Skip to main content
Ctrl+K
Logo image
  • CBE 30338 Chemical Process Control

Course Information

  • CBE 30338/32338 Syllabus
  • CBE 30338/32338 Schedule

Assignments

  • CBE 30338 Assignments
    • Homework 1
    • Homework 2

Topical Materials

  • 1. What is Process Control?
    • 1.1. What is Feedback?
    • 1.2. Elements of Process Control
  • 2. Process Modeling
    • 2.1. One Compartment Pharmacokinetics
    • 2.2. First-Order Linear Systems
    • 2.3. First Order Model for a Single Heater
    • 2.4. Fitting a Model to Experimental Data
    • 2.5. Second Order Model
    • 2.6. Fed-Batch Bioreactor
    • 2.7. Exothermic Continuous Stirred Tank Reactor
    • 2.8. Hare and Lynx Population Dynamics
    • 2.9. Study Guide
  • 3. Feedback Control
    • 3.1. Case Study: Thermal Cycling for PCR
    • 3.2. Setpoints
    • 3.3. Case Study: PCR Thermal Cycler Protocols
    • 3.4. Relay Control
    • 3.5. Implementing Controllers in Python
    • 3.6. Practical Proportional (P) and Proportional-Integral (PI) Control
    • 3.7. Integral Windup and Bumpless Transfer
    • 3.8. Controller Tuning
  • 4. Process Analytics
    • 4.1. Learning Goals
    • 4.2. Data/Process/Operational Historian
    • 4.3. State Estimation
    • 4.4. Lab Assignment 5: State Estimation
    • 4.5. Anomaly Detection
    • 4.6. Lab Assignment 6: Anomaly Detection
    • 4.7. Observer Synthesis using Linear Matrix Inequalities
    • 4.8. Application of Luenberger Observers to Environmental Modeling of Rivers
    • 4.9. Study Questions
  • 5. Optimization
    • 5.1. Linear Production Model
    • 5.2. Linear Blending Problems
    • 5.3. Homework Assignment 2: Optimization
    • 5.4. Gasoline Blending
    • 5.5. Linear Programming
    • 5.6. Design of a Cold Weather Fuel
    • 5.7. Pyomo Examples
    • 5.8. Recharging Strategy for an Electric Vehicle
    • 5.9. Pooling and Blending
  • 6. Predictive Control
    • 6.1. Simulation and Optimal Control in Pharmacokinetics
    • 6.2. Static Operability
    • 6.3. Open-Loop Optimal Control
    • 6.4. Predictive Control
    • 6.5. Implementing Predictive Control
    • 6.6. Gompertz Model
    • 6.7. Project: Gompertz Model for Tumor Growth
    • 6.8. Time as a Decision Variable
  • 7. Projects
    • 7.1. Project Ideas
  • 8. References

Control Laboratory

  • 1. The Temperature Control Laboratory
    • 1.1. Setting up TCLab
    • 1.2. Testing and Troubleshooting TCLab
    • 1.3. Python Coding for TCLab
  • 2. Step Testing
    • 2.1. Step Testing
    • 2.2. Lab Assignment 1: Step Test of a First-Order System
  • 3. Empirical Model Identification
    • 3.1. Fitting Step Test Data to Empirical Models
  • 4. Estimating Model Parameters
    • 4.1. Assignment: Model Identification
  • 5. Feedback Control
    • 5.1. Relay Control
    • 5.2. Lab Assignment 4: Relay Control
  • 6. State Estimation
    • 6.2. Open and Closed Loop Estimation
  • 7. Optimization
  • 8. Predictive Control and Real Time Optimization
    • 8.1. Simulation, Control, and Estimation using Pyomo
    • 8.2. Simulation, Control, and Estimation using Pyomo

Python Tutorials

  • Python Tutorials
    • Tidy Data and Pandas
    • Coding Controllers with Python Generators
    • Modular Simulation using Python Generators
    • Animation in Jupyter Notebooks
  • Repository
  • Open issue

Index

A | B | M | P | R | S

A

  • Anti-reset-windup

B

  • Bumpless transfer

M

  • MV

P

  • P&ID
  • PID
  • PV

R

  • Reset-windup (also call Integral windup)

S

  • SP

By Jeffrey Kantor

© Copyright 2022.