cbe30338-2021
¶
Index of Python Libraries used in this Repository
¶
cvxpy
¶
4.7.4 CVXPY
4.7.5 $\cal{H}_2$ Optimal State Estimation
4.7.5 $\cal{H}_2$ Optimal State Estimation
4.7.6 $\cal{H}_{\infty}$ Optimal State Estimation
4.8.2 State Space Model
5.1.4 Solution using CVXPY
5.1.5 Solution using scipy.optimize.linprog
5.2.2 Solving optimization problems with CVXPY
5.2.3.1 Consolidating
5.2.3.2 Optimal blend as a function of product specification
5.2.3.2 Optimal blend as a function of product specification
6.1.3.1 Imports
6.2.1.2 Parameter Values
6.3.1 Feedforward Optimal Control
6.4.1 Model
matplotlib
¶
1.4.6 The TCLab
Plotter
2.1.3.1.2 Step 1. Import libraries
2.2.2 Steady-State Gain
2.2.3.1 Response to an Initial Condition
2.2.3.2 Time constant
2.2.3.3 Half-life
2.2.3.3 Half-life
2.2.3.4 Step Inputs
2.2.3.4 Step Inputs
2.2.4 Response to a step input
2.3.2.9 Plotting the Analytical Solution
2.3.3 Matching the Model to Experimental Data
2.4.1.1 Read data into a Pandas DataFrame
2.4.4 First order Energy balance model
2.4.6.1 Dynamics of the Heater/Sensor System
2.4.7.2 Standard form
3.2.1 Setpoint profiles
3.2.2.1 Specifying piecewise linear setpoint profiles
3.2.3.2 Representing PCR protocols in Python
3.9 Lab Assignment 4: Solution
4.1.2.1.2 Accessing Data using
.columns
and
.fields
4.2.1 Output Feedback Control
4.4.4 Eigenvalues
4.6 Lab Assignment 6: Anomaly Detection
5.2.3.2 Optimal blend as a function of product specification
5.2.3.2 Optimal blend as a function of product specification
5.2.3.2 Optimal blend as a function of product specification
5.6.2 Denatured Alcohol
6.2.1.2 Parameter Values
6.3.1 Feedforward Optimal Control
6.4.1 Model
7.1.4 Ready to Roomba
7.1.5 Chemotaxis
7.2.5.1 Gantt Charts
7.3.1 Simulation with Simpy
7.5.3 Poisson Process
7.5.3.1 Poisson distribution
7.5.4 Simulating a Poisson Process in SimPy
7.5.6 Example: Simulation of an Order Processing Queue
7.5.7 Batch Processing Example (NEEDS REWORK)
)
A.1.3.1 Step 1. Create the background frame.
A.1.4 Example: Phase Plane Animation for an Exothermic Stirred-Tank Reactor
numpy
¶
2.1.3.1.2 Step 1. Import libraries
2.2.2 Steady-State Gain
2.2.3.1 Response to an Initial Condition
2.2.3.2 Time constant
2.2.3.3 Half-life
2.2.3.3 Half-life
2.2.3.4 Step Inputs
2.2.3.4 Step Inputs
2.2.4 Response to a step input
2.3.2.9 Plotting the Analytical Solution
2.4.1.1 Read data into a Pandas DataFrame
2.4.4 First order Energy balance model
2.4.6.1 Dynamics of the Heater/Sensor System
2.4.7.2 Standard form
3.2.1 Setpoint profiles
3.2.2.1 Specifying piecewise linear setpoint profiles
3.2.3.2 Representing PCR protocols in Python
3.9 Lab Assignment 4: Solution
4.2.1 Output Feedback Control
4.2.5 Model Predictions
4.2.7.1 Fun with Eigenvalues
4.4.1 State-Space Model
4.6 Lab Assignment 6: Anomaly Detection
4.7.4 CVXPY
4.7.5 $\cal{H}_2$ Optimal State Estimation
4.7.5 $\cal{H}_2$ Optimal State Estimation
4.7.6 $\cal{H}_{\infty}$ Optimal State Estimation
4.8.2 State Space Model
4.8.2 State Space Model
5.1.4 Solution using CVXPY
5.1.5 Solution using scipy.optimize.linprog
5.2.2 Solving optimization problems with CVXPY
5.2.3.1 Consolidating
5.2.3.2 Optimal blend as a function of product specification
5.2.3.2 Optimal blend as a function of product specification
5.2.3.2 Optimal blend as a function of product specification
5.2.3.2 Optimal blend as a function of product specification
5.2.3.2 Optimal blend as a function of product specification
5.6.2 Denatured Alcohol
5.98.5.1 Data in Matrix/Vector Format
5.99.3 Example 19.3: Linear Programming Refinery
6.1.3.1 Imports
6.2.1.2 Parameter Values
6.3.1 Feedforward Optimal Control
6.3.3 TCLab Event Loop
6.4.1 Model
7.1.5 Chemotaxis
7.2.7 How many charging stations are required?
7.2.8 Adding a reporter process
7.3.1 Simulation with Simpy
7.5.3.1 Poisson distribution
7.5.6 Example: Simulation of an Order Processing Queue
A.1.3.1 Step 1. Create the background frame.
A.1.4 Example: Phase Plane Animation for an Exothermic Stirred-Tank Reactor
pandas
¶
1.4.5 The TCLab
Historian
2.3.2.5 Estimating $\alpha$
2.3.3 Matching the Model to Experimental Data
2.4.1.1 Read data into a Pandas DataFrame
3.9 Lab Assignment 4: Solution
4.1.2.1.4 Accessing Data using
pandas
4.2.1 Output Feedback Control
5.2.3.1 Consolidating
5.4 Gasoline Blending
5.6.5 Display Composition
5.99.3 Example 19.3: Linear Programming Refinery
7.2.2 3.3.2 Example: A room full of Roombas
7.2.3 One Roomba
7.2.5 Adding the full complement of Roombas
7.2.6 Charging stations as shared resources
7.2.7 How many charging stations are required?
7.2.8 Adding a reporter process
7.4.4 Generating Customer Orders
7.4.4 Generating Customer Orders
7.4.5 Order Processor
7.4.5 Order Processor
7.4.5 Order Processor
7.4.7 Completed Model
7.5.6 Example: Simulation of an Order Processing Queue
pyomo
¶
5.4 Gasoline Blending
5.4.3 Blending Model
5.6.4 Optimization Model
5.99.1 Pyomo Model
random
¶
7.4.4 Generating Customer Orders
7.4.4 Generating Customer Orders
7.4.5 Order Processor
7.4.5 Order Processor
7.4.5 Order Processor
7.4.7 Completed Model
7.5.4 Simulating a Poisson Process in SimPy
7.5.6 Example: Simulation of an Order Processing Queue
7.5.7 Batch Processing Example (NEEDS REWORK)
)
seaborn
¶
A.1.3.1 Step 1. Create the background frame.
A.1.4 Example: Phase Plane Animation for an Exothermic Stirred-Tank Reactor
simpy
¶
7.1.1 Creating a simulation environment
7.1.2 Creating simulation processes
7.1.2 Creating simulation processes
7.1.3 Events
7.1.4 Ready to Roomba
7.1.4 Ready to Roomba
7.1.5 Chemotaxis
7.2.3 One Roomba
7.2.5 Adding the full complement of Roombas
7.2.6 Charging stations as shared resources
7.2.7 How many charging stations are required?
7.2.8 Adding a reporter process
7.3.1 Simulation with Simpy
7.4.4 Generating Customer Orders
7.4.4 Generating Customer Orders
7.4.5 Order Processor
7.4.5 Order Processor
7.4.5 Order Processor
7.4.7 Completed Model
7.5.4 Simulating a Poisson Process in SimPy
7.5.6 Example: Simulation of an Order Processing Queue
7.5.7 Batch Processing Example (NEEDS REWORK)
)
tclab
¶
1.4.8 Running Diagnostics
time
¶
1.4.3.2 Setting heater power with
.Q1()
and
.Q2()
-and-
.Q2()`)
1.4.4 Synchronizing with Real Time using
clock