", " \n", " ax[1].plot(t, T1_model - T1)\n", " ax[1].set_title(f'Sum of errors = {sum(abs(T1_model-T1)):0.1f}')\n", " ax[1].grid(True)\n", " \n", " plt.tight_layout()\n", "\n", "compare(0.05, 8)" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 2, "link": "[2.3.3 Matching the Model to Experimental Data](https://jckantor.github.io/cbe30338-2021/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.3-Matching-the-Model-to-Experimental-Data)", "section": "2.3.3 Matching the Model to Experimental Data" } }, "source": [ "
\n", "\n", "**Study Question:** By trial and error using the `compare()` function defined above, tetermine values for $U_a$ and $C_p$ that yield a good fit of the model to the data. \n", "\n", "**Study Question:** Are you able to remove all systematic error? If not, why not?\n", "\n", "**Study Question:** The sum of absolute errors is shown on the chart. Try to find values of $U_a$ and $C_p$ that minimize this error criterion. In your opinion, is that the best choice of model parameters? Why or why not?\n", "\n", "**Study Question:** Does this solution make sense? The [specific heat capacity for solids](https://en.wikipedia.org/wiki/Heat_capacity) is typically has values in the range of 0.2 to 0.9 watts/degC/gram. Using a value of 0.9 that is typical of aluminum and plastics used for electronic products, what would be the estimated mass of the heater/sensor combination?\n", "\n", "**Study Question:** Suppose we want to improve the model. Where should we go from here? \n", "\n", "
" ] }, { "cell_type": "markdown", "metadata": { "nbpages": { "level": 2, "link": "[2.3.4 Assignment 3](https://jckantor.github.io/cbe30338-2021/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.4-Assignment-3)", "section": "2.3.4 Assignment 3" } }, "source": [ "## 2.3.4 Assignment 3\n", "\n", "1. This notebook attempted to fit a first-order model of a heater/sensor assembly to experimental data. In the course of the fit, estimates were derived for parameters $\\alpha$, P1, $U_a$, and $C_p$. From these parameter values, estimate a time constant. \n", "\n", "2. Apply the techniques outlined in Section 2.2 for the estimation of time constants from experimental data. How does that value compare to the calculation in the first question?\n", "\n", "3. One idea to improve the fit of the model to the data would be add an additional adjustable parameter. Suppose we assume $T_amb$ isn't measured. Create a new notebook. Based on the code cell above where the function `compare` is defined, create a new function called `compare3` that takes accepts parameters $T_amb$, $Ua$, and $Cp$ and compares prediction to experimental data. By trial and error, find values of the three parameters that best 'fit' the data. Were you able to reduce the structural error in the model? Discuss your result." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "nbpages": { "level": 2, "link": "[2.3.4 Assignment 3](https://jckantor.github.io/cbe30338-2021/02.03-First-Order-Model-for-a-Single-Heater.html#2.3.4-Assignment-3)", "section": "2.3.4 Assignment 3" } }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "< [2.2 Properties of Scalar First Order Linear Systems](https://jckantor.github.io/cbe30338-2021/02.02-Properties-of-Scalar-First-Order-Linear-Systems.html) | [Contents](toc.html) | [Tag Index](tag_index.html) | [2.4 Model Identification for the Temperature Control Lab](https://jckantor.github.io/cbe30338-2021/02.04-Model-Identification.html) >

\"Open

\"Download\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 4 }